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We propose a biologically motivated brain-inspired single neuron perceptron (SNP) with universal approximation and XOR
computation properties.This computational model extends the input pattern and is based on the excitatory and inhibitory learning
rules inspired from neural connections in the human brain’s nervous system. The resulting architecture of SNP can be trained by
supervised excitatory and inhibitory online learning rules. The main features of proposed single layer perceptron are universal
approximation property and low computational complexity. The method is tested on 6 UCI (University of California, Irvine)
pattern recognition and classification datasets. Various comparisons with multilayer perceptron (MLP) with gradient decent
backpropagation (GDBP) learning algorithm indicate the superiority of the approach in terms of higher accuracy, lower time,
and spatial complexity, as well as faster training. Hence, we believe the proposed approach can be generally applicable to various
problems such as in pattern recognition and classification.

1. Introduction

In various computer applications such as pattern recognition,
classification, and prediction, a learning module can be
implemented by various approaches including statistical,
structural, and neural approaches. Among these methods,
artificial neural networks (ANNs) are inspired by physiolog-
ical workings of the brain. They are based on mathematical
model of single neural cell (neuron) named single neuron
perceptron (SNP) and try to resemble the actual networks
of neurons in the brain. As computational models, SNP has
particular characteristics such as the ability to learn and
generalize. Although the multilayer perceptron (MLP) can
approximate any functions [1, 2], traditional SNP is not
universal approximator. MLP can learn through the error
backpropagation algorithm (EBP), whereby the error of out-
put units is propagated back to adjust the connecting weights
within the network. In MLP architecture, by increasing the
number of neurons in input layer or (and) the number of
neurons in output layer or (and) the number of neurons

in hidden layer(s), the number of learning parameters and
the algorithm computational complexity are significantly
increased. This problem is usually referred to as the curse
of dimensionality [3, 4]. So many researchers have tried to
propose more powerful single layer architectures and faster
algorithms such as functional link networks (FLNs) and
Levenberg-Marquardt (LM) and its modified and extended
versions [5–20].

In contrast to the MLP, SNP and FLNs do not impose
high computational complexity and are far from the curse
of dimensionality. But because of disregarding the universal
approximation property, SNP and FLNs are not very popular
in the applications. In contrast to the previse knowledge about
SNP, this paper aims to propose a novel SNP model that can
solve the XOR problem and we show that it can be universal
approximator. Proposed SNP can solve XOR problem only
if additional nonlinear operator is used. As illustrated in the
next section, the SNP universal approximation property can
simply be archived by extending the input patterns and using
the nonlinear operator max. Like functional link networks
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Input: Initial random weights; w1,w2, . . . ,wn,wn+1 and input bias b
(1) Take 𝑘th learning sample (𝑘th 𝑝 and 𝑇)
(2) 𝑝

𝑛+1
= max

𝑗=1,...,𝑛
(𝑝
𝑗
)

(3) Calculate the final output 𝐸
𝑜
and error

𝐸
𝑜
= tan sig(

𝑛+1

∑

𝑗=1

𝑤
𝑗
× 𝑝
𝑗
+ 𝑏)

𝑒 = 𝑇 − 𝐸
𝑜

(4) Update the weights by using excitatory rule
𝑤
𝑗
= 𝑤
𝑗
+ 𝛼max(𝑒, 0)𝑠

𝑗
; for 𝑗 = 1, . . . , 𝑛 + 1

𝑏 = 𝑏 + 𝛼max(𝑒, 0)
(5) Update the weights by using inhibitory rule

𝑤
𝑗
= 𝑤
𝑗
− 𝛼max(−𝑒, 0)𝑠

𝑗
; for 𝑗 = 1, . . . , 𝑛 + 1

𝑏 = 𝑏 − 𝛼max(−𝑒, 0)
(6) If 𝑘 < number of training patterns then 𝑘 = 𝑘 + 1 and proceed to the first
(7) Let epoch = epoch + 1 and 𝑘 = 1
(8) If the stop criterion has not satisfied proceed to the first

Algorithm 1: Proposed SNP algorithm.

Figure 1: Proposed SNP.

(FLNs) [21], the proposed SNP does not include hidden
units or expand the input vector, but guarantees universal
approximation. FLNs are single-layer neural networks that
can be considered as an alternative approach in the data
mining to overcome the complexities associated with MLP
[22] but they do not guarantee universal approximation.

The paper is organized as follows. Proposed SNP and
universal approximation theorem are proposed in Section 2.
Section 3 presents the numerical results, where the proposed
SNP is compared with backpropagation MLP.There are vari-
ous versions of backpropagation algorithms. In classification
problems, we compare with gradient descent backpropa-
gation (GDBP) [23], that is, the standard basic algorithm.
Finally, conclusions are made in Section 4.

2. Proposed Single Neuron Perceptron

Figure 1 shows the proposed SNP. In the figure, the model
is presented as 𝑛 + 1-inputs single-output architecture. The
variable 𝑝 is the input pattern and the variable 𝑇 is related
target applied in the learning process (3). Let us extend the
input pattern as follows:

𝑝
𝑛+1

= max
𝑗=1,...,𝑛

(𝑝
𝑗
) . (1)

Actually, max operation increases the input dimension to
𝑛 + 1.

So, the new input pattern has 𝑛 + 1 elements. In Figure 1,
the input pattern is illustrated by vector 𝑝

1≤𝑗≤𝑛+1
and the 𝐸

𝑜

calculated by the following formula is the final output:

𝐸
𝑜
(𝑝) = 𝑓(

𝑛+1

∑

𝑗=1

𝑤
𝑗
× 𝑝
𝑗
+ 𝑏) , (2)

where𝑓 is activation function and𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛+1
, and b are

adjustable weights. So, error can be achieved as follows:

𝑒 = 𝑇 − 𝐸
𝑜

(3)

and the learning weights can be adjusted by the following
excitatory learning rule:

𝑤
𝑗
= 𝑤
𝑗
+ 𝛼max (𝑒, 0) 𝑝

𝑗
; for 𝑗 = 1, . . . , 𝑛 + 1 (4)

and then by the following inhibitory rule:

𝑤
𝑗
= 𝑤
𝑗
− 𝛼max (−𝑒, 0) 𝑝

𝑗
; for 𝑗 = 1, . . . , 𝑛 + 1, (5)

where 𝑇 is target, 𝐸
𝑜
is output of network, 𝑒 is related error,

and 𝛼 is the learning rate. Also 𝑏 can be trained by

𝑏 = 𝑏 + 𝛼max (𝑒, 0) ,

𝑏 = 𝑏 − 𝛼max (−𝑒, 0) .
(6)

It should be added that max operation applied on the
input pattern and also in the learning phase has been
motivated from computationalmodels of limbic system in the
brain [24–26]. Limbic system is an emotional processor in the
mammalian brain [27–29]. In these models [24–26], the max
operator prepares the output and input ofmain parts of limbic
system.

In summary, the feedforward computation and backward
learning algorithm of proposed SNP, in an online form and
with tansig activation function, is as in Algorithm 1.
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In the algorithm, 𝛼 can be picked empirically or changed
adaptively during the learning process according to the
adaptive learning [30, 31].

The proposed SNP solves theXORproblem. Consider 2−1
architecture with hardlim activation function and by using
the following weights: 𝑤

1
= −1, 𝑤

2
= −2, V

3
= 2, and 𝑏 = −1;

thus,
_
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1
× 1 + 𝑤

2
× 1 + 𝑤

3
×max (1, 1) + 𝑏)

= 0

_
𝑓 (0, 0) = hardlim (𝑤

1
× 0 + 𝑤

2
× 0 + 𝑤

3
×max (0, 0) + 𝑏)

= 0

_
𝑓 (1, 0) = hardlim (𝑤

1
× 1 + 𝑤

2
× 0 + 𝑤

3
×max (1, 0) + 𝑏)

= 1

_
𝑓 (0, 1) = hardlim (𝑤

1
× 0 + 𝑤

2
× 1 + 𝑤

3
×max (0, 1) + 𝑏)

= 1,

(7)

where hardlim is calculated by the following formula:

hardlim (𝑥) = {

1 if (𝑥 ≥ 0)
0 otherwise.

(8)

Since
_
𝑓 is in the form of (2), so

_
𝑓 based on SNP can

approximate the XOR function. The proposed model has a
lower computational complexity than other methods such
as spiking neural networks [32] that solved XOR problem.
The computational complexity of proposed SNP is 𝑂(𝑛); this
is while it profits from very simple questions adjusting the
weights.

In the next section, we prove that SNP is a universal
approximator and can approximate all real continuous func-
tions.

2.1. Universal Approximation Theorem. Let us ignore the
activation function from the model and rewrite (2) like this

𝐸 (𝑠) =

𝑛

∑

𝑗=1

(𝑤
𝑗
) × 𝑠
𝑗
+ 𝑏. (9)

Consider 𝑌 as the set of all equations in form (9) and
𝑑
∞
(𝐸
1
, 𝐸
2
) = sup

𝑝∈𝑈
|𝐸
1
(𝑝) − 𝐸

2
(𝑝)| as a submetric; then

(𝑌, 𝑑
∞
) is ametric space [33]. The following theorem shows

that (𝑌, 𝑑
∞
) is dense in (𝐶[𝑈], 𝑑

∞
), where 𝐶[𝑈] is the set of

all real continues functions defined on 𝑈.

SNP Universal Approximation Theorem. For any given real
continuous function 𝑔 on the compact set 𝑈 ⊂ 𝑅

𝑛 and
arbitrary 𝜀 > 0, there exists 𝐸 ∈ 𝑌 such that

sup
𝑝∈𝑈






𝑔 (𝑝) − 𝐸 (𝑝)






< 𝜀. (10)

We use the following Stone-Weierstrass theorem to prove the
theorem.

Stone-Weierstrass Theorem (see [33, 34]). Let 𝑌 be a set of
real continuous functions on compact set 𝑈. If (1) 𝑌 is alge-
bra,that is, the set 𝑌 is closed under scalar multiplication (the
closing under addition andmultiplication is not necessary for
real continuous functions [34]), (2) 𝑌 separates points on 𝑈,
that is, for every 𝑥, 𝑦 ∈ 𝑈 such that 𝑥 ̸= 𝑦, there exists 𝐸 ∈ 𝑌

such that 𝐸(𝑥) ̸= 𝐸(𝑦); and (3) 𝑍 vanishes at no point of 𝑈,
that is, for each 𝑥 ∈ 𝑈, there exists 𝐸 ∈ 𝑌 such that 𝐸(𝑥) ̸= 0,
then the uniform closure of 𝑌 consists of all real continuous
functions on 𝑈; that is, (𝑌, 𝑑

∞
) is dense in (𝐶[𝑈], 𝑑

∞
).

SNP Universal Approximation Proof. First, we prove that
(𝑌, 𝑑
∞
) is algebra. Let 𝐸 ∈ 𝑌, for arbitrary 𝑐 ∈ 𝑅:

𝐸 (𝑝) =
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(11)

which is given in form (8). Thus, 𝑐𝐸 ∈ 𝑌 and (𝑌, 𝑑
∞
) is an

algebra.
Next, we prove that (𝑌, 𝑑

∞
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We prove this by constructing a required E, for arbitrary
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𝑗
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(12)

Therefore, (𝑌, 𝑑
∞
) separates the point on 𝑈.

Finally, we prove that (𝑌, 𝑑
∞
) vanishes at no point of 𝑈.

We choose 𝑤
𝑗
= 0, for 𝑗 = 1, . . . , 𝑛, V

𝑛+1
= 0, 𝑤

𝑛+1
> 0, and

𝑏 = 1.
Since, for all 𝑝 ∈ 𝑅𝑛,

𝑛

∑

𝑗=1

(𝑤
𝑗
) 𝑝
𝑗
= 0 (13)

and 𝑏 > 0, then, for all 𝑝 ∈ 𝑅

𝑛, there exists 𝐸 such that
𝐸(𝑝) ̸= 0.

So, SNP independently from activation function is uni-
versal approximator.

3. Numerical Results

One parameter that related to computational complexity of
a learning method is the number of learning weights in each
epoch.The lower number of learningweights concludes lower
number of computations and lower computational complex-
ity. To evaluate the number of proposed SNP learningweights
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Table 1: Datasets and related learning information.

Dataset Dataset information Parameters ENN model MLP model Comparison
ID Name Instance Class Attribute Learning rates Architecture Weights Architecture Weights Rw
1 Diabetes 768 2 8 0.050 9-1 10 8-2-1 21 52%
2 Heart 270 2 13 0.050 14-1 15 13-2-1 31 51%
3 Pima 768 2 8 0.005 9-1 10 8-2-1 21 52%
4 Ionosphere 351 2 34 0.050 35-1 36 34-2-1 73 50%
5 Sonar 208 2 60 0.0005 61-1 62 60-2-1 125 50%
6 Tic-tac 958 2 9 0.0005 10-1 11 9-2-2 23 52%

with respect to the MLP, we propose a measure named the
reducing ratio of number of weights (Rw) as follows:

Rw = (1 −

Number Of Learning Weights of SNP Model
Number Of Learning Weights of MLP Model

)

× 100.

(14)

The Rw is a measure that can be used to compare the
computational complexity of proposed SNP and MPL. The
higher Rw shows SNP has a lower number of learning
weights. Thus, it has a lower number of computations and
so has a lower computational complexity. Additionally, in the
classification problems, the accuracy can be a proper perfor-
mance measure to evaluate the algorithms. This measure is
generally expressed as follows:

Accuracy = Correct Detection
All

. (15)

For all learning scenarios listed below, the training set
contained 70% while the testing set contained 15% of the
data and the remaining was used for the validation set. Input
patterns have been normalized between [0 1]. Output targets
are binary digits (i.e., the single class is labeled by digits “1”
and “0,” the two classes are labeled as “01” and “10,” and the
three classes are labeled as “001,” “010,” and “100,” and. . .).
Also the initial weights were randomly selected between
[0 1].

Here and prior to entering comparative numerical stud-
ies, let us analyze the computational complexity. Regarding
the proposed learning algorithm, the algorithm adjusts𝑂(2𝑛)
weights for each learning sample, where 𝑛 is number of input
attributes. In contrast, computational time is 𝑂(𝑐𝑛) for MLP,
where 𝑐 is number of hidden neurons (the lowest 𝑐 is 2).
Additionally, GDBP MLP compared here is based on deriva-
tive computations which impose high complexity, while the
proposed method is derivative free. So, the proposed method
has lower computational complexity and higher efficiency
with respect to the MLP.This improved computing efficiency
can be important for online predictions, especially when the
time interval of observations is small.

To test and assess the SNP in classification, 6 single class
datasets have been downloaded from UCI (University of
California, Irvine) Data Center. In all datasets, the target
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Figure 2: Comparisons between SNP and MLP.

labeling was binary. Table 1 shows the information related
to the datasets that include the number of attributes and
instances. Additionally, the SNP and MLP architectures and
the number of learning weights and Rw are presented in the
table too. As illustrated in Table 1, SNP reduces the number of
learning weights approximately about 50% for each dataset.

In the proposed SNP algorithm, we consider 𝑏 = 0.
And the learning parameters values are shown in Table 1.
The activation function was tansig and the stop criterion in
learning process was the maximum epochs, which means the
maximum number of epochs has been reached. The maxi-
mum and minimum values of each dataset were determined
and the scaled data (between 0 and 1) were used to adjust the
weights. The training was repeated 10 times and the average
of accuracy in test set was recorded. Figure 2 presents the
accuracy average and the confidence interval obtained from
SNP and MLP. It is obvious that SNP is more accurate than
MLP with GDBP algorithm in some datasets. The results
indicated in Figure 2 are based on student’s 𝑡-test with 95%
confidence.

Although, according to Figure 2, it seems that GDBP is
better in some cases, what is very important in the results is
number of learning epochs. Table 2 shows the learning epoch
comparisons. According to Table 2, MLP needs many epochs
to reach the results of SNP. It is the main feature of proposed
SNP, fast learning with lower computational complexity,
that makes it suitable for usage in various applications and
especially in online problems.
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Table 2: Number of learning epoch comparison.

Model Proposed SNP GDBP MLP
Diabetes 6091 ± 1973 9500 ± 1046

Heart 3833 ± 2098 10000 ± 0

Pima 6245 ± 2021 10000 ± 0

Ionosphere 2632 ± 1638 10000 ± 0

Sonar 922 ± 1027 9111 ± 2247

Tic-tac 628 ± 576 9952 ± 98

Average 3392 9760

4. Conclusion

In this paper, we prove that a single neuron perceptron
(SNP) can solve XOR problem and can be a universal
approximator. These features can be achieved by extending
input pattern and by using max operator. SNP with this
extension ability is a novel computationalmodel of neural cell
that is learnt by excitatory and inhibitory rules.This new SNP
architecture works with fewer numbers of learning weights.
Specifically, it only generates 𝑂(2𝑛) learning weights and
only requires𝑂(2𝑛) operations during each training iteration,
where 𝑛 is size of input vector. Furthermore, the univer-
sal approximation property is theoretically proved for this
architecture.The source code of proposed algorithm is acces-
sible from http://www.bitools.ir/projects.html. In numerical
studies, SNP was utilized to classify 6 UCI datasets. The
comparisons between proposed SNP and backpropagation
MLP present the following conclusions. Firstly, the number
of learning parameters of SNP is much lower with respect to
the standard MLP. Secondly, in classification problems, the
performance of supervised excitatory and inhibitory learning
algorithm is higher than gradient descent backpropagation
(GDBP). Thirdly, lower computational complexity caused
from the fewer learning parameters and faster training of
proposed SNP make it suitable for real time classification. In
short, SNP is a universal approximatorwith a simple structure
and is motivated by neurophysiological knowledge of the
human’s brain. We believe, based on the multiple case studies
as well as the theoretical results in this report, that SNP can
be effectively used in pattern recognition and classification
problems.
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