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Research Highlights 
(1) The mechanism underlying the ability of thioperamide, a selective histamine H3 receptor 

gonist, to improve neonatal hypoxic-ischemic encephalopathy was investigated to determine if this 

compound could be a novel therapy for this condition. 

(2) A combined application of thioperamide with H1 and H2 receptor antagonists showed that the 

action of increased brain histamine was mediated through postsynaptic H1 receptors. 

 

Abstract  
Thioperamide, a selective histamine H3 receptor antagonist, can increase histamine content in the 

brain, improve brain edema, and exert a neuroprotective effect. This study aimed to examine the 

mechanism of action of thioperamide during brain edema in a rat model of neonatal hypoxic- 

ischemic encephalopathy. Our results showed that thioperamide significantly decreased brain water 

content and malondialdehyde levels, while significantly increased histamine levels and superoxide 

dismutase activity in the hippocampus. This evidence demonstrates that thioperamide could pre-

vent oxidative damage and attenuate brain edema following neonatal hypoxic-ischemic encephalo-

lopathy. We further observed that changes in the above indexes occurred after combined treatment 

of thioperamide with the H1 receptor antagonist, pyrilamine, and the H2 receptor antagonist, 

tidine. Experimental findings indicated that pyrilamine reversed the effects of thioperamide; however, 

cimetidine had no significant influence on the effects of thioperamide. Our present findings suggest 

that thioperamide can increase brain histamine content and attenuate brain edema and oxidative 

damage by acting in combination with postsynaptic H1 receptors in a rat model of neonatal 

ic-ischemic encephalopathy. 
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INTRODUCTION 
    

Neonatal hypoxic-ischemic encephalopathy 

is a devastating condition for which effective 

therapeutic treatments are still unavaila-

ble
[1-3]

. There is a high risk for long term 

neurological sequelae, such as cerebral 

palsy, psychomotor retardation, and visual 

or auditory handicaps leading to long-term 

healthcare costs
[4-6]

. Brain edema is known 

to be triggered within hours after cerebral 

ischemic injuries
[7-8]

. Diuretics, such as gly-

cerol and mannitol, are usually applied to 

patients with brain edema following cerebral 

ischemia
[9]

. Besides drug therapy, whole bo- 
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dy hypothermia for neonatal hypoxic- 

ischemic encephalopathy strongly attenuates 

cerebral edema
[10-12]

. However, adverse ef-

fects, such as infection, bleeding tendency, 

and arrhythmia, are problematic
[13]

. 

 

Histamine acts as a neurotransmitter or 

neuromodulator in the brain, and plays a 

major role in the pathogenic progression after 

cerebral ischemia
[14-16]

. Extracellular hista-

mine increases gradually after ischemia, 

possibly coming from mast cells or histami-

nergic neurons
[17]

. Histamine promotes re-

covery of neurological function, and alle-

viates neuronal damage and infarct volume 

after ischemia, with the H1–3 receptors all 

being involved
[18]

. Further studies suggest 

that histamine alleviates excitotoxicity, sup-

presses the release of glutamate and dopa-

mine, and inhibits inflammation and glial scar 

formation
[19-23]

. Histamine may also affect 

cerebral blood flow by targeting vascular 

smooth muscle cells, and promoting neuro-

genesis. Moreover, endogenous histamine is 

an essential mediator in cerebral ischemic 

tolerance. Because of its multiple actions 

affecting neurons, glia, vascular cells, and 

inflammatory cells, histamine is likely to be 

an important target in cerebral ischemia
[24-26]

. 

However, important questions surrounding 

the molecular aspects and pathophysiology 

of histamine, and related agents in cerebral 

ischemia, remain to be answered to form a 

solid scientific basis for therapeutic applica-

tion. A previous study has shown that hista-

mine H3 receptor antagonists can reduce 

ischemia-induced cerebral edema in adult 

rats
[27]

. However, the role of histamine in a rat 

model of neonatal hypoxic-ischemic ence-

phalopathy has currently not been reported. 

On the basis of previous studies regarding 

the role of histamine in immature epileptic 

mice
[28-30]

, we hypothesize that increasing 

brain histamine by using an histamine H3 

antagonist will exert a protective role through 

postsynaptic H1 receptors. Through estab-

lishing a rat model of neonatal hypoxic- 

ischemic encephalopathy and using anta-

gonists against histamine receptors H1–3, 

the role of brain histamine in neonatal hy-

poxic- ischemic encephalopathy and its me-

chanism of neuronal protection may be elu-

cidated.   

 

RESULTS 
 
Quantitative analysis of experimental 
animals  
A total of one hundred and twenty newborn 

rats modeling neonatal hypoxic-ischemic 

encephalopathy were successfully estab-

lished and grouped into four groups: the 

model group (intraperitoneal injection of 

normal saline), the H3 group (intraperitoneal 

injection of H3 receptor antagonist thio- pe-

ramide), the H3 + H1 group (intraperitoneal 

injection of thioperamide and H1 receptor 

antagonist, pyrilamine), and the  H3 + H2 

group (intraperitoneal injection of thiopera-

mide and H2 receptor antagonist, cimeti-

dine), with thirty rat pups in each group. The 

rat pups were subdivided for further deter-

minations at 6, 24 and 72 hours after neo-

natal hypoxic-ischemic encephalopathy had 

been established.  

 

Effect of thioperamide on brain water 
content in neonatal hypoxic-ischemic 
encephalopathy rats 
Results showed that brain water content 

decreased significantly in both the H3 group 

and H3 + H2 group when compared with the 

model group (P < 0.05). Brain water content 

was significantly higher in the H3 + H1 group 

than in the H3 group (P < 0.05); however, no 

significant difference was found between the 

H3 and H3 + H2 groups (P > 0.05). Mean-

while, brain water content in all groups 

peaked at 24 hours, then gradually de-

creased at 72 hours (Figure 1). 

 

Effect of thioperamide on histamine 
content in the hippocampus of neonatal 
hypoxic-ischemic encephalopathy rats 
Hippocampal histamine content was de-

tected by high performance liquid chroma-

tography. Results showed that the histamine 

content in the hippocampus was significantly 

higher in both the H3 and H3 + H2 groups 

compared with the model group (P < 0.05). 

Histamine content was also significantly 

higher in the H3 group compared with the 

H3 + H1 group (P < 0.05); however, no sig-

nificant difference was found between the 
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H3 + H2 group and the H3 group (P > 0.05). 

Statistical results at different time points showed a sig-

nificant decrease of hippocampal histamine content at 24 

hours in all groups when compared with those at 6 hours 

(P < 0.05). There was no significant difference in each 

group at 24 and 72 hours (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
Effect of thioperamide on brain malondialdehyde 
content in neonatal hypoxic-ischemic           
encephalopathy rats 
Results showed that malondialdehyde content in the 

brain was significantly decreased in the H3 group and 

H3 + H2 groups compared with the model group (P < 

0.05). There was no significant difference in malon-

dialdehyde content between the H3 + H2 group and the 

H3 group (P > 0.05); however, malondialdehyde in the 

H3 + H1 group was significantly higher than that in the 

H3 group (P < 0.05). Statistical results at different time 

points showed a significant increase at 24 hours in all 

groups compared with those at 6 and 72 hours (P < 

0.05). Histamine content began to decrease at 72 hours      

(Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Effect of thioperamide on brain superoxide 
dismutase activity in neonatal hypoxic-ischemic 
encephalopathy rats 
Results showed that brain superoxide dismutase content 

was significantly higher in the H3 and H3 + H2 groups 

compared with the model group (P < 0.05). There was no 

significant difference in superoxide dismutase content 

between the H3 + H2 and the H3 groups (P > 0.05); 

however, superoxide dismutase content in the H3 + H1 

group was significantly lower than that in the H3 group  

(P < 0.05). Results at different time points revealed a 

significant decrease in superoxide dismutase content at 

Figure 1  Effect of H3 receptor antagonist thioperamide on 
brain water content in neonatal hypoxic-ischemic 
encephalopathy rats. 

Data are expressed as mean ± SD. Ten rats were used in 
each group at each time point. aP < 0.05, vs. model group; 
bP < 0.05, vs. H3 group using analysis of variance; cP < 
0.05, vs. 24 hours in each group using the Student’s t-test. 

Results showed that intraperitoneal injection of 
thioperamide reduced brain edema. The H1 receptor 
antagonist, pyrilamine, reversed the effects of thioperamide 

in the H3 + H1 group; however, the H2 receptor antagonist, 
cimetidine, had no significant influence on the effects of 
thioperamide. Brain water content (%) = (wet weight – dry 
weight)/wet weight × 100%.  
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Figure 2  Effect of H3 receptor antagonist thioperamide 
on hippocampal histamine content in neonatal 
hypoxic-ischemic encephalopathy rats. 

Data are expressed as mean ± SD. Ten rats were used in 
each group at each time point. aP < 0.05, vs. model group; 
bP < 0.05, vs. H3 group using analysis of variance; cP < 
0.05, vs. 24 hours in each group using the Student’s t-test. 

Results showed that intraperitoneal injection of 
thioperamide can increase hippocampal histamine 
content. The H1 receptor antagonist, pyrilamine, reversed 

the effects of thioperamide in the H3 + H1 group; however, 
the H2 antagonist, cimetidine, had no significant influence 
on the effects of thioperamide.  
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Figure 3  Effect of thioperamide on brain 
malondialdehyde (MDA) content in neonatal hypoxic- 
ischemic encephalopathy rats. 

Data are expressed as mean ± SD. Ten rats were used in 
each group at each time point. aP < 0.05, vs. model group; 
bP < 0.05, vs. H3 group using analysis of variance; cP < 
0.05, vs. 24 hours in each group using the Student’s t-test. 

Results showed that intraperitoneal injection of 
thioperamide can decrease MDA content. The H1 receptor 
antagonist, pyrilamine, reversed the effects of 

thioperamide in the H3 + H1 group; however, the H2 

receptor antagonist, cimetidine, had no significant 
influence on the effects of thioperamide.  
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24 hours, and a slight increase at 72 hours (P < 0.05; 

Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
DISCUSSION 
 

Neonatal hypoxic-ischemic encephalopathy is the most 

common disorder of inpatient newborns, and an impor-

tant factor causing death and sequelae within the central 

nervous system in children
[31-35]

. Studies have shown that 

arachidonic acid oxidation involved with lipoxygenase 

and cyclooxygenase is the initial stage for neuronal 

damage after cerebral hypoxia
[36-39]

. Arachidonic acid 

oxidation leads to overproduction of oxygen free radicals, 

excitatory amino acids, nitrogen monoxide and inflam-

matory factors
[40-44]

. Lipid peroxidation and ion pump 

damage in the cell membrane lead to the influx of Na
+
, 

Ca
2+

 and water
[45-46]

. The aforementioned changes cause 

neuronal edema, apoptosis and necrosis. 

 

Previous studies have shown that cerebral ischemia in 

immature rats can lead to extensively severe brain 

damage in several days
[47-53]

. The inflammatory reaction 

and the immature neurons may create brain and 

blood-brain-barrier damage, and T lymphocytes, poly-

morphonuclear granulocytes and microglia take part in 

the inflammatory response during focal cerebral ische-

mia. During development, brain histamine and the num-

ber of mast cells change dramatically. Mast cells can be 

found in the cerebral choroid plexus in embryonic rats 

and increase gradually after birth as a histamine source. 

Brain histamine is high in 15-day-old embryonic rats, but 

then decreases. However, the amount of histamine is 

increased after birth and reaches its peak at 2 weeks of 

age
[54]

. Histamine plays a significant role in cerebral 

neuronal proliferation and growth. 

 

In our present study, four indexes have been used for 

assessing neuronal damage in the brain. First, hypox-

ic-ischemic injury leads to dysfunction of the blood-brain 

barrier and edema of brain tissue. Cerebral water content 

measurement is used for detecting the severity of brain 

swelling and can be used as a means to indirectly reflect 

extent of brain tissue damage. Second, histamine plays a 

role in neuronal protection during the process of cerebral 

ischemia; therefore, hippocampal histamine content 

measurement was used in our study. Third, malondial-

dehyde is the product of oxygen free radicals and lipid 

peroxidation of polyunsaturated fatty acids in the cell 

membrane. Malondialdehyde content parallels that of 

oxygen free radicals; therefore, ma- londialdehyde con-

tent measurement can be used as a substitute of oxygen 

free radicals that does not harm neurons. Fourth, O
2–

 is 

the initial output in the process of active oxygen produc-

tion, and superoxide dismutase plays a catalytic role in 

the dismutation reaction of the super-oxygen anion, so 

the measurement of superoxide dismutase activity can 

be used for assessing oxidation damage in neurons.  

 

Histamine, in addition to other neurotransmitters, exerts 

its physiological effects by altering cellular excitability by 

binding its specific receptors in target cells. Until now, 

four histamine receptors, H1–4, have been shown to be 

involved in mediating histamine actions
[55-58]

. The H3 

receptor, an autoreceptor, modulates synthesis and re-

lease of histamine in a negative feedback fashion. The 

H3 receptor is highly sensitive and can be activated at a 

relatively low concentration (two orders of magnitude) of 

histamine
[59]

. In the present study, the H3 receptor an-

tagonist, thioperamide, was used in a rat model of neo-

natal hypoxic-ischemic encephalopathy. Increased ce-

rebral histamine content, decreased brain water content, 

lowered malondialdehyde and enhanced superoxide 

dismutase levels were found in the H3 group when 

compared with the model group, and a statistical differ-

ence was seen between these two groups. These results 

demonstrate that severity of brain damage in the H3 

group was relatively mild. Our data therefore shows that 

H3 receptor antagonists play an important role in neu-

ronal protection. This is in accordance with previous re-

ports
[60-61]

. 

 

Figure 4  Effect of H3 receptor antagonist thioperamide 
on brain superoxide dismutase (SOD) activity in the 

neonatal hypoxic-ischemic encephalopathy rats. 

Data are expressed as mean ± SD. Ten rats were used in 
each group at each time point. aP < 0.05, vs. model group; 
bP < 0.05, vs. H3 group using analysis of variance; cP < 
0.05, vs. 24 hours in each group using the Student’s t-test. 
Results showed that intraperitoneal injection of 

thioperamide can increase SOD activity. The H1 receptor 
antagonist, pyrilamine, reversed the effects of 
thioperamide in the H3 + H1 group; however, the H2 

antagonist, cimetidine, had no significant influence on the 
effects of thioperamide.  
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Previous studies into histamine H2 receptor blockade 

in ischemic brain are contradictory
[62-65]

. Some studies 

have shown that H2 receptor antagonists play a pro-

tective role against cerebral edema, whereas other 

reports demonstrate that H2 receptor antagonists ag-

gravate cerebral injuries induced by neonatal hypox-

ic-ischemic encephalopathy. Moreover, combining H2 

receptor antagonists and catecholamines led to more 

serious damage
[62-65]

. Our data have shown that cime-

tidine has no influence on the neuroprotective effect of 

thioperamide in neonatal hypoxic-ischemic encepha-

lopathy rats.  

 

Our results have shown that there is a pronounced in-

crease in brain water content in the H3 + H1 group 

compared with the H3 group. Malondialdehyde content 

was also statistically higher in the H3 + H1 group than 

the H3 group. Furthermore, compared with the H3 

group, the superoxide dismutase level was significantly 

decreased in the H3 + H1 group. These data revealed 

that an H1 receptor antagonist can block the protective 

effects of an H3 receptor antagonist in this animal 

model. H3 receptor antagonists play a protective role in 

neuronal damage induced by hypoxia and ischemia. 

Pyrilamine, as an H1 receptor antagonist, can block 

these protective effects and aggravate injuries induced 

by hypoxia and ischemia. We deduce that increased 

brain histamine caused by an H3 receptor antagonist 

exerts neuronal protective effects through postsynaptic 

H1 receptors.  

 

Central nervous system histamine is one of the earliest 

neurotransmitters or neuromodulators in systemic de-

velopment. Studies have shown that brain histaminergic 

neurons in the central nervous system are matured in 

rats by postnatal days 14 to 28. The earlier develop-

ment of the histaminergic system compensates for the 

delayed appearance of other protective neuronal sys-

tems, such as the N-methyl-D-aspartic receptor com-

plex and γ-aminobutyric acid receptor. Brain histamine 

plays an important role in normal development of an 

individual nervous system
[66-68]

. Our results have shown 

that both the H3 and H3 + H2 groups demonstrate sim-

ilar effects in our encephalopathic rats with regard to 

brain water content, malondialdehyde and, hippocam-

pal histamine levels, and superoxide dismutase activity. 

H3 receptor antagonists, therefore, play a role in neu-

ronal protection in this animal model. The use of H1 

receptor antagonist, pyrilamine, reversed the protective 

function of thioperamide. 

 

In all, histamine H3 receptor antagonists have a protec-

tive effect on damaged neurons in a rat model of neo-

natal hypoxic-ischemic encephalopathy through postsy-

naptic H1 receptor. This study provides a theoretical 

basis for further clinical research surrounding the use of 

H3 receptor antagonists in neonatal hypoxic-ischemic 

encephalopathy. 

 

 
MATERIALS AND METHODS 
 
Design 
A randomized, controlled animal study.  

 

Time and setting 
Experiments were performed at the Laboratory of Neu-

rology, the First Hospital of Jilin University, China, from 

March 2009 to July 2010. 

 

Materials 
One hundred and twenty Wistar rat pups, aged 7 days, 

were purchased from the Experimental Animal Center of 

Bethune Medical College of Jilin University, China (li-

cense No. SCXK (Ji) 2008-0003). All procedures were in 

accordance with the Guidance Suggestions for the Care 

and Use of Laboratory Animals, formulated by the Minis-

try of Science and Technology of China
[69]

. 

 

Methods 
Establishment of neonatal hypoxic-ischemic      

encephalopathy model  

The rat model of neonatal hypoxic-ischemic encephalo-

pathy was established according to the Rice method with 

some modifications
[70]

. Ambient temperature was main-

tained between 37°C and 37.5°C. A hypoxic cabinet was 

placed in a thermostatic water bath. Unilateral common 

carotid artery ligation was performed in 7-day-old post-

natal rats. Four hours later, the pups were exposed to 8% 

oxygen at 37°C for 3.5 hours. The rat pups that devel-

oped spontaneous levorotation were included in further 

experiments (Figure 5).  

 

Drug administration 

Rats in the H3 group were intraperitoneally injected with 

histamine H3 receptor antagonist thioperamide (T123:  

10 mg; Sigma, St. Louis, MO, USA) at 5 mg/kg (freshly 

dissolved in saline at the concentration of 1 mg/mL
[71]

,   

2 hours prior to injection) immediately after hypoxia. Rat 

pups in the H3 + H1 group were intraperitoneally injected 

with histamine H1 receptor antagonist pyrilamine      

(5 mg/kg, initial concentration of 1 mg/mL; P5514: 25 g; 

Sigma), and thioperamide (5 mg/kg) was administered 

30 minutes later. Experimental animals in the H3 + H2 
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group were intraperitoneally injected with histamine H2 

receptor antagonist cimetidine (100 mg/kg, starting con-

centration of 20 mg/mL; C4522: 25 g; Sigma) 1 hour prior 

to thioperamide (dose as above). Rats in the model 

group were treated using 0.1 mL of saline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brain tissue sampling 

Animals were sacrificed via prompt decapitation (on ice). 

Brain samples (including brain stem and parts of the 

spinal cord) were dissected and stored in wide-mouth 

bottles filled with 10% formaldehyde at 4°C. 

 

Determination of brain water content  

The water content of brain tissue was determined using 

the wet and dry mass method
[72]

. The left cerebral he-

mispheres were removed and weighed immediately after 

dissection (wet weight) and then dried in a vacuum oven 

(ZK072, Shanghai Laboratory Instrument Works Co., Ltd., 

Shanghai, China) at 100°C for 48 hours. The dried brain 

was re-weighed. The percentage of the water content 

was calculated as (wet weight – dry weight)/wet weight × 

100%. 

 

Measurement of brain histamine content 

Hippocampi were promptly dissected away, on ice, fol-

lowing decapitation. Tissue was then stored at –80°C 

until assayed. Brain tissue was weighed and homoge-

nized in 3% perchloric acid. The homogenate was cen-

trifuged at 15 000 × g for 20 minutes at 4°C to obtain a 

clear supernatant. After filtration (0.22 μm), histamine 

was analyzed fluorometrically with o-phthalaldehyde 

(Lianyungang Runze Chemical Co., Ltd., Lianyungang 

city, Jiangsu Province, China) after separation on a high 

performance liquid chromatography system (Shimadzu 

Corporation, Kyoto, Japan). The histamine level was 

determined by the standard sample curve. 

 

Measurement of brain malondialdehyde content 
Brain tissue was weighed after surface water was blotted 

away using filter paper. The right cerebral hemispheres 

were homogenized in 10 times saline volume using a 

tissue homogenizer. The homogenate was centrifuged at 

3 500 r/min for 10 minutes at 4°C. Malondialdehyde 

content was measured using the sulfate phenobarbital 

method
[73]

. Malondialdehyde, as one of the degradation 

products of hyperperoxylated lipid, was condensed with 

2-thiobarbituric acid to produce a red output that had a 

maximum absorbing peak at 532 nm. The malondialde-

hyde measurement was performed using a malondial-

dehyde detection kit (Nanjing Jiancheng Bioengineer 

Institute, Nanjing, Jiangsu Province, China). Malondial-

dehyde level was calculated using the following equation: 

malondialdehyde content (nmol/g) = (absorbance value 

of sample – absorbance value of sample 

blank)/(absorbance value of standard – absorbance 

value of standard blank)
[74]

. 

 

Determination of brain superoxide dismutase activity  

Superoxide dismutase enzyme activity of the right cere-

bral hemispheres was determined using a superoxide 

dismutase kit (Nanjing Jiancheng Bioengineering Insti-

tute). Xanthine and xanthine oxidase were used to gen-

erate superoxide anion radicals which reacted with 

2-(4-iodophenyl)-3-(4-nitrophenol)-5-phenyltetrazolium 

chloride quantitatively to form a red formazan dye. Su-

peroxide dismutase inhibited the reaction by converting 

the superoxide radical to oxygen
[73]

. Absorbance was 

measured at 505 nm on a Cecil 1021 UV/visible spec-

trophotometer (Guangzhou Huarui Chemical Instrument 

Co., Ltd., Guangzhou, Guangdong Province, China) for 

30 seconds after the addition of xanthine oxidase as a 

start reagent and 3 minutes after reaction as duplicate 

samples. Superoxide dismutase activity was calculated 

using the following equation: superoxide dismutase ac-

tivity (U/mg) = (absorbance value of the control – ab-

sorbance value of the sample)/absorbance value of the 

control/50% × (volume of reaction solution/tissue volume 

(mL)/protein content of tissue (mg/mL). 

 

Statistical analysis 

Data was expressed as mean ± SD. One-way analysis 

of variance was used to test significance between dif-

ferent groups. SPSS 14.0 software (SPSS, Chicago, IL, 

USA) was used for statistical analyses. Student’s t-test 

was used to analyze data at different time points of 

each group. A  P < 0.05 value was considered statis-

Figure 5  Neonatal hypoxic-ischemic encephalopathy 
model in rat pup. 

(A) Levorotation in a pup subjected to surgery and 
hypoxia. (B) A normal pup. 

A 

B 
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tically significant.  
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