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Abstract: Bismuth is a heavy metal with antibacterial properties that has a long history of medicinal
use. The results reported here suggest that bismuth(III) (chelated with deferiprone) could be used
in aquaculture systems to treat bacterial disease outbreaks, greatly reducing antibiotic use. We
tested bismuth susceptibility in a collection of aquaculture bacterial pathogens. In the presence of
bismuth concentrations ranging from 1.3 to 13 µM, most bacteria started showing a drastic decrease
in their growth ability, although with high inter- and intraspecific variability. The minimal inhibitory
concentrations of bismuth ranged from 13 to more than 780 µM, depending on bacterial species and
strain. The results of in vivo assays suggest that low concentrations of bismuth could be especially
effective to treat vibriosis caused by Vibrio anguillarum, since bismuth greatly reduced mortality
in experimentally infected fish without any observable side effects. A bismuth therapy, alone or
combined with other antimicrobials, could contribute to reduce the use of antibiotics in aquaculture.
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1. Introduction

Aquaculture is one of the fastest growing food sectors in the world and it is rapidly
replacing fisheries as source of dietary protein [1]. However, infectious diseases are a major
threat to aquaculture production and continuous efforts must be conducted to prevent
mortality caused by pathogenic microorganisms. Among bacterial diseases, furunculosis
by Aeromonas salmonicida, photobacteriosis by Photobacterium damselae subsp. piscicida, or
vibriosis by Vibrio anguillarum are three of the most devastating diseases affecting farmed
fish worldwide [2]. Although vaccines have proven to be the most effective solution to
prevent the occurrence of infectious diseases [3], sometimes, when an outbreak occurs,
the application of antibacterial agents is the only alternative to control an acute bacterial
disease. However, a global challenge is the appearance of resistance to antimicrobial agents
in bacterial pathogens, which increases the interest in metal-based antimicrobials [4,5].

Bismuth is a heavy metal with antibacterial properties that has a long history of
medicinal use [6]. Nowadays, bismuth compounds are used in human medicine to control
bacteria in gut-related diseases where sulfate-reducing bacteria are implicated [7,8]. It is
commonly used in the treatment of stomach ulcers caused by Helicobacter pylori. In this
case, oral administration of bismuth salts combined with antibiotics has been shown as
a highly effective therapy [9]. This therapy strategy reduced development of resistance
to coadministered antibiotics [10] and also was effective to control H. pylori strains with
multidrug resistance [11,12]. Bismuth has been also proposed as a chemotherapic agent
against Pseudomonas aeruginosa, Staphylococcus aureus, Clostridium difficile, or even against
norovirus [6,13]. The antibacterial properties of bismuth are based on the inactivation of
cysteine-rich key proteins of bacterial cells. Bi3+ ions have a high affinity for thiolate sulfur
and to nitrogen or oxygene ligands [6].
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In the present work, we tested the bismuth susceptibility in some strains of aquaculture
bacterial pathogens including V. anguillarum, A. salmonicida, and P. damselae subsp. piscicida.
The results of in vitro and in vivo assays suggest that the use of bismuth chloride at low
concentrations could be an effective therapy against certain bacterial infections, such as
vibriosis due to V. anguillarum, to reduce mortality of disease outbreaks in fish.

2. Materials and Methods
2.1. Bacterial Strains and Routine Growth Conditions

Bacteria used in the study are listed in Table 1. Bacteria were routinely grown in
Tryptic Soy Broth or Agar (Pronadisa, Madrid, Spain) supplemented with 1% NaCl (TSB-1
or TSA-1 respectively) at 25 ◦C. All strains used in this work were maintained into vials of
TSB-1 with 15% glycerol and stored at −80 ◦C. A fresh culture was prepared from these
samples before each assay.

Table 1. Bacterial strains used in this work and minimal inhibitory concentrations (MIC) of Bi(III)
(µM) for each strain.

Bacteria Strain 1 MIC of Bi (µM)

Aeromonas hydrophila 11 520
A. hydrophila 3 260
A. salmonicida VT45.1 78
A. salmonicida RSP74.1 13

A. sobria 10 130
Lactococcus garvieae 2 260

L. piscium 1 >780
Photobacterium damselae subsp.

piscicida DI21 39

P. damselae subsp. piscicida LC14 39
Pseudomonas anguilliseptica 8 39

Vibrio alginolyticus ACRp31.1 >780
V. alginolyticus LVlenguado 27-10-09 39
V. anguillarum RV22 130
V. anguillarum 775 130
V. campbellii ATCC 25920 2 >780
V. costicola ACC10.2 13
V. costicola ARG67.1 13

V. diazotrophicus BLM05-9.1.1 >780
V. fischeri IEO15.2 78
V. fischeri ARG 314.1 13

V. furnissii ACR159.1 >780
V. harveyi AQP 15.2 130
V. hollisae IEO31.2 78

V. ichtyoenteri RPM799.1 39
V. iliopiscarius S-SL1.2/07 >780
V. mediterranei ACRp62.1 78
V. metschnikovii ATCC 7708 2 >780

V. mimicus CECT 4218 2 260
V. nigrapulchritudo Nuno-3 39

V. pelagius RI145.1 39
V. scophthalmi ACR 318.1 78

V. splendidus biotype I AZ233.1 78
V. tapetis CPV7.1 39

Yersinia ruckeri 4 >780
Y. ruckeri 730 >780

1 All strains belong to the authors’ laboratory strain collection and have been isolated from different fish or
mollusk species, except reference strains. 2 Reference strains obtained from ATCC and CECT culture collections.
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2.2. Preparation of Bismuth Stock Solution

Bismuth stock solution was prepared by chelating it with deferiprone (3-hydroxy-1,2-
dimethyl-4(1H)-pyridone) (Fisher, Waltham, MA, USA). Deferiprone:bismuth at a molar
ratio of 5:1 was prepared by adjusting a solution of 0.1 M deferiprone to pH 3.0 and adding
0.02 M BiCl3 (Fisher) to the chelate solution. After bismuth was chelated by deferiprone, the
pH of the colorless solution was adjusted to 7.2 with NaOH 1 M [14]. The final concentration
of bismuth was 10 mM.

2.3. Test for Inhibition of Bacterial Growth

To determine the susceptibility of tested bacteria to bismuth, bacterial strains were cul-
tivated in TSB-1 under increasing concentrations of bismuth chloride. Growth assays were
performed in 96-well microplates containing 200 µL of medium in each well. Overnight
cultures of each bacterial strain were adjusted at OD600 = 0.5 and diluted 1/20 in fresh
TSB-1 medium containing bismuth chloride at increasing concentrations (between 0.13 µM
and 1 mM) to calculate the minimum inhibitory concentration (MIC) for each strain. Mi-
croplates were incubated at 25 ◦C for 16 h and the growth achieved was measured with a
spectrophotometer at 600 nm. The MIC concentration was the lower Bi concentration at
which no growth was observed. To compare susceptibility at different Bi concentrations,
the ratio (percentage) between OD600 achieved at a concrete Bi concentration and that
observed in control without bismuth was calculated. Each growth measurement was
performed in triplicate.

2.4. Evaluation of Bismuth–Deferiprone against V. anguillarum in Experimental Infections

Experimental infections using Senegalese sole (Solea senegalensis) juveniles were used
to evaluate the bismuth antibacterial therapy to treat fish vibriosis. To carry out experi-
mental infections, 100 fish with an average weight of 100 g were randomly divided into
four groups of 25 animals. Each fish group was maintained in 50-L seawater tanks at 17 ◦C
with continuous aeration. Three groups (75 fish) were inoculated intraperitoneally (IP)
with 0.1 mL of a bacterial suspension at 3–5 × 105 colony-forming units (CFU) per mL
in saline solution (0.85% NaCl). This suspension was obtained by 10-fold serial dilutions
of a bacterial suspension at an OD600 = 0.5 prepared by suspending several colonies of
V. anguillarum RV22 from a 24 h TSA-1 culture. The precise number of injected bacterial
cells was determined by plate count of 10-fold serial dilutions on TSA-1. Four days after
the pathogen inoculation, infected fish from the three groups were again randomly mixed
and subjected to one of the following treatments by IP injection (0.1 mL): The first group
was treated with saline solution; the second group was treated with a solution of bismuth
chloride at 1.3 µM; and the third group with bismuth chloride at 13 µM. A fourth control
group of 25 animals was treated first with saline solution instead of bacterial suspension
and on day 4 was injected with 0.1 mL of bismuth at 13 µM. In addition, a fifth group of
25 animals was used as “manipulation control” since the fish were injected both times with
saline solution and subjected to the same manipulation as the rest of groups. Mortalities
were recorded daily for 10 days after injection and statistical significance of differences
in survival functions were determined using the Kaplan-Meier method with Mantel-Cox
log-rank test using SPSS (version 20; IBM SPSS Inc., Chicago, IL, USA). p values were
considered significant when p was < 0.05. The protocol for animal experimentation used
in this study has been reviewed and approved by the Animal Ethics Committee of the
University of Santiago de Compostela (Protocol approval number: 15004/2015/002).

3. Results
3.1. Susceptibility to Bismuth of a Collection of Aquaculture Bacterial Pathogens

To evaluate the usefulness of bismuth therapy to treat bacterial infections in
aquaculture, three main fish pathogens, Vibrio anguillarum, Aeromonas salmonicida, and
Photobacterium damselae subsp. piscicida were first assayed for in vitro bismuth susceptibil-
ity assays. The growth in presence of different concentrations of Bi(III) showed a general
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tendency to decrease when the concentration of the metal increased, even at low concen-
trations. In presence of low concentrations of bismuth, ranging from 1.3 to 13 µM, most
bacteria showed a drastic decrease in their growth ability. P. damselae subsp. piscicida
showed the greatest susceptibility since its growth capacity was greatly reduced with the
addition of 13 µM Bi(III) (Figure 1). The addition of 13 µM also reduced the growth of
A. salmonicida RSP74.1. Interestingly, A. salmonicida VT45.1 displayed at this concentration
a growth of 70% with respect to the medium without Bi(III), being necessary 78 µM to
inhibit it. Among the three main fish pathogens tested, V. anguillarum showed the lowest
susceptibility to bismuth. A Bi(III) concentration of 130 µM was necessary to reduce growth
by 50% of V. anguillarum 775, and 39 µM for V. anguillarum RV22.
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Figure 1. Maximum growth achieved by two strains of the three main fish pathogens studied, when
they were grown in Tryptic Soy Broth with 1% NaCl (TSB-1) containing bismuth–deferiprone. Growth
values shown are the ratio of the growth achieved in TSB-1 at each bismuth concentration divided by
growth in TSB-1 without bismuth.

In addition, the minimal inhibitory concentration (MIC) of Bi(III) was also determined
in a collection of pathogenic bacteria, mainly Vibrios, isolated from diseased fish or mol-
lusks (Table 1). In most strains tested, a growth reduction began at Bi(III) concentrations
between 13 and 130 µM. A. salmonicida, V. costicola, and V. fischeri showed the greatest
susceptibility to Bismuth, since their growth was significantly reduced at a concentration of
1.3 µM, and their MIC was 13 µM. A Bi(III) concentration of 39 µM was necessary to start
reducing growth of most tested species, including A. hydrophila, V. diazotrophicus, L. garvieae,
L. piscium, and V. campbellii, although MICs showed diverse values (Table 1). The Vibrio
species less susceptible were V. alginolyticus, V. campbellii, V. diazotrophicus, V. furnissii, or
V. metschnikovii, which showed MICs of more than 780 µM. In contrast, in the range of bis-
muth concentrations used, only a slight reduction in the growth of Y. ruckeri was observed,
suggesting a much less efficient inhibition compared to the genus Vibrio. The results show
that a Bi(III) concentration ranging between 13 and 130 µM can potentially reduce the
growth of most fish pathogenic bacteria. Overall, the results showed that there are impor-
tant differences in susceptibility to bismuth not only interspecific but also intraspecific,
between strains of the same species.

3.2. Effect of Siderophore Production to Bismuth Susceptibility

To study whether siderophore production could affect the bismuth susceptibility of the
bacteria tested, the growth achieved in presence of increasing bismuth concentrations by
siderophore-producing strains was compared with the corresponding siderophore-deficient
derivative mutants (Figure 2). We choose three main pathogens: V. anguillarum RV22, a
highly pathogenic strain that produces the siderophores vanchrobactin and piscibactin [15],
which are two siderophore systems widespread in Vibrionaceae [16]; P. damselae subsp.
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piscicida DI21, which produces piscibactin [17]; and A. salmonicida subsp. salmonicida VT45.1,
a strain that produces the siderophores amonabactin and acinetobactin (Balado et al., 2015).
The susceptibility to bismuth of these strains was compared to the susceptibility of
siderophore-deficient mutants derived from each one of them: V. anguillarum RV22∆vabD,
a mutant unable to produce any siderophore; P. damselae subsp. piscicida CS31, a deriva-
tive of DI21 impaired in piscibactin synthesis [18]; and A. salmonicida subsp. salmonicida
VT45.1∆entB, a mutant unable to produce any siderophore [19].
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The results showed that, in the three pathogens assayed, the inactivation of the
siderophore systems enhanced bismuth susceptibility in vitro (Figure 2). For instance, in
the range of concentrations tested, Bi(III) at 200 µM was necessary to completely inhibit the
growth of V. anguillarum RV22, 25 µM to inhibit P. damselae subsp. piscicida DI21, and 100 µM
to inhibit A. salmonicida VT45.1, concentrations in agreement with their respective MIC of
Bi(III) (Table 1). However, the respective mutants impaired for siderophore production
were inhibited by Bi(III) concentrations at least four-fold lower: 50 µM for RV22∆vabD,
6.25 µM for CS31, and 12.5 µM for VT45.1∆entB (Figure 2).

3.3. Usefulness of Deferiprone–Bismuth to Treat V. anguillarum Infections

To elucidate whether the Bi(III) could be used as a chemotherapeutic to treat vibriosis
in fish, an experimental challenge was made with V. anguillarum RV22, a highly pathogenic
strain that produces vibriosis in sole (Solea senegalensis). The animals were inoculated with
3–5 × 104 CFU of V. anguillarum RV22, a ten-fold dilution of a dose that initiates death
events four to six days after inoculation and reaches almost 100% mortality in 10 days [15].
Four days after bacteria inoculation, two groups of fish were treated with 0.1 mL per fish of
Bi(III) at either 13 µM or 1.3 µM. The survival curves are shown in Figure 3. As expected,
the fish of the control group untreated with bismuth began to die five days after inoculation
and the survival rate was 10% on day eight. However, in fish groups treated with bismuth
a significant reduction in fish mortality was observed, both with 13 µM and with 1.3 µM
Bi(III) concentrations. While survival shown by fish treated with Bi(III) 13 µM was 65%, in
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the group treated with Bi(III) 1.3 µM survival reached 90%. No mortality was observed in
the control group whose fish were not challenged but were treated with bismuth 13 µM. In
addition, control fish injected with a concentration of bismuth five times higher (65 µM)
than the dose administered in the challenge showed no deaths nor apparent side effects.
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4. Discussion

Once a bacterial disease outbreak occurs in an aquaculture facility, the only way
to reduce animal mortality ratios is the use of antibacterial compounds. However, the
excessive use of antibiotics increases the risk of drug resistance development in microbiota
associated with fish farms and could also have adverse effects on consumers [20]. The use
of alternatives to antibiotics in aquaculture, such as vaccination, probiotics, phage therapy,
or essential oils are recommended to reduce the occurrence of antimicrobial residues in fish,
which have consequent effects on food safety [21]. Thus, minimizing the use of antibiotics
is critical for producing safe aquaculture products. In this context, the use of bismuth could
be a good candidate as an antibiotic alternative to treat bacterial infections in aquaculture.
Bismuth is a heavy metal environmentally safe with low toxicity for humans and animals
that has been used in human medicine for more than two centuries [22].

In this work, we tested the susceptibility to Bi(III) of a collection of bacteria that can
cause disease in aquatic animals. The work reported is a preliminary approach to assessing
whether bismuth therapy could be applied to fight against bacterial fish diseases. Special
attention was paid to three of the most relevant Gram-negative bacterial pathogens for
fish: A. salmonicida, P. damselae subsp. piscicida, and V. anguillarum. Deferiprone was used
to solubilize Bi(III), since it is nontoxic for animals, and it has been used for treatment of
ß-thalassemia in humans [14]. Notably, the specific ligand mechanism used for bismuth
stabilization as well as the overall oxidation state of the metal seems to have a significant
influence on the antibacterial efficacy of deferiprone-Bi(III) [5]. The results showed that
Bi(III) concentrations ranging from 13 to 130 µM were enough to significantly reduce the
growth ability of most fish pathogens tested. These concentrations are comparable with
those observed for other Gram-negative bacteria such as Escherichia coli [23]. However, a
high inter- and intraspecific variability was observed.

The mechanism of action of bismuth against bacteria is not completely understood.
Bismuth interfere with a range of metabolic processes such as Zn(II) and Fe(III) regulating
proteins, cause cytoplasmic degradation, lead to the formation of Bi(III)-glycoproteins, bind
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to Fe(III)-recognition sites of transferrin and lactoferrin, and act on some metallo-enzymes
including urease and alcohol dehydrogenase [22,24]. In particular, bismuth reduces ATP
levels [25,26], which would be caused by targeting the F1 subunit of ATP synthase [27,28].
Susceptibility to bismuth among Gram-negative bacteria would be also dependent on
membrane permeability and intracellular iron levels [23,29]. Our results clearly show that
the ability to produce siderophores significantly enhances bismuth resistance in the three
fish pathogens analyzed, V. anguillarum, P. damselae subsp. piscicida, and A. salmonicida.
This observation reinforces the hypothesis that, although bismuth antibacterial activity
could not be caused by intracellular iron deprivation, bismuth might act as antagonist of
iron in microbial metabolism [25].

An experimental infection with V. anguillarum RV22 in Solea senegalensis showed
a high reduction in the mortality ratio after treatment of fish with Bi(III) –deferiprone.
Notably, the best survival rate was found when treating fish with Bi(III) at concentrations
as low as 1.3 µM, a concentration 20-fold lower than the MIC observed in susceptibility
tests. Notably, a bismuth concentration 10 times higher gave lower protection (Figure 3).
This significant difference observed between both concentrations of bismuth tested may
be explained by some type of unclear interaction effect between the pathogen, the dose
of bismuth, and the host, which must be further studied. Maybe when the infection is
already established, and the animal immune system is compromised, a concentration
of 13 µM Bi(III) could act as antibacterial, but not only against V. anguillarum, but also
against the animal’s microbiota, causing a dysbiosis in the individual and, consequently, its
death [13,30]. However, concentrations of 65 µM Bi(III) proved to be harmless for fish. In
addition to these considerations, all the results together clearly show that treatment with
Bi(III) –deferiprone could be effective to minimize the infection caused by V. anguillarum in
fish without observable undesirable side effects.

Many studies reported notable increases in antimicrobial resistance and even mul-
tiresistances in bacterial pathogens as a result of the use of antimicrobials in aquacul-
ture [31–33]. Resistance genes are mostly associated with mobile genetic elements that
facilitate their spread [34,35]. Bismuth therapy has been reported to show synergistic
effects against bacteria when combined with antibiotics, reducing the appearance of antibi-
otic resistance [10,36]. Its combined use is also highly effective to combat multiresistant
microorganisms [37–39]. Notably, since bismuth-based antimicrobial drugs serve as broad-
spectrum metallo-β-lactamase inhibitors, its use could revitalize the efficacy of the existing
class of beta-lactam antibiotics for which resistance has become a major issue [40]. More-
over, even with a wide use of bismuth, development of bismuth resistance in bacteria has
not been reported up to now [27,41].

The results reported here suggest that bismuth therapy would be used in aquaculture
systems to greatly reduce antibiotic use to treat bacterial disease outbreaks. The bismuth
therapy, alone or combined with other antimicrobials, would enhance food safety and
would also contribute to reduce the appearance of antibiotic resistance in pathogenic
bacteria. However, further work will be necessary to find the best way to apply a bismuth-
based therapeutic strategy in aquaculture facilities.
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