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Human-computer interface (HCI) and electroencephalogram (EEG) signals are widely used in user 
experience (UX) interface designs to provide immersive interactions with the user. In the context 
of UX, EEG signals can be used within a metaverse system to assess user engagement, attention, 
emotional responses, or mental workload. By analyzing EEG signals, system designers can tailor 
the virtual environment, content, or interactions in real time to optimize UX, improve immersion, 
and personalize interactions. However, in this case, in addition to the signals’ processing cost and 
classification accuracy, cybersickness in Virtual Reality (VR) systems needs to be resolved. At this 
point, channel selection methods can perform better for HCI and UX applications by reducing 
noisy and redundant information in generally unrelated EEG channels. For this purpose, a new 
method for EEG channel selection based on phase-locking value (PLV) analysis is proposed. We 
hypothesized that there are interactions between EEG channels in terms of PLV in repeated tasks 
in different trials of the emotion estimation experiment. Subsequently, frequency-based features 
were extracted. The features were classified by dividing them into bags using the Multiple-Instance 
Learning (MIL) variant. This study provides higher classification performance using fewer EEG 
channels for emotion prediction. The performance rate obtained in binary classification with the 
Random Forests (RF) algorithm is at a promising level of 99%. The proposed method achieved 
an accuracy of 99.38% for valence using all channels on the new dataset (VREMO) and 98.13% 
with channel selection. The benchmark dataset (DEAP) achieved accuracies of 98.16% using all 
channels and 98.13% with selected channels.

1. Introduction

Multi-modal studies, such as virtual reality (VR) and electroencephalography (EEG) are essential for metaverse environments in 
many aspects, such as immersive experience, real-time feedback, personalized content and customization, Human-Computer Interac-
tion (HCI), user experience (UX), and engagement [11].

Metaverse’s primitives include augmented reality (AR), VR, mixed reality (MR), and extended reality (XR). Combining VR and 
EEG, which measure brain activity, capturing users’ cognitive and emotional responses in real time makes it possible to capture a 
more immersive and personalized experience in the metaverse.

EEG can detect brain signals associated with different emotional states, such as excitement, stress, or relaxation. Integrating 
emotion recognition activities with VR and EEG allows real-time monitoring and analysis of users’ emotional responses in the virtual 
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environment. This integration allows the system to provide personalized feedback, adapt the experience, and complete more engaging 
and emotionally resonant interactions. The metadata warehouse can dynamically adjust its content according to users’ emotional states 
using emotion recognition with VR and EEG. It provides personalized experiences tailored to individual preferences and emotional 
needs. For example, if a user gets stressed or bored, the system can adapt to the virtual environment or game to reduce stress or 
increase interaction. Combining VR and EEG opens new possibilities for natural and intuitive HCI. The system can interpret users’ 
intentions, attention levels, or emotional involvement by analyzing EEG signals, providing smoother and more responsive interactions 
in the metadata store. It can improve the sense of presence and representation, making the experience more realistic and immersive.

Emotion recognition activities with VR and EEG contribute to improving user experience and engagement in metaverse environ-
ments. By capturing and responding to users’ emotional states, the system can create emotionally rich and engaging experiences that 
resonate more deeply with the users. This can increase users’ overall enjoyment, immersion, and satisfaction in the metadata store.

This study chose PLV as the basis for electrode channel selection due to its ability to capture phase synchronization between EEG 
signals, which is particularly relevant in emotion recognition. Unlike amplitude-based measures like Pearson correlation, PLV focuses 
on the consistency of phase differences between signals, providing insights into the functional connectivity of brain regions that are 
essential for emotional processing.

Some of the challenges in studies in this area include correctly interpreting EEG signals, developing powerful emotion recogni-
tion algorithms, providing real-time processing and feedback, and designing user interfaces that effectively integrate VR and EEG 
technologies while considering user comfort and usability. UX and HCI applications are rapidly becoming more widespread. The 
importance of affective computing [55], which has been studied for a long time, has become more evident as these applications 
have become more widespread. In particular, emotion classification methods from objective sources (such as EEG) are widely used 
in brain-computer interface (BCI) systems [12].

The role of activation of different brain regions in emotion recognition is essential. However, processing large amounts of data 
obtained from multi-channel systems is difficult and time-consuming. In addition, we cannot say that all these channels play a role 
in emotion recognition. Therefore, selecting effective channels for emotion estimation, eliminating noise, and removing irrelevant 
channels are issues that should be evaluated in terms of their performance. For this purpose, an experiment was conducted with 32 
participants to classify the emotions obtained from VR environments. The phase-locking method selected the most significant channel 
pairs, and the effect of these channels on the classification performance was examined. A promising performance of 99 percent was 
obtained using channel selection and multiple-instance learning methods. In addition, the proposed method was validated using a 
publicly available DEAP dataset [46].

In summary, the significance of this study lies in its potential to profoundly enhance user experience and interaction within 
metaverse environments. By integrating EEG and VR, users’ cognitive and emotional responses can be monitored in real-time, creating 
more personalized and immersive experiences. Specifically, EEG’s ability to detect brain signals associated with different emotional 
states allows systems to provide feedback that aligns with users’ emotional conditions, adapt virtual environments accordingly, 
and enhance engagement [45]. This, in turn, makes the metaverse experience more realistic and satisfying for users. Furthermore, 
advanced signal processing methods like PLV uncover the functional connectivity of brain regions involved in emotional processing, 
thereby improving the efficacy of emotion recognition algorithms. EEG facilitates the objective and precise measurement of users’ 
emotional states, offering broad applications in brain-computer interface systems.

This paper is organized as follows: Related works are presented in Section 2. Datasets, pre-processing feature extraction, FC, and 
the MIL method are presented in Section 3. Section 4 presents experimental results. The discussion and conclusions are provided in 
Sections 5 and 6, respectively.

2. Related work

The electrical activity of the brain recorded as electroencephalography (EEG), provides objective information from individuals. 
At the same time, it contains rich information regarding emotional states and brain activity. Therefore, researchers have examined 
emotional states in the valence-arousal of the emotion space using EEG. In emotion recognition studies, common features extracted 
from EEG signals, including statistical, nonlinear, frequency domain, and deep learning features, are used. Also, the feature extraction 
process is an essential step in automatic detection systems that separate variables into different classes using machine learning (ML) 
or deep learning (DL) techniques. Various ML techniques such as SVM, KNN, and ANN and advanced DL models such as CNN, LSTM, 
GAN, and transformers have been studied [44,77,87,43,42].

Recently, physiological signals that are difficult, if not impossible, to trigger or control have gained attention in emotion recogni-
tion. Systems that can work in real-time for emotion recognition have also been proposed [56]. EEG studies on emotion recognition 
have primarily focused on single-channel approaches. However, many studies on animals and humans have shown that sensorimotor, 
visual, and cognitive tasks require integrating numerous functional areas widely distributed over the brain.

With the widespread use of mobile EEG systems (such as Emotiv Epoc Flex), the association of EEG-VR has been reflected in 
current studies [29,76]. With this combination, the limitations of traditional EEG experiments can be reduced to a certain extent. In 
particular, using mobile EEG systems instead of tethered EEG that limits the participant to a limited area provides both the use of the 
experience in VR and freedom of movement [76,79].

VR supported brain-computer interfaces (BCIs) are systems that enable users to interact with virtual environments by utilizing 
brain waves or other neurological signals. These systems aim to integrate neurological signals into VR environments, providing more 
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natural and effective interactions. Such systems are commonly employed in rehabilitation, education, gaming, and other interactive 
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applications. In real-time, VR can simulate and observe user responses to brain signals, facilitating more immersive and engaging 
experiences [71,9,52,62].

As VR allows individuals to experience deep immersion, emotion recognition systems are being developed to evoke emotions in VR 
scenes [58]. In one of these systems, electroencephalogram (EEG) and electrocardiography (ECG) were recorded with 60 participants 
in a virtual environment. In the arousal-valence combination, they obtained 75% accuracy for arousal with an SVM and 71.21% for 
valence. In a study [37] conducted using VR and EEG, the stress level was classified using a convolutional neural network (CNN). With 
a Support Vector Machine (SVM), 96.42% success was achieved using all channels. In another study [18] that tested negative and 
neutral statuses with fear of heights in 75 participants, more right hemispheric lateralization was found in the negative VR condition. 
Therefore, VR technology has been reported to provide more ecologically valid ways to evoke emotions. Studies have used VREED, 
a new publicly available dataset obtained from 3D VR videos [78]. Related research has used differential entropy (DE) features for 
EEG-based emotion recognition. The classification result of two emotional states (positive/negative) in the gamma band was obtained 
using SVM with a score of 76.22%.

Presence is a prerequisite for emotional reactions in virtual reality environments [21]. One of the challenges associated with VR is 
cybersickness (CS). Regarding CS, it is worth noting that some methodological improvements were made to the VREMO dataset [10]. 
These studies provided valuable insights into managing and reducing CS by ensuring that the measured emotional responses were not 
confused with discomfort but reflected real emotional experiences triggered by VR stimuli. This demonstrates that the study addresses 
VR-specific challenges and contributes to advancing emotion recognition research in these innovative environments. Studies on CS 
have identified the conditions that affect these processes. In particular, teleportation is more comfortable and causes less CS than 
continuous locomotion [14]. A controlled multi-session motion sickness study [70] using an actuated rotating chair examined the 
potential of multi-sensory visual and auditory motion cues presented during a VR reading task to mitigate sickness. This study showed 
that visual cues are most effective in reducing symptoms, and auditory cues have some beneficial effects when combined with visual 
cues. Evidence has confirmed that the human vestibular system is involved in CS regarding balance and space orientation [51].

The critical frequency bands and channels were analyzed using trained deep belief networks (DBNs) weights. Three emotion 
models (positive, negative, and neutral) were used in the study [88]. Four profiles with four, six, nine, and twelve channels were 
selected, and the success rate of these profiles was obtained with the best accuracy rate of 86.65% compared with 62 channels. 
In another study [35], during the two-class classification of valence and arousal in DEAP, experimental results were obtained with 
classification rates of 98.93% and 99.10%, respectively. The channel feature used in this study was defined by a symmetric matrix 
calculated using the Pearson correlation coefficient between the two channel pairs. There are also studies that focus on channel 
selection [85,3] and salient features for emotion recognition [68,82,20,64]. In these studies, the number of features and channels 
was reduced using different algorithms, and promising results were obtained.

The proposed channel selection method offers a new approach based on PLV analysis, which differs from the existing literature 
methods (Table 1). The originality of this method is that PLV is used to determine the interactions between EEG channels more 
accurately, and these interactions are used to predict emotional states during repetitive tasks. While the channel selection method 
based on algorithms such as Swarm-Intelligence Algorithms [85] aims to increase the classification performance by reducing the 
number of channels in a similar way, the proposed PLV-based method provides a more comprehensive and sensitive analysis by 
considering not only the selection of essential channels but also the phase synchronization between channels. The proposed PLV-MIL 
method analyzes the neural interactions in more depth, basing the channel selection on signal strength and phase coherence between 
channel pairs. This enables the classification of more natural and ecologically valid emotional responses in the VR environment and, 
as a result, provides a higher classification performance.

Functional Connectivity (FC) is related to synchrony of brain activity. When brain regions oscillate in a coordinated fashion, there 
is a high correlation between their signal time series. Recently, the use of the functional connectivity methods in emotion recognition 
has become widespread [53,39,50,73,66]. EEG-based functional connectivity allows us to understand the brain areas involved in a 
particular task. Phase synchronization also plays an important role in many neurological diseases such as epilepsy [60], pathological 
tremors [75], [59], and schizophrenia [49]. EEG-based functional connectivity lets us understand which electrode positions are more 
critical in emotion recognition tasks. FC was calculated by considering the similarities between the time series or activation maps. 
Statistical dependencies in this calculation were used to investigate phase locking [7,63,17,8]. Many methods have been studied, 
including linear coherence estimation in the frequency domain. Among nonlinear methods, generalized synchronization [74] and 
phase synchronization have been investigated [75,48,60].

3. Methodology

An experiment was conducted to test the effects of the immersion properties of virtual scenes on emotions and the classification 
performance of the proposed method on EEG data in a virtual reality environment under various virtual task settings. Fig. 1 shows 
an overview of the experimental flow. This section provides detailed information regarding the materials and methods used.

3.1. Datasets

The method proposed in this study was used with both VREMO [10], and DEAP datasets and promising results were obtained. 
The VREMO dataset, which examines the effects of stimuli in the virtual environment on individuals’ emotions, was used to test the 
proposed method. The publicly available DEAP dataset was used to validate the method. Table 2 provides important brief information 
3
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Table 1

Summarizing EEG channel selection methods.

Method Advantages Disadvantages

Fisher Score [54] Simple and computationally 
efficient.

Ignores inter-channel 
dependencies.

Classifier-Based 
Methods [33]

Directly optimizes classification 
performance.

High computational cost; risk 
of overfitting.

Mutual Information [82] Can assess dependencies and 
interactions.

Computationally expensive, 
especially with a large number 
of channels.

Genetic Algorithms (GA) 
[25]

Efficient in searching through a 
large number of channels.

Prone to local minima; 
time-consuming.

Feature Ranking and 
Selection [27]

Flexible in channel selection; 
evaluates individual channel 
contributions.

Does not consider interactions 
between features; results 
depend solely on ranking.

Principal Component 
Analysis (PCA) [61]

Reduces dimensionality, 
speeding up computations.

Potential loss of information; 
reduced interpretability.

Statistical Methods [5] Simple and fast; low 
computational cost.

Fails to capture complex 
relationships or dependencies.

Swarm Intelligence 
Methods [85]

Effective in parallel search; 
potential to reach global 
optimum.

High computational cost; 
parameter tuning can be 
challenging.

Correlation-Based 
Methods [34]

Evaluates relationships 
between channels; can be 
combined with feature 
selection.

High computational cost; 
captures only linear 
relationships.

Fig. 1. Flow chart of the proposed method.

Five scenes from VR games were used in the VREEG dataset. The results were evaluated using the experimental protocol and the 
4

Self-Assessment Manikin (SAM), Virtual Reality Immersion (VRI), and Simulator Sickness Questionnaire (SSQ).
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Table 2

Datasets used in this study.

Database Number of 
subjects

Ages Number of 
stimuli

Content Duration Recording device Number of 
channels

Sampling 
frequencya

Dimensional 
states (1-9)b

DEAP 32 (16 
Female)

19-37 
(mean 26.9)

40 Music videos 60s Biosemi Active II 32 128 Hz V, A, D, L, F

VREMO 32 (11 
Female)

18-30 
(mean 21.4)

5 VR scenes 90s Emotiv Epoc Flex 32 128 Hz V, A, D

a downsampled.
b V: valence, A: arousal, D: dominance, L: liking, F: familiarity.

Fig. 2. Electrode positions of datasets.

Table 3

Descriptive statistics of datasets.

Dataset Emo.Type Valence Arousal Dominance

DEAP Low 2.55 (0.93)a 2.58 (0.95) 2.68 (0.87)
Neutral 4.84 (0.56) 5.01 (0.62) 4.99 (0.57)
High 7.34 (0.84) 7.07 (0.84) 7.37 (0.99)

VREMO Low 2.28 (0.83) 2.11 (0.79) 1.81 (0.84)
Neutral 4.84 (0.95) 4.82 (0.92) 5.07 (0.88)
High 8.41 (0.79) 8.19 (0.76) 7.67 (0.83)

a mean (std.dev.).

The EEG electrode configuration of both datasets is shown in Fig. 2. The electrodes of the Epoc Flex device were grounded on 
the forehead with reference to AFz (Driven-Right-Leg sensor, DRL) and FCz (Common-Mode Sensor, CMS). The electrodes in the cap 
were filled with saline solution to ensure the quality of EEG signals.

3.2. Descriptive statistics

The mean and standard deviations of the valence, arousal, and dominance of the low, neutral, and high emotion types are given 
in Table 3. This is illustrated in Fig. 3. Plotting a box-plot graph is essential to consider the dimensions’ distribution. Therefore, 
according to the box-plot graph (Fig. 3), there were differences in the range of their evaluations. There are no dimensions with the 
same median for either dataset, and there are dimensions with different distributions. For example, the VREMO distribution in the 
valence dimension was closer to a more positive quarter than the DEAP distribution. On the other hand, VREMO assessments span a 
more comprehensive range, whereas DEAP assessments are closer to the center (neutral). This shows that for DEAP, many participants 
had similar views on certain parts of the scale, but VREMO’s perspectives were more variable. In addition, this indicates that stimuli 
(such as VR) are subjectively more decisive to participants.

3.3. Pre-processing

The EEG data were processed in MATLAB using the EEGlab data analysis toolbox [16]. Poor contact with the subject’s electrodes, 
sweat, or muscle tension may have caused recording artifacts during the experiments. To eliminate these artifacts, a “baseline interval” 
that records tens of milliseconds before the stimulus, during which the subject was asked to remain still. In this situation, EEG 
recordings are assumed to have nothing to do with the given stimulus. The mean signal in the baseline range was subtracted from each 
5

channel of the signal in the stimulus range. This process is called “baseline correction.” This study uses 10-second baseline intervals 
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Fig. 3. (a) Boxplot representing valence, arousal, and dominance ratings classified according to the resulting dataset. (b,c) DEAP and VREMO affective dimensions 
density of ratings. Plot bandwidth adjusts set to 1.

Fig. 4. Block diagram for artifact removal.

before each 90-second stimulus recording for baseline correction. The EEG signals in the datasets were obtained by downsampling 
and sampling with a sampling frequency of 128 Hz. The 4.0–45.0 Hz frequency range, including four bands (𝜃, 𝛼, 𝛽, and 𝛾), was 
filtered with a 5th-order bandpass Butterworth filter. Infomax-based independent component analysis (ICA) was performed to remove 
artifacts using the spectra of the components and scalp maps. Muscle activity features related to horizontal/vertical eye movements 
and artificial components during blinking were excluded from the analysis. The multiple artifact rejection algorithm (MARA) [84]
EEGlab plugin guides the ICA-based artifact removal. To preserve data quality, only cases reported above the 90% confidence level 
were removed, removing approximately to 1-2 components from each participant’s data. The MARA is an algorithm used for binary 
classification problems. The independent components (IC) were evaluated as “accept” or “reject” (Fig. 4). It uses the following 
methods: Current Density Norm and Range Within Pattern, Fit Error, 𝜆 and 8-13 Hz, and Mean Local Skewness.

ICA aims to separate individual source signals from multi-dimensional mixed signals. The recorded EEG signals were collected 
from 32 channels

𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), ..., 𝑥32(𝑡)]𝑇 (1)

which are linear mixtures of 32 independent sources, 𝑠𝑖(𝑡)

𝑠(𝑡) = [𝑠1(𝑡), 𝑠2(𝑡), ..., 𝑠32(𝑡)]𝑇 (2)

The estimated independent components (ICs) are obtained as

𝑥(𝑡) =𝑊 𝑠(𝑡) [31] (3)

where W is an invertible 32x32 linear-mixing matrix. The aim of ICA is to estimate the separation matrix W [65]. ICs are found using:

𝑖𝑐𝑖(𝑡) =𝑊 −1𝑥(𝑡) where 𝑖 = 1,2, ..., 𝑛 (𝑛 ≤ 32) (4)

3.4. Feature extraction

Feature extraction plays a crucial role in the classification accuracy. To achieve an acceptable classification accuracy, fewer features 
representing the signal must be extracted from the raw data. This reduces the signal domain size and computational complexity by 
removing features that do not affect classification.

In the frequency domain, the relationship between the frequency and amplitude of the signal is established, and the frequency 
characteristics of the signal are evaluated analytically. Frequency-domain information is commonly used in EEG signals with temporal 
and spatial dimensions. The frequency-domain properties do not change over time and are less sensitive to noise [47]. Power Spectral 
6

Density (PSD) and Short-Time Fourier Transform (STFT) methods were used to extract frequency domain features. PSD was calculated 
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using Welch’s method. The signal was divided into eight segments with a 50% overlap, and each component was windowed with a 
Hamming window (step size 32). The PSD of each element was averaged.

The short-time Fourier transform (STFT) [28] is a widely used technique for analyzing the frequency content of time-varying 
signals, such as EEG data. This provides a way to examine how the frequency components of a signal change over time. In the case 
of EEG signals, STFT allows researchers and clinicians to investigate dynamic changes in brain activity across different frequency 
bands. This information can be valuable for understanding brain function, identifying abnormal patterns, and diagnosing certain 
neurological conditions.

𝑋(𝑡, 𝑓 ) =

∞

∫
−∞

𝑤(𝑡− 𝜏)𝑥(𝜏)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏 [57] (5)

Wavelet Transform (WT) and Hilbert-Huang Transform (HHT) were used in the time-frequency domain.

𝐶𝑊 𝑇Ψ′
𝑥

(𝜏, 𝑠) = Ψ(𝜏, 𝑠) = 1√|𝑠| ∫
𝑡

𝑥(𝑡)Ψ∗
(
𝑡− 𝜏

𝑠

)
𝑑𝑡 (6)

𝑥(𝑡) = given signal , tau = translation parameter, 𝑠 = scaling parameter = 1∕f , and phi(𝑡) = mother wavelet, all kernels are 
obtained by scaling and/or translating the mother wavelet.

This study used the Daubechies wavelet function (“db1”), considering 32 EEG channels. The features extracted from each channel 
consisted of the max/min value, standard deviation, mean value, mean power, and entropy of the coefficients obtained at each 
decomposition level.

Hilbert-Huang Transform (HHT) consists of empirical mode decomposition (EMD) and Hilbert Transform [30]. EMD breaks down 
data into components called Intrinsic Mode Functions (IMF). Processing all the IMFs is not required in a nonstationary data series. 
Therefore, the proper selection of the IMF plays a crucial role. IMFs with a threshold value (11) were selected from the IMFs obtained 
in this study [13].

Frequency domain methods such as Power Spectral Density (PSD) and Short Time Fourier Transform (STFT) analyze the sig-
nal’s frequency content; PSD provides overall power distribution, and STFT provides time-resolved frequency information. However, 
time-frequency approaches such as Wavelet Transform (WT) and Hilbert-Huang Transform (HHT) provide more flexible analysis by 
capturing both time and frequency characteristics of non-stationary signals such as EEG. While frequency domain methods are helpful 
for static analysis, time-frequency approaches are more suitable for EEG signals with dynamic changes. In this study, the positive 
aspects of the effects in both domains were tried to be taken.

Normalization is essential for classification performance as it provides comparable scales, improves convergence speed, improves 
robustness against outliers, handles algorithm sensitivity, and simplifies the interpretation of feature importance. This enables the 
models to learn effectively from all features and make more accurate predictions. After feature extraction, z-score normalization was 
applied to the features in both domains in the next step.

𝑥scaled = 𝑥− mean
𝑠𝑑

(7)

In this technique, the values were normalized to the mean and standard deviation of the x data.

3.5. Functional connectivity

Functional connectivity (FC) is the statistical dependency or correlation between brain regions or regions of interest (ROIs), based 
on neural activity. This provides insights into how different brain areas communicate and work together during various cognitive 
processes. FC research is an active area of study in neuroscience that contributes to our understanding of brain function and its 
alterations in multiple contexts. The EEG bands examined for FC in this study are 𝜃 (4-7), 𝛼 (8-13), 𝛽 (14-30), and 𝛾 (31-45).

The synchronization used in this study is called the PLV, which was introduced in [48]. A comparison of PLV with other potential 
methods for assessing channel importance is given in Table 4. This table overviews various methods for assessing channel significance 
in EEG analysis and their key strengths, limitations, and typical application areas. To compute the PLV between two signals, namely 
𝑠𝑥(𝑡) and 𝑠𝑦(𝑡), instantaneous phase values at the target frequency should be extracted. For this purpose, the signals are first band-pass 
filtered in the desired frequency band. Then, instantaneous phase values were extracted using the Hilbert Transform (note that phases 
were extracted using the Gabor Wavelet Transform in [48]). The analytic signal of 𝑠𝑥(𝑡) is defined as

𝑧𝑥(𝑡) = 𝑠𝑥(𝑡) + 𝑗�̃�𝑥(𝑡) =𝐴𝑥(𝑡)𝑒𝑗𝜙𝑥(𝑡) [6] (8)

The analytic signal of 𝑠𝑦(𝑡) is defined as:

𝑧𝑦(𝑡) = 𝑠𝑦(𝑡) + 𝑗�̃�𝑦(𝑡) =𝐴𝑦(𝑡)𝑒𝑗𝜙𝑦(𝑡) (9)

where 𝐴𝑥 and 𝐴𝑦 are the instantaneous amplitudes and 𝜙𝑥(𝑡) and 𝜙𝑦(𝑡) are the instantaneous phases (IPs). ̃𝑠𝑥(𝑡) and ̃𝑠𝑦(𝑡) are Hilbert 
transforms of 𝑠𝑥(𝑡) and 𝑠𝑦(𝑡), respectively.
7

�̃�𝑥(𝑡) =
1
𝜋
𝑃 .𝑉 . ∫ ∞

−∞
𝑠𝑥(𝜏)
𝑡−𝜏

𝑑𝜏 (10)
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Fig. 5. Multiple-instance learning vs. traditional supervised learning.

�̃�𝑦(𝑡) =
1
𝜋
𝑃 .𝑉 . ∫ ∞

−∞
𝑠𝑦(𝜏)
𝑡−𝜏

𝑑𝜏

where P.V. denotes the Cauchy principal value. The instantaneous amplitudes are defined by Equation (11).

𝐴𝑥(𝑡) =
√

𝑠𝑥(𝑡)2 + �̃�𝑥(𝑡)2 (11)

𝐴𝑦(𝑡) =
√

𝑠𝑦(𝑡)2 + �̃�𝑦(𝑡)2

IPs are defined as (12).

𝜙𝑥(𝑡) = 𝑎𝑟𝑔[𝑧𝑥(𝑡)] = 𝑎𝑟𝑐𝑡𝑎𝑛
(

�̃�𝑥(𝑡)
𝑠𝑥(𝑡)

)
(12)

𝜙𝑦(𝑡) = 𝑎𝑟𝑔[𝑧𝑦(𝑡)] = 𝑎𝑟𝑐𝑡𝑎𝑛

(
�̃�𝑦(𝑡)
𝑠𝑦(𝑡)

)
Finally, PLV, between two signals over an interval of N samples, is computed at time t, as in (13).

𝑃𝐿𝑉𝑡 =
1
𝑁

||||||
𝑁∑
𝑛=1

𝑒𝑥𝑝(𝑗𝜃(𝑡, 𝑛))
|||||| [48] (13)

where 𝜃(𝑡, 𝑛) is the phase difference between the signals 𝑠𝑥(𝑡), 𝑠𝑦(𝑡), 𝜙𝑥(𝑡, 𝑛) − 𝜙𝑦(𝑡, 𝑛). The PLV measures how this phase difference 
changes across trials. If the phase difference is close to zero across trials, then PLV will be close to 1; otherwise, it will be smaller. 
The PLV is an important synchronization measure when working with biosignals (particularly electrical brain activity). PLV uses 
narrow-band signals because of the challenges in physically interpreting the instantaneous phase value for wideband signals.

3.6. Two-level classification

Multiple Instance Learning (MIL) is particularly well-suited for EEG emotion recognition due to the inherently variable and complex 
nature of EEG signals. In traditional classification tasks, each data instance is labeled individually, which can be challenging for EEG 
data where emotions may not be uniformly expressed across all time segments or channels. MIL addresses this by allowing sets of 
instances (e.g., multiple time segments of EEG data) to be considered collectively, with a label assigned to the entire set rather than 
individual instances. This approach is advantageous in emotion recognition, where the emotional state may only be reflected in 
specific segments of the EEG signal.

MIL is a subfield of machine learning that deals with classification problems in which training data are organized into sets or 
bags of instances rather than individual instances. In MIL, each bag contains multiple instances, and labels are assigned at the bag 
level rather than at the instance level. A bag is a collection of instances representing a single data point in MIL. An instance refers to 
the individual data points within a bag. In MIL, labels are assigned to bags rather than instances. A bag is labeled positive if at least 
one instance belongs to the positive class and negative if all instances belong to the negative class (Fig. 5). This learning method is 
computationally more complex than attribute-value learning. This is a natural fit for essential application areas of machine learning, 
such as the classification of EEG signals and image classification [19,86,83,72,15]. One method used to solve MIL problems is to apply 
propositionalization, in which bags of data are converted to vectors of attribute-value pairs. One MIL application is the Two-Level 
Classification (TLC) method presented in [22]. TLC is a proposition method that creates random forests to suggest multi-instance 
data. This method uses a single decision tree to obtain propositional data. An experimental form of TLC was used in this study. This 
method uses a random forest instead of a single decision tree to obtain the propositional data.

Propositionalization is the process of converting the complex multi-instance data structure into a standard single-instance format 
that can be used by traditional machine learning algorithms. Consider an example of synthetic multi-instance data with n Boolean 
attributes x0, x1, and xn for each bag. Each node and leaf are considered as a region (R), and an instance proposition vector of the 
length of the number of these two is created. The bag label is then assigned to this vector (Fig. 6). After the attribute set is allocated to 
8

the partitions, the membership values of the partitions are determined using the j48 algorithm, which is a decision tree classifier (an 
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Table 4

Comparison of methods for assessing EEG channel significance.

Method Description Advantages Disadvantages Application Areas

Phase Locking 
Value (PLV)

Measures the consistency of 
phase differences between 
two signals across trials or 
time.

- Captures phase synchrony 
effectively

- Sensitive to noise Connectivity analysis, seizure 
prediction, cognitive 
neuroscience

- Simple to compute - Doesn’t provide amplitude 
information

- Suitable for connectivity 
analysis

- May miss non-linear 
dependencies

Mutual 
Information 
(MI)

Quantifies the amount of 
information shared between 
two signals.

- Captures non-linear 
dependencies

- Computationally intensive
Feature selection, BCI

- Can handle complex 
relationships between 
channels

- May require large data 
samples for accuracy

Granger Causality 
(GC)

Tests whether one-time series 
can predict another, implying 
a directional relationship.

- Provides directional 
information

- Assumes linearity Causal inference, network 
analysis, time series analysis

- Useful for causal inference - Sensitive to signal length 
and noise

Coherence
Measures the degree of 
correlation between the 
frequency components of two 
signals.

- Captures both amplitude 
and phase information

- Limited to linear 
relationships

Frequency analysis, 
neurofeedback, sleep studies

- Suitable for frequency 
domain analysis

- Frequency-specific, may 
miss transient synchrony

Correlation 
Coefficient

Measures the linear 
relationship between two 
signals.

- Simple to compute - Only captures linear 
relationships

Basic statistical analysis, 
preliminary data exploration

- Well-understood metric - Sensitive to outliers and 
noise

Cross-Correlation
Measures the similarity 
between two signals as a 
function of the time-lag 
applied to one of them.

- Identifies lagged 
relationships

- Assumes linearity Time-lag analysis, signal 
synchronization, system 
identification

- Simple to implement - Sensitive to noise and 
outliers

Canonical 
Correlation 
Analysis (CCA)

Assesses the relationship 
between two sets of variables, 
often used to find correlated 
patterns between 
multi-channel EEG data.

- Captures complex, 
multi-dimensional 
relationships

- Computationally intensive BCI, multimodal data 
analysis, feature extraction

- Can handle multiple 
channels simultaneously

- May require dimensionality 
reduction

Independent 
Component 
Analysis (ICA)

Decomposes multivariate 
signals into statistically IC, 
often used to isolate sources 
of activity in EEG data.

- Effective in removing 
artifacts

- Assumes statistical 
independence

Artifact removal, source 
localization, signal 
decomposition

- Can reveal underlying 
neural sources

- May miss weak sources or 
components

Entropy Measures 
(e.g., Sample 
Entropy)

Quantifies the complexity or 
regularity of time series data, 
used to assess the non-linear 
characteristics of EEG signals.

- Sensitive to signal 
complexity

- Requires large data sets for 
stability

Complexity analysis, seizure 
detection, sleep stage 
classification

- Can capture subtle changes 
in signal dynamics

- Computationally expensive

implementation of the C4.5 algorithm). Once the data is propositionalized (i.e., converted into a single-instance format with a single 
vector representing each bag), it can be used as input for traditional machine-learning algorithms. At this point, the Random Forest 
(RF) classifier is used for propositional data. [22]. RF is an ensemble learning algorithm with multiple decision trees. Therefore, they 
exhibit high performance in MIL methods. The transformed instances were then used to train the RF classifier, which can predict new 
instances.

An exemplary pruned tree structure obtained from the valence classification in the time-frequency domain of the VREMO dataset 
is shown in Fig. 7. The resulting pruned tree had nine leaves and was 17 in length.

4. Results

Experimental results are presented in this section. Python, C#, MATLAB, and SPSS were used for the programming, statistical anal-
ysis, and graphing. First, the statistical significance was evaluated using PLV, and the most significant channel pairs were determined. 
9

The classification results are presented before and after the most significant channel pairs were removed from the datasets.
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Fig. 6. Converting a bag of instances to a propositionalized vector.

Fig. 7. Pruned decision tree used for VREMO dataset Valence classification (P: partition, L: low valence, H: high valence).

4.1. Statistical significance

The 3D emotion model consists of three dimensions: Valence, Arousal, and Dominance (in short, VAD). This study investigated 
the interactions between brain regions through PLV for VAD in three-dimensional space in 𝜃, 𝛼, 𝛽, and 𝛾 bands.

The phase-locking values for all electrode pairs were obtained for the VAD. The valence was negative (V< 4), neutral (4 ≤ V ≤ 6), 
and positive (V> 6). For arousal, calm (A< 4), neutral (4 ≤ A ≤ 6), and excited (A> 6). Dominance was dominated (D< 4), neutral 
(4 ≤ D ≤ 6), and dominant (D> 6).

For VAD analysis, threshold values 0.55 were used for the DEAP dataset and 0.65 for the VREMO dataset. Both threshold values 
were determined to reveal at least one channel pair in each frequency band. This difference was used to determine the most significant 
channel pairs and frequency bands according to the characteristics of each dataset. Both datasets (DEAP and VREMO) were collected 
under different experimental conditions, which may lead to differences in signal noise, number of participants, devices used, and other 
environmental factors. Such factors may affect signals’ connectivity strength (PLV) in different brain regions. Therefore, a particular 
threshold value may give different results in other datasets. While 0.55 was a sufficient threshold value to detect significant channel 
pairs in all frequency bands in the DEAP dataset, this value had to be increased to 0.65 for the VREMO dataset.

Permutation testing is a non-parametric statistical method used to determine the significance of an observed effect. Surrogate 
data are generated to evaluate whether the observed PLV significantly differs from what might occur by chance. These surrogates are 
created by shifting the phase of one of the signals (e.g., through temporal shifts) to break the actual temporal relationship between 
the signals while preserving their characteristics. This process generates PLV values that should represent what would be expected 
if there were no proper connectivity between the signals. The number of surrogates (in this case, 100) is often chosen to balance 
computational efficiency and statistical robustness. While using more surrogates could provide a more precise estimate of the null 
distribution (i.e., the distribution of PLV values under the assumption that there is no actual connection between the signals), 100 is 
often sufficient to give a reliable indication of statistical significance without high computational cost. The key is that the observed 
10

PLV must consistently exceed the surrogate PLVs to be considered significant.
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Fig. 8. (DEAP) Significant Phase Locking Values Between electrodes exceeding 0.55 threshold value for VAD. Rows represent oscillations in 𝜃, 𝛼, 𝛽 , and 𝛾 bands, and 
columns represent VAD in low, neutral, and high.

To determine the statistical significance of each PLV, they were compared with the PLVs obtained between shifted trials [48]. The 
surrogate values were obtained by calculating the phase differences over the shifted trials, as provided by Equation (14).

𝑃𝐿𝑉
𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒(𝑖)
𝑡 = 1

𝑁

||||||
𝑁∑
𝑛=1

𝑒𝑗(𝜃𝑥(𝑡,𝑛)−𝜃𝑦(𝑡,𝑛𝑝𝑒𝑟𝑚(𝑖)))
|||||| (14)

Using 100 surrogate values means the phase differences were computed 100 times with a different random shift to create 100 
PLV values representing the “null distribution”. The observed PLV values (from the actual data) are then compared against this null 
distribution to assess how likely the observed values could have occurred by chance. If the observed PLV is more significant than 
most or all of the surrogate values, it suggests that the observed PLV is statistically significant and not due to random chance.

Permutation testing with 100 surrogate values revealed that most channel pairs had PLV values that were significantly greater 
than chance (𝑝 < 0.001). Fig. 8 shows the strong PLVs (𝑃𝐿𝑉 ≥ 0.55) for the DEAP dataset.

Similarly, for the VREMO dataset, permutation testing with 100 surrogate values revealed that most channel pairs had PLV values 
that were significantly higher than chance (𝑝 < 0.001). Fig. 9 shows the PLVs (𝑃𝐿𝑉 ≥ 0.65) for the VREMO dataset.

4.2. MSP and channel selection strategy

It is essential to clarify that the selection of channels in this study is not arbitrary but is guided by the differences in PLV cor-
responding to the emotional states’ valence, arousal, and dominance parameters. The PLV-based approach allows for identifying 
channels that exhibit significant connectivity differences across these emotional dimensions, ensuring that the selected channels are 
those most relevant to the nuanced dynamics of emotion recognition. This method is grounded in the principle that different emo-
tional states manifest distinct connectivity patterns in the brain, which PLV can effectively capture, leading to more accurate and 
meaningful channel selection for emotion recognition tasks.

PLV values highlight the functional connectivity between brain regions for specific tasks. This study explored connection patterns 
for channel selection and negative and positive emotions through PLV. Previous studies have shown that most reactive bands have 
higher event-related desynchronization success rates [69,80]. In these studies, the most reactive band is defined as the frequency 
band corresponding to the largest average power difference. Similarly, the most reactive channel pair is defined as the channel pair 
with the largest difference between a task-related PLV and the rest state [26,38]. Here, we define the most significant channel pair 
(MSP) as the channel pair for which the difference between PLV values for negative/positive emotional state vs. neutral state has the 
largest value.

The PLVs for each channel pair were tested for significance by permutation test. The original PLVs were compared with PLVs 
calculated using phase differences calculated over randomly shuffled trials. Most channel pairs were confirmed to be significant in 
the permutation test, with alpha=0.01, indicating that the PLVs were significantly greater than chance.

𝑀𝑆𝑃𝑒 = argmax
𝑖
|𝑃𝐿𝑉 𝑖

𝑒 − 𝑃𝐿𝑉 𝑖
𝑛 | (15)
11

where 𝑃𝐿𝑉 𝑖
𝑒 and 𝑃𝐿𝑉 𝑖

𝑛 show the PLV values for the emotional and neutral cases for 𝑖𝑡ℎ channel, respectively.
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Fig. 9. (VREMO) Significant Phase Locking Values Between electrodes exceeding 0.65 threshold value for VAD. Rows represent oscillations in 𝜃, 𝛼, 𝛽 , and 𝛾 bands, 
and columns represent VAD in low, neutral, and high.

For the DEAP and VREMO datasets, the most significant channel pairs were determined separately for each emotional state in the 
𝜃, 𝛼, 𝛽, and 𝛾 bands, and the PLV values for these pairs are shown in Fig. 10 and 11.

For DEAP, the negative and positive emotions were usually close together. However, in the 𝛼 band, there was a distinct difference 
between the valence and arousal. Fig. 10 shows that the most considerable difference between the PLV values of MSPs was observed 
for negative emotions in the 𝛼-band. For DEAP, ‘Fp1’, ‘F7’, ‘C3’, ‘CP1’, ‘P7’, ‘O1’, ‘Pz’, ‘Fp2’, ‘AF4’, ‘Fz’, ‘F8’, ‘FC2’, ‘Cz’, ‘T8’, ‘CP2’, 
‘P8’, ‘O2’ channels revealed as MSPs.

For VREMO, in most cases, negative and positive emotions were similar (Fig. 11). However, the difference in the valence dimension 
between positive and negative emotions was found to be significant. Because stimuli in an immersive environment were used as stimuli 
in the VREMO dataset, the initial experiences may have had adverse effects on the participants. For VREMO, ‘Cz’, ‘Fp1’, ‘F7’, ‘FC1’, 
‘C3’, ‘T7’, ‘TP9’, ‘P3’, ‘P7’, ‘O2’, ‘P8’, ‘P4’, ‘CP6’, ‘TP10’, ‘T8’, ‘FC6’, ‘F8’ channels revealed as MSPs.

4.3. Cybersickness status

The commonly used questionnaire in experiments measuring CS is the Simulator Sickness Questionnaire (SSQ) [41]. The SSQ 
consists of 16 items on a 4-point Likert scale. The subjects rated each item on a scale of 0 (none), 1 (slight), 2 (moderate), and 3 
(severe). The SSQ is based on the following three sub-components:

• (N) Nausea factors (for example, general discomfort, increased salivation, sweating, nausea, difficulty concentrating, stomach 
awareness, burping).

• (O) Oculomotor factors (for example, general discomfort, fatigue, headache, eyestrain, difficulty focusing, difficulty concentrat-
ing, blurred vision).

• (D) Disorientation factors (for example, difficulty focusing, nausea, fullness of the head, blurred vision, dizziness, and vertigo).

Each of the three sub-components was summed. The total SSQ score was calculated as: (N + O + D)×3.74.
The descriptive values of the five VR scenes used in this study are listed in Table 5. While the most positive emotions were found 

in the TL and PVR excerpts, the most negative emotions were found in the TWD excerpts. Arousal levels were highest for the PNI, 
PVR, and RC. The dominance value of most VR scenes was gathered at the middle points.

TL caused less nausea among the excerpt sources than the other scenes (Fig. 12). The RC and PNI scenes caused more cybersickness 
in the vestibular system.

4.4. Classification results

The binary classification results were very promising due to the MIL method’s success with RF (Table 6). RF was used with the 
following hyperparameters: the number of iterations was 100, the maximum depth of the tree was unlimited, the random number seed 
to be used was 1, and the percentile size of each bag was chosen as 100. After configuring the RF classifier, a 10-fold cross-validation 
12

method was used to estimate the model’s success.
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Fig. 10. (DEAP)) Most significant channel pairs between electrodes. Rows represent VAD dimensions; columns represent oscillations in 𝜃, 𝛼, 𝛽 , and 𝛾 bands (Vertical 
axes show PLV values, while horizontal axes represent trial durations in seconds).

Table 5

Comparison of descriptive statistics between VR scenes.

Excerpt’s source Short names Va A D

The Walking Dead TWD 3.156 (1.050)b 5.531 (2.229) 5.906 (2.557)
Plank Not Included PNI 7.063 (1.831) 6.719 (2.261) 5.438 (2.422)
The LAB TL 8.313 (0.998) 4.156 (2.503) 3.188 (2.348)
Powder VR PVR 8.063 (1.366) 6.188 (2.416) 5.500 (2.423)
Epic Roller Coaster RC 7.219 (1.963) 6.813 (1.857) 5.781 (2.324)

a V: valence, A: arousal, D: dominance.
b mean (std.dev.).

Table 6

Comparison of accuracies for all and selected channels.

DEAP VREMO

Domain All (Acc)a All (F1)b Selc (Acc) Sel (F1) All (Acc) All (F1) Sel (Acc) Sel (F1)

Frequency V 97.969 0.977 98.125 0.978 96.875 0.940 98.125 0.976
A 97.656 0.972 97.891 0.974 99.375 0.991 98.750 0.983
D 98.203 0.976 97.891 0.972 98.750 0.984 96.875 0.984

Time-Frequency V 98.359 0.981 96.406 0.918 99.375 0.988 98.125 0.963
A 98.203 0.978 97.656 0.971 98.125 0.974 98.750 0.983
D 97.734 0.970 97.266 0.964 100.000 1.000 96.875 0.961

a Acc.: Accuracy (%).
b F1: F1-Score.
13

c Sel: Selected.
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Fig. 11. (VREMO)) Most significant channel pairs between electrodes. Rows represent VAD dimensions; columns represent oscillations in 𝜃, 𝛼, 𝛽 , and 𝛾 bands (Vertical 
axes show PLV values, while horizontal axes represent trial durations in seconds).

Fig. 12. Total simulator sickness scores.

The features obtained were as follows: 8736 attributes for DEAP and 12576 for VREMO were extracted when all channels were 
used in the frequency domain. When the selected channels were used, 4641 for DEAP and 6681 for VREMO were extracted. In 
the time-frequency domain, 1024 features were extracted when all channels were used, and 544 features were removed when only 
selected channels were used, which was the same for both datasets. The HHT and WT features were combined in the time-frequency 
14

domain.



Heliyon 10 (2024) e38681Y. Daşdemir

Fig. 13. Random Forest (RF) classification accuracies.

Fig. 14. Active channels selected in classification for both datasets.

For the DEAP dataset, channel selection increased the performance in the valence and arousal dimensions in the frequency do-
main but decreased it in all dimensions in the time-frequency domain. However, this decrease remained reasonable, and the success 
achieved at these levels with 17 channels was promising. Channel selection achieved high performance in the frequency domain for 
the VREMO dataset only in the valence dimension. In the time-frequency domain, high performance was obtained in the arousal di-
mension. For both datasets, 17 channels were selected, and the classification performance of these channels was remarkable (Fig. 13).

5. Discussion

The method aims to reduce unnecessary and noisy data in HCI and UX applications by determining the interactions between EEG 
channels through PLV analysis. The validity of the study is verified, especially with permutation tests. The study shows that high clas-
sification performance can be achieved in emotion prediction even with fewer EEG channels. The study investigated the interactions 
between the EEG channels for positive (high), negative (low), and neutral emotions in the 𝜃, 𝛼, 𝛽, and 𝛾 bands, respectively, using 
the phase-locking values. For this purpose, we created an emotional EEG database using stimuli from a VR environment. ANOVA 
analysis was conducted between the conditions (low, neutral, and high). In addition, the performance of the database we created was 
tested on a widely used database for verification.

The permutation test evaluated the PLVs of the channel pairs in both datasets for significance. The actual PLVs were compared 
with PLVs calculated from randomly shuffled trial tags. Most channel pairs were confirmed to be significant in the permutation test, 
with alpha=0.01. An alpha value of 0.01 indicated that the PLVs were significantly greater than chance. As a result, 17 channels 
were chosen for both datasets (Fig. 14).

Network attributes were extracted using brain activity connectivity analysis in emotion recognition [81]. This study obtained 
more significant channel pairs for all dimensions of the 𝛼 channel in the DEAP dataset. For the VREMO dataset, more significant 
15

channel pairs were obtained in the 𝜃 band at the low valence level.
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Table 7

Impact of the method on classification performance based on 
the Valence parameter (with all channels).

Non-MIL MIL

Datasets Acc (All) F1 (All) Acc (All) F1 (All)

DEAP 70.625 0.634 98.359 0.984
VREMO 73.125 0.728 99.375 0.994

Table 8

Comparison with the state-of-the-art in the time-frequency domain.

Work Database Electa Classifier Features Vb (%) A (%) D (%)

[23] DEAP 32 kNN Power spectral densities, entropy, band powers 89.83 89.84 N/A
[2] DEAP 32 RNN Temporal patterns, spectral features 85.65 85.45 N/A
[24] DEAP Adaptive RNN Temporal and frequency domain features 85.88 87.71 86.63
[78] VREED 59 SVM Differential entropy 76.22 N/A N/A
[58] OWN N/A SVM EEG power, heartbeat dynamics 71.21 75.00 N/A
[35] DEAP 32 LSTM Channel-wise features 98.93 99.10 N/A
[36] IDEA 24 BiLSTM Spectral features, time-domain features 73.50 75.00 N/A
[4] DEAP 32 SVM Temporal and frequency domain features 91.20 93.7 N/A
[40] DREAMER 14 SVM EEG and ECG signal features 62.49 62.17 61.84
Wc VREMO 32 RF EEG frequencies, time-frequency features 99.38 98.13 100.00
W VREMO 17d RF EEG frequencies, time-frequency features 98.13 98.75 96.88
W DEAP 32 RF EEG frequencies, peripheral signals, multimedia 

content analysis
98.36 98.20 97.73

W DEAP 17d RF EEG frequencies, peripheral signals, multimedia 
content analysis

96.41 97.66 97.27

a Electrodes#.
b V: valence, A: arousal, D: dominance.
c W: This work.
d Selected channels.

5.1. Summary of proposed classifier’s performance

We achieved high classification performance with MIL from multi-channel EEG signals collected with emotional stimuli. We 
eliminated irrelevant channels and channels carrying noise and extracted the most significant channel pairs with the PLV. When 
statistical significance was used in the channel selection, the classification performances were close to those obtained with all channels. 
Higher performance was achieved in the valence dimensions in the time-frequency domain (Table 7). To avoid complex classification 
processes and eliminate time costs, we aimed to make the proposed channel selection a high-performance algorithm adaptable to 
real-time applications. The proposed system also performed well on the widely used benchmark dataset (DEAP).

For the most significant channel pairs, when the threshold PLV value was 0.55 for DEAP (Fig. 8) and 0.65 for VREMO (Fig. 9), 
the channel pairs appeared in all bands. Channel pairs did not appear in some bands at values below these threshold values. For this 
reason, because each band is thought to contribute to the classification, these threshold values containing at least one channel pair 
in all bands were selected. Analyzes resulted in 17 channels selected for both datasets (Fig. 14); For DEAP, Fp1, Fp2, F7, Fz, F8, and 
FC2 in the frontal region, C3, Cz, CP1, and CP2 in the central region, T8 in the temporal region; P7, Pz, and P8 in the parietal region, 
and O1 and O2 in the occipital regions. For VREMO, Fp1, F7, F8, FC1, and FC6 in the frontal region, C3, Cz, and CP6 in the central 
region; T7, T8, TP9, and TP10 in the temporal region, P7, P3, P4, and P8 in the parietal region; and O2 in the occipital regions. 
These results confirm the importance of emotion recognition in multiple brain areas [67]. Previous studies have demonstrated the 
relationship between these selected channels and emotions [32,1].

A comparison of the data with other binary classification studies is presented in Table 8. The effect of the classifier type on 
the final classification accuracy created a noticeable difference between the RF used in our study and the methods used in other 
studies. The fact that the RF classifier performed well on certain features and channels shows that combining these methods plays 
an important role in the final accuracy. Although other methods have achieved similar results using different features and channels, 
the high accuracy rates of RF reveal how critical a factor the choice of classifier is. This situation emphasizes that channel selection, 
feature extraction methods, and classifier preferences all impact classification accuracy. [23] can be examined in future research.

5.2. Limitations of the current study

Because VR is a topic that includes up-to-date and uncommon datasets, there are limited datasets in this area. The dataset used 
in this study was created to test classification performance and contained a limited number of stimuli. However, on a benchmark 
dataset (DEAP), the method was also tested on datasets containing only standard audio/visual stimuli. Another limitation is that the 
study was not tested using EEG bands. The classification performance with the signal containing all bands is promising; therefore, 
16

these bands can be considered for future studies.
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Binary classification allowed the basic principles and performance of the method to be demonstrated. The binary classification 
provided an ideal starting point to illustrate the effectiveness and applicability of the method more understandably. However, the 
method can also be applied to more complex multiple-classification problems in the future.

5.3. Recommendations for future research

RF is an ensemble learning algorithm with multiple decision trees. Therefore, they exhibit high performance in MIL methods. 
However, the implementation should also be measured using classifier algorithms with different structures. Additionally, this method 
can be applied to multiple classifications. However, HHT is not a suitable feature extraction method in real time. Instead, strategies 
that respond faster can be tested. In addition, CS in VR systems is a challenge that must be solved. Therefore, determining and 
classifying the causes of CS are necessary for future studies.

This study used the method with commonly employed features such as STFT, PSD, and HHT. The success of the process can be 
tested with techniques like Wigner-Ville Distribution (WVD), Cohen’s Class (CC), Variational Mode Decomposition (VMD), Adjustable 
Q Wavelet Transform (AQWT), and Fractional Fourier Transform (FAWT) in future studies.

6. Conclusion

It is important to emphasize that using VR stimuli for emotion recognition adds significant value to the field by providing a 
more immersive and ecologically valid environment for evoking emotions. While traditional datasets often rely on less engaging 
stimuli, VR allows for a richer, more dynamic interaction that can evoke more natural emotional responses. Furthermore, while PLV-
MIL’s methodology is effective across different datasets, including VR-induced emotions, it offers unique insights that extend beyond 
traditional approaches.

This study investigated the binary classification performance of channel selection from EEG signals to classify a subject’s emotional 
states in a VR environment. For this purpose, virtual scenes containing stimuli falling in four regions of the valence-arousal space 
were used in a 6DoF-supported VR environment. The experiment was performed on 32 healthy adult volunteers using the Emotiv 
EPOC Flex wireless EEG head system for the EEG signal. Next, we used conventional machine learning algorithms to classify the 
binary emotion status with features in both the frequency and time-frequency domains. All the channels were used in the initial 
classification process. Only the MSP was used in the second classification process. The results from both cases were promising. These 
results greatly encourage further study of VR solutions’ popularity and widespread use.

The classification results in the frequency and time-frequency domains, and the binary classification performance exceeded 98% 
for DEAP and 99% for VREMO. With the use of the RF classifier, the positive contribution of the MIL method to performance was 
high in both cases [22]. The overall results were optimistic and surpassed those found in similar studies on emotion classification 
using EEG signals. Therefore, it can be concluded that VR induces significant emotional engagement, leading to a better classification 
rate. The proposed method shows high classification performance in emotion prediction even with fewer EEG channels. In particular, 
the proposed method performs 99% in binary classification with the RF algorithm, revealing the effectiveness and innovation of the 
method.
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