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Abstract: Aberrant activation of the hedgehog (HH) pathway is observed in many neoplasms,
including acute myeloid leukemia (AML). The glioma-associated oncogene homolog (GLI)
transcription factors are the main downstream effectors of the HH signaling cascade and are responsible
for the proliferation and maintenance of leukemic stem cells, which support chemotherapy resistance
and leukemia relapse. Cytarabine (Ara-C)-resistant variants of AML cell lines were established
through long-term cultivation with successively increasing Ara-C concentrations. Subsequently,
differences in GLI expression were analyzed by RT-qPCR. GLI3 mRNA levels were detectable in
parental Kasumi-1, OCI-AML3, and OCI-AML5 cells, whereas GLI3 expression was completely
silenced in all resistant counterparts. Therefore, we generated GLI3-knockdown cell lines using
small hairpin RNAs (shRNA) and evaluated their sensitivity to Ara-C in vitro. The knockdown of
GLI3 partly abolished the effect of Ara-C on colony formation and induction of apoptosis, indicating
that GLI3 downregulation results in Ara-C resistance. Moreover, we analyzed the expression of
several genes involved in Ara-C metabolism and transport. Knockdown of GLI3 resulted in the
upregulation of SAM and HD domain-containing protein 1 (SAMHD1), cytidine deaminase (CDA),
and ATP-binding cassette C11 (ABCC11)/multidrug resistance-associated protein 8 (MRP8), each of
which has been identified as a predictive marker for Ara-C response in acute myeloid leukemia.
Our results demonstrate that GLI3 downregulation is a potential mechanism to induce chemotherapy
resistance in AML.
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1. Introduction

Attaining sustained long-term remission in acute myeloid leukemia (AML) patients presents a
notable therapeutic challenge. Despite high initial response rates to chemotherapy, the majority of
patients suffer from a relapse, ultimately leading to death in most cases [1,2]. Growing evidence indicates
that relapse is caused by a small population of leukemic stem cells (LSCs) resistant to chemotherapy,
which serve as reservoir for leukemic blasts [3,4]. In the bone marrow niche, hematopoietic stem
cells (HSC) maintain their stemness and survival by bidirectional crosstalk with the bone marrow
microenvironment [5]. LSCs are able to infiltrate the niche and alter homeostatic processes to maintain
their quiescence, survival, and resistance to chemotherapy [6]. The interaction of LSC with the
microenvironment involves a variety of stem cell signaling pathways, including the hedgehog (HH)
signaling pathway [7].
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The HH signaling pathway is a highly conserved signaling cascade that plays a critical role during
embryogenesis and is strongly involved in many basic cellular functions, including cell differentiation
and proliferation and stem cell maintenance [8]. It is well established that aberrant hedgehog signaling
is associated with a wide variety of neoplasms [9], which results in the activation of the GLI transcription
factors, the main downstream effectors of the HH signaling cascade. In previous work, we could show
that GLI expression represents a negative prognostic factor in AML [10].

The GLI transcription factors consist of three members with specialized function and distinct
regulation mechanisms: GLI1, GLI2, and GLI3. GLI1 and GLI2 represent transcriptional activators,
whereas GLI3 occurs predominantly in its repressor form and functions as a strong repressor of
GLI-mediated transcription [11–13]. In the canonical HH pathway, SMO regulates the level of
GLI activity by shifting the balance between transcriptional stimulation through activated GLI2
and inhibition through GLI3 in its repressor form (GLI3R), while GLI1 is not expressed in resting
cells [13–15]. However, GLI transcription factors represent central hubs in the oncogenic signaling
network and can get activated non-canonically by cross-talk with a variety of pathways, including
FLT3, PI3K-AKT, RAS–RAF–MEK, or TGFβ [16,17]. In AML cells, HH activation is largely independent
of SMO activity but is strongly suppressed by GLI3R protein expression [18]. Analysis of The Cancer
Genome Atlas AML data set has shown that GLI3 expression is epigenetically silenced in the majority
of AML patient samples [18]. Consistent with these findings, we could show that GLI3 expression is
absent in most AML patients as determined by qPCR analysis [10].

Several studies have supported the role of activated GLI signaling in the development of resistance
to chemotherapy in multiple cancers, including AML, gastric cancer, and ovarian cancer [19–21].
While it has been shown that chemotherapy resistance can be caused by aberrant activation of the
transcriptional activators GLI1 or GLI2 [22,23], changes in GLI3 expression have never been described
in this context in AML. We hypothesized that the transcriptional repressor GLI3 may represent a major
switch involved in sensitivity to chemotherapy.

2. Results

2.1. GLI3 Expression Silenced in Cytarabine (Ara-C)-Resistant Cell Lines

To better understand the role of the hedgehog pathway in the development of drug resistance and
relapse in AML, we generated Ara-C-resistant variants of the AML cell lines Kasumi-1, OCI-AML3,
and OCI-AML5 through long-term cultivation with successively increasing Ara-C concentrations.
Ara-C resistance was characterized by an IC80 value (80% inhibitory concentration) for cell growth
above 10,000 nM (refer to Figure 1 for relative number of viable cells and Figure A1 for cell viability,
respectively).

Subsequently, GLI expression was analyzed in resistant variants and compared to that in their
respective parental cell lines. We could not detect consistently significant changes in GLI1 and GLI2
mRNA expression (Appendix A, Figure A2). However, RT-qPCR analysis revealed that GLI3 expression
was completely silenced in Ara-C-RCL Kasumi-1, OCI-AML3, and OCI-AML5, whereas GLI3 mRNA
levels were detectable in their parental counterparts (Figure 2a). Moreover, we could show that
resistant OCI-AML3 and OCI-AML5 cells had lower protein levels of both full length GLI3 and its
repressor form compared to their parental cell line, using western blot analysis (Figure 2b).
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Figure 1. Number of viable cells in resistant vs. parental cell lines following treatment with increasing 
cytarabine (Ara-C) concentrations. Resistant cell lines (RCL) and wildtype (WT) variants of acute 
myeloid leukemia (AML) cell lines Kasumi-1 (a), OCI-AML3 (b), OCI-AML5 (c) were plated with 
different concentrations of Ara-C ranging from 100 nM to 10,000 nM. Cell counts were normalized to 
the those in untreated controls. The average number of viable cells (Ø) in the untreated control 

Figure 1. Number of viable cells in resistant vs. parental cell lines following treatment with increasing
cytarabine (Ara-C) concentrations. Resistant cell lines (RCL) and wildtype (WT) variants of acute
myeloid leukemia (AML) cell lines Kasumi-1 (a), OCI-AML3 (b), OCI-AML5 (c) were plated with
different concentrations of Ara-C ranging from 100 nM to 10,000 nM. Cell counts were normalized
to the those in untreated controls. The average number of viable cells (Ø) in the untreated control
samples was 1.00 × 106 (Kasumi-1), 1.54 × 106 (OCI-AML3), and 1.43 × 106 (OCI-AML3) for WT cells
and 1.96 × 106 (Kasumi-1), 1.92 × 106 (OCI-AML3), and 1.75 × 106 (OCI-AML3) for RCL; * p < 0.05 and
** p < 0.01 in Welch’s t-test.
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2.2. GLI3 Knockdown Promotes Resistance to Chemotherapy 

For shRNA experiments, we chose the AML cell lines THP-1 and OCI-AML3 that express the 
highest levels of GLI3 (Figure A3). To investigate whether GLI3 silencing alone imparted drug 
resistance, we generated GLI3-knockdown cells by lentiviral transduction of two distinct GLI3-
specific shRNAs. AML cells with GLI3 knockdown were compared with control cells containing 
nontargeting shRNA. Compared with the control, GLI3 expression was reduced to 39.6% (± 31,1%) in 
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Figure 2. Downregulation of GLI3 in Ara-C resistant cell lines. (a) WT and Ara-C-RCL Kasumi-1,
OCI-AML3, and OCI-AML5 were analyzed for GLI3 mRNA levels by RT-qPCR analysis; * p < 0.05
and ** p < 0.01 in Welch’s t-test. (b) Western blot of full length GLI3 (GLI3FL) and its repressor form
(GLI3R) in WT and RCL variants of OCI-AML3 and OCI-AML5.

2.2. GLI3 Knockdown Promotes Resistance to Chemotherapy

For shRNA experiments, we chose the AML cell lines THP-1 and OCI-AML3 that express the
highest levels of GLI3 (Figure A3). To investigate whether GLI3 silencing alone imparted drug
resistance, we generated GLI3-knockdown cells by lentiviral transduction of two distinct GLI3-specific
shRNAs. AML cells with GLI3 knockdown were compared with control cells containing nontargeting
shRNA. Compared with the control, GLI3 expression was reduced to 39.6% (± 31.1%) in THP-1 cells
and to 53.7% (± 31.4%) in OCI-AML3 cells (Figure 3).
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Figure 3. Efficiency of GLI3 knockdown in AML cell lines THP-1 and OCI-AML3. GLI3 mRNA levels
were measured by RT-qPCR following lentiviral transduction with two distinct shRNA targeting GLI3.
The expression of GLI3 was normalized to that in control cells transduced with a scrambled control
shRNA; * p < 0.05 and ** p < 0.01 in Welch’s t-test.

We performed colony formation assays to investigate whether GLI3 knockdown affects the ability
of leukemic cells to form colonies upon exposure to Ara-C. GLI3-knockdown and scrambled shRNA
control AML cell lines THP-1 and OCI-AML3 were treated with Ara-C concentrations ranging from 25
to 100 nM. Colony numbers were counted on day 7 and normalized to the untreated control. For both
GLI3-knockdown cell lines, Ara-C treatment reduced the colony numbers significantly compared to
the control cells (Figure 4a,b).
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Figure 4. GLI3 knockdown partially protects AML cells against the cytotoxic effect of Ara-C. AML cell
lines THP-1 (a) and OCI-AML3 (b) after GLI3 knockdown and treatment with scrambled shRNA
control were subjected to different Ara-C concentrations for 7 days. Colony numbers were counted and
normalized to those of the untreated controls. The average number of colonies (Ø) in the untreated
control samples was 84 (scrambled shRNA) and 62 (GLI3 shRNA) for THP-1 and 72 (scrambled shRNA)
and 83 (GLI3 shRNA) for OCI-AML3; * p < 0.05 and ** p < 0.01 in Welch’s t-test; ns, statistically
not significant.

THP-1 cells transduced with either GLI3-targeted shRNA or non-targeting control shRNA were
investigated for apoptosis induction upon Ara-C treatment. Cells were treated with Ara-C concentration
ranging from 1 µM to 10 µM, and apoptosis rates were determined by flow cytometry. GLI3 knockdown
had the most pronounced effect on apoptosis rates in the presence of high concentrations of Ara-C,
with significant differences observed at 2.5 and 5 µM (Figure 5).
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Annexin V and propidium iodide. In the untreated (control) samples, the majority of cells transduced 
with scrambled shRNA (Ø 5.9% Annexin V-positive) or GLI3 shRNA (Ø 6.9% Annexin V-positive) 
were viable. Representative flow cytometry plots are shown in Figure A4 (Appendix A). Error bars 
represent the mean values ± standard deviation; * p < 0.05, ** p < 0.01 in the Welch’s t-test; ns, 
statistically not significant. 

Figure 5. GLI3 knockdown suppresses apoptosis induction upon treatment with Ara-C. THP-1 cells
transduced with GLI3-targeted shRNA or scrambled shRNA control were treated with the indicated
concentrations of Ara-C, and induction of apoptosis was measured after 48 h by flow cytometry using
Annexin V and propidium iodide. In the untreated (control) samples, the majority of cells transduced
with scrambled shRNA (Ø 5.9% Annexin V-positive) or GLI3 shRNA (Ø 6.9% Annexin V-positive) were
viable. Representative flow cytometry plots are shown in Figure A4 (Appendix A). Error bars represent
the mean values ± standard deviation; * p < 0.05, ** p < 0.01 in the Welch’s t-test; ns, statistically
not significant.

2.3. GLI3 Knockdown Impacts the Expression of Ara-C Resistance Genes

Because GLI3 knockdown reduced the sensitivity of AML cells to Ara-C, we next assessed
whether gene knockdown was associated with expression changes of several genes involved in Ara-C
metabolism and transport. RT-qPCR analysis revealed that SAMHD1, CDA, and ABCC11 (MRP8) were
upregulated in GLI3-knockdown cells compared to cells transduced with control shRNA (Figure 6).
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THP-1 and OCI-AML3 were quantified by RT-qPCR and compared to their expression levels in 
control cells transduced with a scrambled shRNA. Error bars represent the mean values ± standard 
deviation; * p < 0.05, ** p < 0.01 in the Welch’s t-test; ns, not significant. 

SAMHD1 and CDA are two key enzymes of the Ara-C metabolism that strongly reduce the 
intracellular level of the active Ara-C metabolite by promoting the conversion of Ara-C to an inactive 
state. In addition, GLI3 knockdown increased the expression of ABCC11, a membrane transporter 
with the ability to efflux nucleoside analogues, such as Ara-C, inhibiting their intracellular 
accumulation (Figure 7). 

Figure 6. Knockdown of GLI3 results in the upregulation of genes involved in Ara-C metabolism and
transport. Expression levels of SAMHD1 (a), CDA (b), and ABCC11 (c) in GLI3-knockdown cell lines
THP-1 and OCI-AML3 were quantified by RT-qPCR and compared to their expression levels in control
cells transduced with a scrambled shRNA. Error bars represent the mean values ± standard deviation;
* p < 0.05, ** p < 0.01 in the Welch’s t-test; ns, not significant.

SAMHD1 and CDA are two key enzymes of the Ara-C metabolism that strongly reduce the
intracellular level of the active Ara-C metabolite by promoting the conversion of Ara-C to an inactive
state. In addition, GLI3 knockdown increased the expression of ABCC11, a membrane transporter with
the ability to efflux nucleoside analogues, such as Ara-C, inhibiting their intracellular accumulation
(Figure 7).
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Figure 7. Role of SAMHD1, CDA, and ABCC11 in Ara-C metabolism. ATP-binding cassette C11
(ABCC11) functions as a nucleotide efflux pump and reduces the intracellular levels of Ara-C; cytidine
deaminase (CDA) irreversibly deaminates Ara-C to its inactive uracil derivative uracil arabinoside
(Ara-U); the phosphohydrolase SAMHD1 reduces active Ara-CTP levels through hydrolyzing Ara-CTP
into inactive Ara-C.

3. Discussion

Despite high responses to initial chemotherapy, the vast majority of AML patients relapses
after remission due to persistent subpopulation of LSC, because of their drug-resistant phenotype.
The LSC hypothesis is of substantial clinical relevance, offering an explanation for minimal residual
disease, relapse, and therapy failure and highlighting the need to target these cells in order to achieve
long-lasting remissions [24,25].

In mammals, three GLI transcription factors function as central mediators of HH signaling.
GLI1 only functions as a transcriptional activator [26], while GLI2 and GLI3 can function both as
activating and as inhibitory regulators [27]. Full-length GLI3 (GLI3FL), after phosphorylation and
nuclear translocation, acts as a weak transcriptional activator [28]. The proteolytically processing of
GLI2FL to its repressor form is not present in cultured cell lines or, at best, is inefficient. The majority of
GLI2FL is degraded completely by the proteasome. In contrast, GLI3FL is efficiently processed to the
truncated GLI3-repressor form that acts as a strong negative regulator of GLI-mediated transcription [11].
In the absence of HH signaling, GLI3 is predominantly in its repressor form and functions as a strong
repressor of GLI-mediated transcription. The level of GLI signaling activity is largely determined by
the balance between the transcriptional activators GLI1 and GLI2 and the repressor GLI3R [14,15].

To investigate the molecular changes underlying resistance to chemotherapy, we generated
Ara-C-resistant strains of several AML cell lines and performed gene expression analysis of the HH
pathway members using RT-qPCR and western blot. We showed that GLI3 expression was silenced in
AML cells with acquired Ara-C resistance. A tumor suppressor role for GLI3R has been demonstrated
in a medulloblastoma mouse model driven by GLI2∆N expression. GLI2∆N is a constitutively active
GLI2 isoform. In the absence of cilia, GLI2∆N induces medulloblastoma early in life by elimination of
GLI3R [29]. The primary cilium is required for proteolytical processing of GLI3 to its repressor form [30].
Interestingly, it has been shown that primary cilia are absent in a high proportion of AML cells, possibly
resulting in reduced intracellular GLI3R levels in most cases [31]. In line with this hypothesis, we could
observe the absence of GLI3 expression in 74% of AML patient samples [10]. Consistent with these
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results, genetic analysis of The Cancer Genome Atlas AML dataset by Chaudhry et al. demonstrated
that GLI3 expression is epigenetically silenced in most AML patients [18]. In agreement with these
findings, when analyzing AML cell lines by RT-qPCR, GLI3 expression could not be detected in HL-60
cells, while low expression was found in MOLM-13 and OCI-AML5 AML cell lines. The highest GLI3
mRNA levels could be detected in Kasumi-1, THP-1, and OCI-AML3 cells (Appendix A, Figure A3).
As previously mentioned, GLI3 is epigenetically silenced in a large number of AML cells, which suggests
that GLI3 expression was also downregulated through epigenetic mechanisms in the Ara-C-resistant
subclones. Accordingly, it has been demonstrated that GLI3 expression could be restored in AML cells
treated with decitabine, a hypomethylating agent [18].

We showed that downregulation of GLI3 using shRNA reduced cell sensitivity towards Ara-C
treatment. This effect was especially obvious in clonogenic assays of AML cells. This indicates that
GLI3 downregulation might specifically protect leukemic stem or progenitor cells from the cytotoxic
effects of Ara-C. Even though GLI3 silencing has never been described in the context of Ara-C resistance
in AML, the association of HH pathway activity with chemotherapy resistance is well established
in leukemia and other cancers. Queiroz and colleagues showed that activation of the HH pathway
was associated with a multidrug-resistant phenotype of myeloid leukemia cells by upregulation
of p-glycoprotein, a drug efflux pump [32]. Several studies demonstrated that the combination of
Ara-C with the SMO inhibitor cyclopamine or the GLI inhibitor GANT-61 significantly enhanced the
sensitivity of AML cell lines and primary CD34+ AML cells to Ara-C [21,33,34]. In a recent study,
GLI1 expression was significantly higher in refractory patients compared to non-refractory cases.
In addition, high expression of GLI1 was associated with rapid and repeated relapse. The authors
could reverse resistance in the multiple drug-resistant HL-60 AML cell line using the SMO inhibitor
NVP-LDE225, resulting in decreased protein expression of MRP1, which is a membrane drug transporter
protein responsible for drug resistance and a poor prognosis in AML patients [35]. Furthermore,
activated GLI signaling results in the upregulation of several drug transporters, including the ABC
transporters ABCB1, ABCB2, and ABCG2, DNA repair mechanisms, and drug-modifying enzymes of
the UDP glucuronosyltransferase (UGT1A) family [22,36–38]. However, while the role of GLI signaling
in drug resistance is well established, the involvement of GLI3 gene expression in the development of
chemotherapy resistance has not been investigated.

We could show that GLI3 downregulation resulted in increased expression of SAMHD1,
CDA, and ABCC11 (MRP8). ATP-binding cassette C11 (ABCC11) is a member of the multidrug
resistance-associated protein (MRP) family of ATP-binding cassette transporters, which functions as
a nucleotide efflux pump and has been shown to reduce the intracellular levels of several clinically
relevant nucleotide analogs, including the anticancer fluoropyrimidines and antiviral agents [39].
The expression of the efflux transporter ABCC11 correlates with poor prognosis in AML. Cells transfected
with ABCC11 were resistant to Ara-C and showed reduced intracellular levels of Ara-C and its
metabolites [40]. Intracellularly, Ara-C is activated through three phosphorylation steps leading to
its active metabolite cytidine-5′-triphosphate (Ara-CTP), with phosphorylation of Ara-C to Ara-CMP
by deoxycytidine kinase (DCK) being the rate-limiting step in its activation [41]. SAMHD1 is a
phosphohydrolase that cleaves deoxynucleoside triphosphates (dNTP) into inorganic triphosphate
and deoxyribonucleosides [42]. In leukemic cells exposed to Ara-C, SAMHD1 drastically reduces
Ara-CTP levels through hydrolyzing Ara-CTP into inactive Ara-C [43]. Schneider et al. showed that
inactivation of SAMHD1 strongly sensitizes AML cells to the cytotoxic effects of Ara-C in vitro and
in vivo. Moreover, they showed that SAMHD1 expression is a negative predictor of the response
to Ara-C-based treatment in AML patients [44]. In the activation of Ara-C, DCK competes with
cytidine deaminase (CDA), which irreversibly deaminates Ara-C to its inactive uracil derivative uracil
arabinoside (Ara-U) [45]. Ohta et al. showed that high CDA activity mediates the resistance of U937
monocytoid leukemia cells to Ara-C [46]. In an ex vivo cytotoxicity assay of AML patient samples,
CDA expression was significantly lower in the Ara-C-sensitive group compared with intermediately
sensitive or resistant samples and was found to be a strong predictor of Ara-C response [47]. In AML
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patients, high activity and expression of CDA was associated with poor initial response and predictive
of remission duration [48,49].

In conclusion, we describe that loss of GLI3R through GLI3 gene silencing in AML cells results
in acquired Ara-C resistance. GLI3R functions as a strong repressor of GLI-mediated transcription,
and its downregulation by shRNA significantly reduces the effect of Ara-C in AML cells by modulating
key enzymes involved in Ara-C metabolism.

4. Materials and Methods

4.1. Cell Lines and Cell Culture

The cell lines used in this study were either purchased from the DSMZ (Deutsche Sammlung
von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany) or authenticated by the
Multiplex human Cell Authentication test (Multiplexion GmbH, Heidelberg, Germany). THP1 cells
were maintained in RPMI 1640 medium (Gibco, Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 10% fetal bovine serum (FBS Superior, Biochrom GmbH, Berlin, Germany).
Kasumi-1 cells were cultured in RPMI 1640 medium supplemented with 20% FBS. OCI-AML3
cells were maintained in α-MEM medium (Gibco, Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 20 % FBS. OCI-AML5 cells were cultured in α-MEM mediumsupplemented with
20 % FBS and 10 ng/mL GM-CSF (PeproTech GmbH, Hamburg, Germany). All cells were maintained
in a humidified incubator with 5 % CO2 at 37 ◦C.

4.2. Generation of Ara-C-Resistant Cell Lines

Kasumi-1, OCI-AML3, and OCI-AML5 cells were cultivated with their respective IC95 Ara-C
concentration continuously for several months. Cell viability was measured twice a week on day 3 and
day 7, and Ara-C dose was adjusted according to cellular IC95 rates. Cells were routinely tested for
Ara-C resistance in proliferation assays with Ara-C concentration up to 10,000 nM. Resistance was
defined as IC80 > 10,000 nM Ara-C. All cell lines (resistant and parental) were routinely checked to
ensure there was no mycoplasma contamination, using MycoAlert Mycoplasma Detection kit (Lonza
Group AG, Basel, Swiss).

4.3. Lentiviral Transduction of AML Cell Lines with GLI3-Specific shRNA

Two different pLKO.1-puro vectors encoding GLI3 (#1, TRCN0000416117, sequence
5′-CCGGACAAGAGGTCCAAGATCAAACCTCGAGGTTTGATCTTGGACCTCTTGTTTTTTTG-3′

and #2, TRCN0000020506, sequence 5′-CCGGGCCATCCACATGGAATATCTTCTCGAGAAGATATTC
CATGTGGATGGCTTTTT-3′) or scrambled shRNA (SHC002, non-target shRNA vector) were
purchased from Sigma-Aldrich (Taufkirchen, Germany). We used the Lentiviral Gene Ontology Vector
(LeGO) system for cloning and transfection into the AML cell lines (LeGO-C/Zeo and LeGO-G/Puro,
respectively) [50]. Lentiviral particle-containing supernatants were generated in HEK293T cells
co-transfected with the plasmids LeGO-C/Zeo + GLI3 shRNA (#1), LeGO-G/Puro + GLI3 shRNA (#2),
or LeGO-G/Puro + scrambled shRNA in combination with pMD2.G-VSV-G and psPAX2-Gag-Pol,
using calcium phosphate co-precipitation. THP-1 or OCI-AML3 were transduced either with
non-targeting shRNA (negative control) or with two shRNA against GLI3, simultaneously. On day
3 after transduction, the transduced cells were selected by treatment with puromycin (2 µg/mL;
Sigma-Aldrich, Taufkirchen, Germany) and/or zeocin (500 µg/mL; Thermo Fisher Scientific, Waltham,
MA, USA) for 7 days prior to functional assays. The knock-down efficiency for GLI3 was determined
using quantitative PCR analysis after 7 days of zeocin and/or puromycin selection. All work with
lentiviral particles was done in an S2 facility after approval according to German law.
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4.4. Proliferation Assay

Ara-C-resistant and parental cells of the AML cell lines Kasumi-1, OCI-AML3, and OCI-AML5
were plated in 24-well plates at a density of 150,000 cells/well in 500 µL of cell culture medium and
cultured with increasing concentrations of Ara-C for 3 days. The number of viable cell was determined
after 3 days with the Trypan Blue dye exclusion method, using the cell viability analyzer Vi-Cell™ XR
(Beckman Coulter, Brea, CA, USA).

4.5. Apoptosis Assay

THP-1 cells were seeded in 96-well plates at a density of 200,000 cells/well in 200 µL of cell
culture medium and incubated with increasing concentrations of Ara-C for 48 h. For shRNA
experiments, GLI3-knockdown AML cells were compared to the negative control containing
non-targeting shRNA. Induction of apoptosis was measured after 48 h by flow cytometry using
APC (allophycocyanin)-conjugated Annexin-V (MabTag GmbH, Friesoythe, Germany) and propidium
iodide. Data analysis was performed using the FACS Calibur (BD Biosciences, San Jose, CA, USA) and
FlowJo X (Version 10.0.7, BD Life Sciences, FlowJo, LLC, Ashland, OR, USA) Software.

4.6. Colony Formation Assay

Cell lines were seeded in cell culture dishes (35 × 10 mm, Sarstedt AG & Co. KG, Nümbrecht,
Germany) at a density of 250 cells/mL in 1 mL of methylcellulose-based semi-solid medium (Methocult
H4230, Stemcell Technologies, Vancouver, BC, Canada) supplemented with different concentrations of
Ara-C. For shRNA experiments, the colony formation capacity of AML cell lines with GLI3 knockdown
were compared to that of the negative controls containing non-targeting shRNA. After 7 days,
the number of colonies was counted using an inverted microscope (Axiovert 25, Zeiss, Jena, Germany).

4.7. Protein Isolation and Western Blot Analysis

Proteins of OCI-AML3 and OCI-AML5 cells were extracted using the trichloroacetic acid
method. Protein concentration was determined using the DC Protein Assay (Bio-Rad Laboratories,
Inc., Hercules, CA, USA). For each sample, a total of 20 µg of protein was separated using a 4–12%
tris-glycine SDS-polyacrylamide gel (Thermo Fisher Scientific, Waltham, MA, USA). The proteins were
transferred to a nitrocellulose membrane, and the membrane was incubated with either polyclonal
goat IgG anti-human/mouse GLI3 (AF3690, 1:2000, R&D Systems) or mouse anti-human β-ACTIN
(sc-47778, 1:5000, Santa Cruz Biotechnology, Dallas, TX, USA) at 4 ◦C overnight. HRP-linked anti-goat
immunoglobulins (P0449, 1:10,000) and anti-mouse IgG (NXA931, 1:10,000) secondary antibodies
were purchased from Dako (Glostrup, Denmark) and GE Healthcare (Chicago, IL, USA), respectively.
Membranes were incubated with secondary antibodies for 1 h at room temperature. Imaging was
performed using the Amersham ECL Prime Western Blotting Detection Reagent (GE Healthcare,
Chicago, IL, USA) and the Fusion SL 4 3500 WL chemiluminescence system (Vilber Lourmat,
Eberhardzell, Germany).

4.8. Reverse Transcription and Quantitative PCR

Exon-spanning primers were designed with Primer 3 software (Whitehead Institute for Biomedical
Research, Boston, MA, USA) or obtained from the GETPrime qPCR primer database [51]. RNA was
extracted using innuPREP RNA Mini Kit 2.0 (Analytik Jena, Jena, Germany) and reverse-transcribed
into cDNA using PrimeScript™ RT Master Mix (TaKaRa Bio Inc., Kusatsu, Japan). RT-qPCR analyses
were carried out on the LightCycler 1.2 (Roche, Basel, Swiss) using the TB Green Premix Ex Taq II
(TaKaRa Bio Inc., Kusatsu, Japan) over 40 PCR cycles. The relative expression of the target genes was
normalized to that of the reference gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and
calculated using the Pfaffl method [52]. Primers are listed in Appendix A (Table A1).
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4.9. Statistical Analysis

Data from the in vitro assays were statistically analyzed by the Welch’s t-test using GraphPad
Prism 7 (GraphPad Software, Inc., San Diego, CA, USA). A p value < 0.05 was considered to be
statistically significant.
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Abbreviations

AML acute myeloid leukemia
LSC leukemic stem cells
HSC hematopoietic stem cells
HH hedgehog (signaling pathway)
GLI glioma-associated oncogene homolog family zinc finger protein
GLI3FL GLI3, full length
GLI3R GLI3, repressor form
Ara-C cytarabine, cytosine arabinoside
Ara-U uracil arabinoside
Ara-CTP aracytidine-5′-triphosphate
SAMHD1 SAM and HD domain-containing protein 1
CDA cytidine deaminase
ABCC11 ATP-binding cassette C11
MRP8 multidrug resistance-associated protein 8
WT wildtype
RCL resistant cell line
shRNA small hairpin RNA
APC allophycocyanin

Appendix A

Table A1. Primers used in this study.

Gene Sense Anti-Sense

GAPDH GTCAGTGGTGGACCTGACCT TGCTGTAGCCAAATTCGTTG
GLI1 CTACATCAACTCCGGCCAAT CGGCTGACAGTATAGGCAGA
GLI2 GGCCATCCACATGGAATATC TGAAGAGCTGCTACGGGAAT
GLI3 GGCCATCCACATGGAATATC TGAAGAGCTGCTACGGGAAT

SAMHD1 ATTGAAAGACGCACGAGAG AAGAGATTCATAGTCCTCCCT
CDA GAGAATCTTCAAAGGGTGCA TTGTACCCTTCTGAGACGG

ABCC11 CCTACTTCATTATTGGATACACTGC CTTGTCATGAATACCGCCAG
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Figure A1. Cell viability of resistant and parental cell lines following treatment with increasing Ara-
C concentrations. Resistant (RCL) and wildtype (WT) variants of AML cell lines Kasumi-1 (a), OCI-
AML3 (b), OCI-AML5 (c) were plated with different concentrations of Ara-C ranging from 100 nM to 
10,000 nM. Cell viability was determined after 3 days with the Trypan Blue dye exclusion method. 
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(b), OCI-AML5 (c) were plated with different concentrations of Ara-C ranging from 100 nM to 10,000 nM.
Cell viability was determined after 3 days with the Trypan Blue dye exclusion method.
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deviation; * p < 0.05, ** p < 0.01 in the Welch’s t-test; ns, not significant.
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Figure A3. Expression levels of GLI3 in different AML cell lines. GLI3 expression in AML cell
lines Kasumi-1, THP-1, OCI-AML3, OCI-AML5, MOLM-13, and HL-60 was quantified by RT-qPCR.
∆CT values were calculated with the following formula: ∆CT = CT(GLI3) −CT(GAPDH). Small ∆CT
values indicate high GLI3 expression. If no expression was found, the CT values were equated with the
total cycle number (50 cycles). No GLI3 expression was found in HL-60 cells. Error bars represent the
mean values ± standard deviation.
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