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Natural killer T (NKT) cells are a subset of CD1d-restricted T  cells at the interface 
between the innate and adaptive immune system. NKT cells can be subdivided into 
functional subsets that respond rapidly to a wide variety of glycolipids and stress-related 
proteins using T- or natural killer (NK) cell-like effector mechanisms. Because of their 
major modulating effects on immune responses via secretion of cytokines, NKT cells 
are also considered important players in tumor immunosurveillance. During early tumor 
development, T helper (TH)1-like NKT cell subsets have the potential to rapidly stimu-
late tumor-specific T cells and effector NK cells that can eliminate tumor cells. In case 
of tumor progression, NKT  cells may become overstimulated and anergic leading to 
deletion of a part of the NKT cell population in patients via activation-induced cell death. 
In addition, the remaining NKT cells become hyporesponsive, or switch to immunosup-
pressive TH2-/T regulatory-like NKT cell subsets, thereby facilitating tumor progression 
and immune escape. In this review, we discuss this important role of NKT cells in tumor 
development and we conclude that there should be three important focuses of future 
research in cancer patients in relation with NKT  cells: (1) expansion of the NKT  cell 
population, (2) prevention and breaking of NKT cell anergy, and (3) skewing of NKT cells 
toward TH1-like subsets with antitumor activity.
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KeY POiNTS

•	 NKT cells	comprise	a	unique	subset	of	CD1d-restricted	T cells	with	characteristics	of	both	NK-	
and	T cells	that	can	be	subdivided	into	functional	subsets.

•	 NKT cells	are	able	 to	switch	between	different	 functional	subsets	upon	cell–cell	 interaction	or	
interaction	with	signaling	molecules.

•	 Activated	NKT cells	have	a	major	regulatory	effect	on	other	immune	cells	via	cytokine	production	
and	cell–cell	interaction,	which	results	in	amplification	or	dampening	of	the	immune	response.

•	 TH1-like	NKT cells	have	the	potential	to	induce	an	antitumor	response	while	TH2-	and	Treg-like	
NKT cell	subsets	facilitate	immune	escape	and	tumor	progression.

•	 Overstimulation	of	NKT cells	during	tumor	progression	might	lead	to	induction	of	anergy	and	
skewing	of	NKT cells	 toward	TH2-/Treg-like	subsets,	 thereby	facilitating	tumor	progression	and	
immune	escape.

•	 In	cancer	patients,	there	should	be	three	important	focuses	of	future	research:	(1)	expansion	of	
the	NKT cell	population,	 (2)	prevention	and	breaking	of	NKT cell	anergy,	and	(3)	skewing	of	
NKT cells	toward	TH1-like	subsets	with	antitumor	activity.
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iNTRODUCTiON

The	 immune	 system	 is	 a	 host	 defense	mechanism	 that	 plays	 a	
pivotal	role	in	the	protection	against	pathogens	and	cancer	(1).	It	
comprises	multiple	specialized	subsets	of	cells	that	differentiate	
from	a	common	pluripotent	progenitor,	the	hematopoietic	stem	
cell	 (2).	These	subsets	 include	natural	killer	T	(NKT)	cells	 that	
feature	characteristics	of	both	conventional	T cells	 and	natural	
killer	 (NK)	 cells.	 Upon	 activation,	 NKT  cells	 are	 able	 to	 kill	
target	cells	either	directly	(3–5)	or	indirectly	by	influencing	both	
myeloid-	 and	 lymphoid-derived	 immune	 cells	 (6).	 Moreover,	
NKT  cells	 are	 potent	 immune	 regulators	 since	 they	 can	 skew	
immune	responses	toward	both	inflammation	and	tolerance	very	
quickly	by	secreting	either	T	helper	(TH)1-,	TH2-,	TH17-,	T regula-
tory	(Treg)-,	or	follicular	helper	(TFH)-cell-associated	cytokines	(7).	
Because	of	their	major	modulating	effects	on	immune	responses,	
NKT  cells	 have	 also	 been	 considered	 important	 mediators	 of	
tumor	immunosurveillance	(8).	The	role	of	NKT cells	in	relation	
to	cancer	has	therefore	been	the	focus	of	recent	studies.	In	this	
review,	we	discuss	the	role	of	NKT cells	in	cancer	in	relation	to	
their	phenotype	and	 function.	We	 focus	on	non-hematological	
malignancies,	 i.e.,	carcinomas,	sarcomas,	melanomas,	and	neu-
roblastomas.	First,	 the	development	and	 function	of	NKT cells	
are	 addressed	 in	 healthy	 individuals.	 Thereafter,	 the	 role	 of	
NKT  cells	 is	 discussed	 in	 the	 development	 and	progression	 of	
cancer.	 Finally,	 available	NKT  cell-based	 immunotherapies	 are	
presented	and	possibilities	for	future	research	are	discussed.

DeveLOPMeNT AND LOCALiZATiON  
OF NKT CeLLS

NKT cells	constitute	a	unique,	but	highly	heterogeneous,	subset	of	
immune	cells	that	arise	in	the	thymus	from	CD4+CD8+	cortical	
thymocytes	that	have	undergone	T cell	receptor	(TCR)	gene	rear-
rangement,	as	is	the	case	with	conventional	T cells	(9).	TCRs	are	
composed	of	an	α-	and	a	β-chain,	each	containing	a	variable	and	
constant	domain.	The	TCR	α-chain	is	generated	by	recombination	
of	the	variable	(V)	and	joining	(J)	segments,	whereas	the	β-chain	
also	requires	diversity	(D)-segment	recombination.	Based	on	their	
TCR	repertoire,	two	NKT cell	subsets	have	been	described:	type	I	
and	type	II	NKT cells.	Type	I	NKT cells	were	first	identified	in	mice	
in	1990	as	a	unique	T cell	population	expressing	the	Vα14Jα18	
invariant	 TCR	α-chain.	The	 type	 I	NKT  cell	 subset	 recognizes	
the	 glycosphingolipid	 α-galactosylceramide	 (α-GalCer)	 or	 its	
synthetic	 analogs	 when	 presented	 by	 major	 histocompatibility	
complex	(MHC)	class	I-like	CD1d	molecules	(10–12).	Four	years	
after	 the	 identification	of	 the	 invariant	Vα14Jα18	TCR	α-chain	
in	mice,	the	human	counterpart	Vα24Jα18	was	discovered	which	
predominantly	 pairs	 with	 the	 Vβ11	 TCR	 β-chain	 (13–16).	 In	
addition	to	type	I	NKT cells,	type	II	NKT cells	are	described	with	
a	more	diverse	and	less	well-defined	TCR	repertoire	recognizing	
non-α-GalCer	molecules	(primarily	sulfatide)	presented	by	CD1d	
molecules	(12,	17–19).

Development of Type i NKT Cells in Mice
The	development	of	type	I	NKT cells	has	been	thoroughly	studied	
in	mice.	During	positive	selection	in	the	murine	thymus,	T cells	

expressing	TCRs	that	are	capable	of	binding	to	MHC	class	I	or	
II	molecules	 on	 cortical	 thymic	 epithelial	 cells	 are	 selected	 to	
undergo	lineage	commitment	(9).	This	process	leads	to	matura-
tion	 of	CD4+	 or	CD8+	 T  cells	 that	 recognize	MHC-presented	
peptides.	 Alternatively,	 type	 I	 NKT  cells	 that	 express	 the	
randomly	 rearranged	 invariant	 Vα14Jα18	 chain	 are	 positively	
selected	upon	binding	to	CD1d	molecules	expressed	by	cortical	
thymocytes	 (9,	 20–22).	 As	 a	 result	 of	 this	 alternative	 positive	
selection,	 they	 recognize	 lipid-derived	 antigens	 presented	 by	
CD1d	molecules	(10).	During	the	maturation	process,	a	part	of	
the	type	I	NKT cell	population	retains	expression	of	the	T cell-
associated	marker	CD4,	resulting	 in	 two	major	populations	 in	
mice:	CD4+CD8−	 and	CD4−CD8−	 (double	 negative,	DN)	 type	
I	 NKT  cells	 (23,	 24).	 In	 addition,	 Type	 I	 NKT  cells	 acquire	
expression	of	 the	natural	 killer	 receptor	 (NKR)	NK1.1	during	
maturation	(9).

Development of Type i NKT Cells  
in Humans
Although	 the	 thymic	development	of	 type	 I	NKT cells	 is	well	
defined	 in	 mice,	 it	 has	 not	 as	 yet	 been	 studied	 in	 details	 in	
humans.	It	has	been	reported	that	NKT	precursor	cells	can	be	
identified	 in	 thymic	 tissue	derived	 from	human	embryos	 and	
young	 children	 (25,	26).	 Similar	 to	 type	 I	NKT  cell	 develop-
ment	 in	 mice,	 human	 type	 I	 NKT  cells	 express	 cell	 surface	
markers	that	are	usually	associated	with	both	T-	and	NK cells.	
For	 instance,	a	part	of	 the	human	type	I	NKT cell	population	
retains	 expression	 of	 the	 T  cell-associated	 markers	 CD4	 or	
CD8	during	maturation,	 resulting	 in	 three	major	populations	
in	humans:	CD4+CD8−,	CD4−CD8+,	and	DN	type	I	NKT cells		
(27,	 28).	 In	 addition,	 a	 part	 of	 the	 human	 type	 I	 NKT  cells	
acquires	 expression	 of	 the	NK  cell-associated	marker	 CD161	
(the	human	counterpart	of	NK1.1	in	mice),	the	classical	NK cell	
marker	 in	humans	CD56	(27–29),	and	various	other	NK cell-
associated	receptors	(27–31).

Localization of Type i NKT Cells  
in Humans
After	 development	 and	 maturation	 in	 the	 thymus,	 NKT  cells	
migrate	 to	 the	 periphery.	 In	 general,	 human	 type	 I	NKT  cells	
are	 present	 in	 small	 numbers	 (<0.1%	of	 total	 T  lymphocytes)	
in	 peripheral	 blood	 (PB),	 lymph	 nodes,	 spleen,	 thymus,	 lung,	
and	 bone	 marrow	 (32–34),	 whereas	 larger	 type	 I	 NKT  cell	
populations	 reside	 in	 the	 liver,	 colon,	 kidney	 (~1%	 of	 total	
T  lymphocytes)	 (35–37),	and	omentum	(~10%	of	 total	T  lym-
phocytes)	(38).	Importantly,	it	has	to	be	taken	into	account	that	
NKT cell	numbers	vary	substantially	among	healthy	individuals.	
For	instance,	circulating	type	I	NKT cells	have	been	reported	to	
comprise	more	than	5%	of	the	total	T lymphocyte	population	in	
some	individuals	(39).

Morphology of NKT Cells
Despite	the	fact	that	NKT cells	are	derived	from	the	T cell	line-
age,	their	morphology	resembles	NK cells	more	closely.	NK	and	
NKT  cells	 are	 both	 referred	 to	 as	 large	 granular	 lymphocytes,	
whereas	T cells	are	described	as	small	and	non-granular	(40–42).	

http://www.frontiersin.org/Immunology/
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FigURe 1 | Overview of the different functional human NKT cell subsets. CD1d-restricted human NKT cells can be divided into subsets based on their  
TCR repertoire and cytokine profile. Type I NKT cells express the invariant Vα24Jα18 TCR α-chain and can be subdivided into five distinct functional subsets 
(indicated in green). In addition, type II NKT cells express a diverse TCR repertoire and can be subdivided into two functional subsets (indicated in blue). Upon 
activation, NKT cells secrete a unique pattern of cytokines, indicated for each subtype. Type I and type II NKT cells are able to switch between different functional 
subsets upon interactions within the TME. Abbreviations: NKT, natural killer T; TCR, T cell receptor; TH, helper T; Treg, regulatory T; TFH, follicular helper T; TME,  
tumor microenvironment.
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In	addition,	NKT cells	were	reported	to	have	a	 low	nuclear-to-
cytoplasmic	ratio	and	their	nucleus	contained	dispersed	chroma-
tin,	similar	to	NK cells	(41,	43–45).

CHARACTeRiZATiON AND 
iDeNTiFiCATiON OF HUMAN  
NKT CeLL SUBSeTS

In	 addition	 to	 classification	of	NKT cells	 in	 type	 I	 and	 type	 II	
NKT cells	based	on	their	TCR	repertoire,	human	NKT cells	can	
also	be	classified	into	functional	subsets	based	on	their	cytokine	
secretion	pattern	upon	activation,	using	a	similar	approach	as	for	
TH-cell	subsets	(7).

Functional Type i NKT Cell Subsets
At	the	moment,	type	I	NKT cells	can	be	divided	into	five	differ-
ent	functional	subsets	(Figure 1).	TH1-like	type	I	NKT cells	have	
been	identified	in	healthy	individuals	producing	TH1-associated	
cytokines	such	as	IFN-γ	and	TNF-α	upon	stimulation	(7,	30,	46).	
The	majority	of	these	type	I	NKT cells	are	DN	and	are	thought	to	
exert	limited	cytotoxic	function	(30,	46).	They	are	able	to	induce	
an	effective	pro-inflammatory	immune	cascade	through	cytokine	
signaling.	Furthermore,	a	second	TH2-like	type	I	NKT cell	subset	
with	regulatory	properties	has	been	described	secreting	IL-4	and	
IL-13	 upon	 activation	 (7,	 30,	 46).	This	 type	 I	NKT  cell	 subset	
mainly	 consists	 of	CD4+CD8−	 cells	which	 are	 able	 to	 suppress	
immune	responses	in	various	disease	models	(47–49).	Recently,	
three	additional	minor	type	I	NKT cell	subsets	were	identified.	
TH17-like	 type	 I	NKT  cells	 have	 been	 described,	 secreting	 the	
pro-inflammatory	 cytokines	 IL-17,	 IL-21,	 and	 IL-22	 when	
activated	(50,	51).	In	addition,	FOXP3	expressing	Treg-like	type	I	
NKT cells	secreting	the	immunosuppressive	cytokine	IL-10	have	
been	identified	(52),	as	well	as	TFH-like	type	I	NKT cells	secret-
ing	IL-21	upon	activation	(46,	53).	Interestingly,	murine	studies	
showed	that	functional	type	I	NKT cell	subsets	(Figure 1)	express	
unique	transcription	factors	and	the	“choice”	to	become	a	certain	

subset	appears	to	be	set	in	the	thymus	during	fetal	development	
(54).	The	fate	of	type	I	NKT cells	might,	however,	not	be	perma-
nently	determined	at	 this	 time	since	 their	cytokine	production	
upon	 activation	 can	be	 influenced	by	 the	microenvironment		
(27,	55),	similar	to	TH-cell	subsets	(56).	For	instance,	the	cytokine	
secretion	pattern	of	type	I	NKT cells	is	altered	by	the	presence	of	
immunosuppressive	cytokines	and/or	immune	cell	subsets	in	the	
tumor	microenvironment	(TME)	(57),	as	well	as	costimulation	
via	 CD28	 (58),	 thereby	 implying	 plasticity	 of	 type	 I	NKT  cell	
subsets.

identification of Type i NKT Cell Subsets
NKT  cells	 can	 be	 identified	 from	 human	 peripheral	 blood	
mononuclear	cells	(PBMCs)	with	flow	cytometry	using	mono-
clonal	antibodies	(mAb)	and	multimers	as	thoroughly	described	
by	 Metelitsa	 (59).	 For	 instance,	 type	 I	 NKT  cells	 have	 often	
been	 identified	by	 costaining	with	 anti-Vα24	 (clone	C15)	 and	
anti-Vβ11	 (clone	 C21)	 mAb	 (27,	 29,	 60,	 61).	 However,	 this	
mAb	 combination	 leads	 to	 overestimation	 of	 type	 I	NKT  cell	
numbers	since	conventional	T cells	can	also	express	Vα24	and	
Vβ11	TCR	subunits	(62,	63).	Alternatively,	type	I	NKT cells	can	
be	 detected	 with	 anti-Vα24Jα18	 (Clone	 6B11)	 mAb	 (28,	 31).	
Furthermore,	α-GalCer-loaded	CD1d	dimers	(64)	and	tetramers	
(30,	65–67)	 can	be	used	 to	 specifically	detect	CD1d-restricted	
type	 I	NKT cells,	 for	 instance,	 in	 combination	with	anti-CD3,	
anti-Vα24,	or	anti-Vβ11	mAb.	Importantly,	Sag	et al.	 reported	
on	the	detection	of	cytokines	in	type	I	NKT cells	upon	stimula-
tion,	which	enables	accurate	identification	of	different	functional	
NKT cell	subsets	in	future	studies	(68).	Since	this	approach	has	
not	been	used	in	NKT	phenotype	studies	yet,	no	information	is	
available	on	the	phenotype	of	the	different	functional	NKT cell	
subsets.

Phenotype of Type i NKT Cell Subsets
Type	 I	NKT cells	 constitutively	 express	 various	T  cell	markers	
such	 as	 the	 TCR	 signaling	 complex	 CD3,	 and	 costimulatory	
receptors	such	as	CD4,	CD8,	and	CD28	(27–31).	CD4	is	expressed	
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by	15–80%	of	the	type	I	NKT cell	population	(27–29,	31)	and	is	
sometimes	 used	 to	 subdivide	 type	 I	NKT  cells	 into	CD4−	 and	
CD4+	 populations.	 Besides,	 type	 I	 NKT  cells	 constitutively	
express	various	receptors	that	are	usually	observed	on	NK cells,	
such	 as	 the	 adhesion	molecule	 CD56	 and	 the	 activating	NKR	
CD161	(27–30).	17–70%	of	 the	CD4−	 type	I	NKT cells	express	
CD56,	 in	 contrast	 to	 only	 a	 small	 fraction	 of	 the	CD4+	 type	 I	
NKT cell	population	(3–11%)	(29).	Interestingly,	type	I	NKT cells	
acquire	 a	 memory-activated	 phenotype	 before	 birth	 (unlike	
NK-	and	T cells),	reflected	by	high	expression	of	CD45RO	and	
low	expression	of	the	homing	receptor	CD62L	(28,	29,	31,	69).	
This	might	indicate	that	these	NKT cells	have	been	sensitized	and	
activated	during	fetal	life	by	encountering	a	natural	ligand	(69),	
which	contributes	to	the	ability	of	NKT cells	to	respond	fast	upon	
meeting	the	antigen.

In	 addition,	 type	 I	 NKT  cells	 have	 the	 ability	 to	 induce	
expression	 of	 a	 number	 of	 phenotypic	markers	 upon	 activa-
tion	 and/or	 interactions	 within	 the	 microenvironment.	 For	
instance,	 type	 I	NKT  cells	 can	 upregulate	CD62L	 expression	
upon	α-GalCer-mediated	activation	and	expansion	which	can	
serve	 as	 a	 marker	 for	 NKT  cells	 with	 superior	 survival	 and	
proliferative	 capacity	 (70).	 In	 addition,	 CD4+	 and	 DN	 type	
I	NKT  cells	 express	 CD69,	 which	 is	 involved	 in	 lymphocyte	
proliferation	(28,	71).	Upon	cytokine-mediated	activation,	type	
I	NKT cells	upregulate	CD69	expression.	Furthermore,	CD4+,	
CD8+,	and	DN	type	I	NKT cells	express	CD27,	a	costimulatory	
immune-checkpoint	molecule	involved	in	the	control	of	T cell	
immunity	(28,	29,	31).	Remarkably,	expression	of	CD27	seems	
to	be	downregulated	on	type	I	NKT cells	upon	activation	with	
α-GalCer,	 whereas	 its	 expression	 is	 upregulated	 in	 activated	
T  cells	 (72,	 73).	This	 downregulation	 could	 be	 related	 to	 the	
fact	 that	 NKT  cells	 already	 constitute	 a	 memory	 phenotype	
and,	 therefore,	 do	 not	 require	 CD27	 to	 generate	 NKT  cell	
immunity	 and	 maturation	 upon	 first	 antigen	 encounter.	
α-GalCer-activated	type	I	NKT cells	also	express	the	costimula-
tory	molecule	CD40L,	and	the	activation	marker	CD38	(28,	30,		
31,	71).	In	addition,	type	I	NKT cells	express	the	inhibitory	NKR	
NKG2A,	the	low	affinity	Fc	receptor	CD16,	and	the	activating	
NKRs	DNAM-1,	NKG2D,	NKp30,	NKp44,	NKp46,	 and	 2B4,	
that	are	usually	expressed	by	NK cells	(27–31).	The	proportion	
of	type	I	NKT cells	expressing	specific	NKRs	is	highly	variable	
among	healthy	 individuals	 (1–85%)	 and	 can	be	 altered	upon	
interactions	within	the	TME	(31,	56,	74–78).	In	addition	to	the	
expression	of	NK-	and	T cell-associated	cell	surface	markers,	
type	 I	NKT cells	 express	a	wide	 range	of	 inducible	cytokine-	
and	chemokine	receptors	enabling	them	to	respond	to	various	
signals	(28–31,	79–81).	For	instance,	type	I	NKT cells	 induce	
expression	 of	 the	 IL-2	 receptor	 chain	 CD25	 (IL-2RA)	 upon	
α-GalCer-mediated	 activation	 (28,	 29,	 31),	 primarily	 in	
the	 CD4+	 type	 I	 NKT  cell	 population	 (30).	 A	 different	 pat-
tern	 is	 observed	 regarding	 the	 chemokine	 receptors	 CCR5,	
CCR6,	CCR7,	and	CXCR6,	which	are	all	higher	expressed	on		
CD4−	type	I	NKT cells	compared	with	CD4+	type	I	NKT cells		
(27,	29,	 30).	 Finally,	 type	 I	NKT  cells	 express	 various	mark-
ers	that	are	involved	in	a	wide	range	of	functionalities	such	as	
granzyme	B,	perforin,	and	CD95L,	which	play	important	roles	
in	cytotoxicity	(29,	31,	82).

Functional Type ii NKT Cell Subsets
So	 far,	 two	 distinct	 functional	 type	 II	 NKT  cell	 subsets	 have	
been	identified	(Figure 1).	TH1-like	type	II	NKT cells	secrete	the	
pro-inflammatory	 cytokines	 IFN-γ	 and	 TNF-α	 upon	 stimula-
tion,	whereas	TH2-like	 type	II	NKT cells	 secrete	 the	regulatory	
cytokines	 IL-4	 and	 IL-13	 (19,	 83–85).	Murine	 studies	 showed	
that	the	cytokine	profile	of	type	II	NKT cells	can	be	influenced	
in	the	same	way	as	has	been	observed	for	type	I	NKT cells	(83),	
suggesting	plasticity	of	type	II	NKT cell	subsets	as	well.

identification of Type ii NKT Cell Subsets
In	 contrast	 to	 type	 I	NKT cells,	no	 specific	methods	 exist	 to	
identify	the	entire	type	II	NKT cell	population	due	to	the	lack	
of	specific	markers.	However	several	mouse	models	have	been	
developed	to	study	the	role	of	type	II	NKT cells	in	cancer	in vivo.	
These	models	include	Jα18−/−	mice,	without	type	I	NKT cells,	
and	CD1d−/−	mice	that	lack	both	type	I	and	type	II	NKT cells	
(86–88).	Another	approach	to	study	type	II	NKT cells	in	both	
mice	and	humans	is	by	using	sulfatide-loaded	CD1d	multimers	
(19,	84,	89,	90).	However,	 this	approach	has	not	been	widely	
used	 due	 to	 the	 unstable	 nature	 of	 sulfatide-loaded	 CD1d	
complexes.	 Furthermore,	 since	 not	 all	 type	 II	NKT  cells	 are	
sulfatide	 reactive,	 this	method	excludes	 a	 significant	propor-
tion	of	type	II	NKT cells	(83,	89).	As	a	result,	 the	phenotype	
and	function	of	type	II	NKT cells	remain	largely	elusive,	and	
new	methods	are	essential	to	characterize	this	cell	population	
in	further	detail.

NKT-Like Cells
In	many	 studies,	NKT cells	 are	 identified	with	flow	 cytometry	
using	a	combination	of	anti-CD3	and	anti-CD56	mAb	(31,	81,	
91–94).	Although	 it	 is	 likely	 that	 the	CD3+CD56+	 cell	 popula-
tion	includes	CD1d-restricted	NKT cells,	it	has	to	be	taken	into	
consideration	 that	 conventional	 T  cells	 have	 been	 reported	 to	
express	NK-cell	markers	as	well,	including	CD56	(17,	31,	79,	80).	
Since	it	is	unclear	whether	CD3+CD56+	cells	are	CD1d	restricted,	
this	population	is	often	referred	to	as	“NKT-like.”	An	additional	
marker	is	essential	to	determine	which	part	of	the	NKT-like	cells	
are	true	NKT cells	and	which	are	not.	Besides,	only	a	small	part	
of	the	type	I	NKT cell	population	expresses	CD56	(29).	Hence,	
a	 significant	 proportion	 of	 type	 I	 NKT  cells	 is	 excluded	 from	
analyses	when	using	the	combination	of	anti-CD3	and	anti-CD56	
mAb.	 NKT-like	 cells	 express	 costimulatory-,	 cytokine-,	 and	
chemokine	receptors,	and	NKRs	that	are	also	expressed	by	type	I	
NKT cells	(27–31,	81).	Exceptions	are	killer-cell	Ig-like	receptors	
(KIRs)	that	provide	either	inhibitory	or	stimulatory	signals	upon	
interaction	 with	 human	 leukocyte	 antigen	 (HLA)	molecules		
(31,	95,	96).	KIRs	are	primarily	expressed	by	NKT-like	cells,	and	
not	by	type	I	NKT cells.

In	 conclusion,	 different	 functional	NKT  cell	 subsets	 can	 be	
identified	within	 the	 type	 I	 and	 type	 II	NKT  cell	 populations.	
Although	 type	 I	NKT  cells	 are	 characterized	 in	 detail,	 type	 II	
NKT  cells	 are	 not	 due	 to	 lack	 of	 specific	 markers.	 Studies	 so	
far	suggest	that	the	expression	levels	of	cell	surface	markers	on	
type	I	NKT cells	are	highly	variable	among	healthy	individuals.	
Interestingly,	murine	studies	showed	that	expression	patterns	of	
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type	 I	NKT  cell	 surface	markers	 are	modulated	 upon	 cell–cell	
interaction	and/or	interaction	with	signaling	molecules	(74,	76).	
These	phenotypical	modulations	adapt	the	functional	capabilities	
of	the	NKT cells,	including	the	production	of	specific	cytokines	
upon	activation.	These	data	 indicate	a	high	degree	of	NKT cell	
plasticity	 and	 that	 type	 I	 NKT  cells	 (and	 probably	 type	 II	
NKT cells	as	well)	are	able	to	switch	between	different	phenotypi-
cal/functional	subsets.	Studies	on	human	NKT cells	are	needed	to	
support	this	hypothesis.

ACTivATiON OF NKT CeLLS

Due	to	expression	of	both	NK-	and	T cell-associated	functional	
molecules,	NKT cells	can	be	activated	by	mechanisms	utilized	by	
both	NK-	and	T cells.

Activation via T Cell-Like Mechanisms
First,	 NKT  cells	 can	 be	 activated	 via	 their	 TCR	 in	 a	 T  cell-
like	 manner	 via	 recognition	 of	 glycolipids	 in	 the	 context	 of	
CD1d	 molecules	 (61,	 97).	 CD1d	 is	 primarily	 expressed	 by	
antigen-presenting	cells	(APC)	but	has	also	been	reported	to	be	
expressed	by	some	epithelial,	parenchymal,	and	vascular	smooth	
muscle	cells	(98,	99).	Importantly,	APC	are	able	to	present	both	
exogenous	and	endogenous	glycolipids	 in	 the	context	of	CD1d	
(Figure  2).	 Exogenous	 microbial-	 and	 non-microbial-derived	
glycolipids	 enter	APC	 via	 different	mechanisms	 as	 thoroughly	
reviewed	by	Bendelac	et al.	(100)	and	Barral	and	Brenner	(101).	
For	instance,	exogenous	glycolipids	can	be	captured	by	the	man-
nose	receptor,	or	alternatively,	insert	themselves	directly	into	the	
cell	membrane	of	APC,	upon	which	they	undergo	endocytosis.	
Furthermore,	 exogenous	 glycolipids	may	 enter	APC	with	 very	
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low-density	lipoprotein	particles	via	the	low-density	lipoprotein	
(LDL)	receptor,	or	via	phagocytosis.	Finally,	scavenger	receptors	
can	mediate	internalization	of	apoptotic	cells	and	modified	LDL,	
which	also	leads	to	entering	of	exogenous	glycolipids	into	APC.	
During	 endosomal	 trafficking,	 CD1d	 molecules	 relocate	 from	
the	 cell	 membrane	 toward	 a	 late	 endosome	 where	 the	 bound	
glycolipids	 are	 removed	 from	CD1d	 and	 replaced	 by	 new	 gly-
colipids	 (Figure 2)	 (102,	103).	Thereafter,	 the	CD1d	molecules	
relocate	back	to	the	cell	membrane.	In	addition,	APC	also	present	
endogenous	glycolipids	in	the	context	of	CD1d	(Figure 2).	For	
instance,	 activation	 of	 nucleotide-binding	 oligomerization	
domain-1	 and	 -2	 intracellular	pattern	 recognition	 receptors	by	
bacteria,	 or	 activation	 of	 formyl	 peptide	 receptor	 2	 by	 serum	
amyloid	A-1,	 results	 in	 loading	of	 endogenous	 glycolipids	 into	
CD1d	molecules	during	endosomal	CD1d	trafficking	(Figure 2)		
(104,	 105).	 Furthermore,	 toll-like	 receptor	 signaling	 upon	 sti-
mu	lation	 with	 lipopolysaccharide	 was	 suggested	 to	 result	 in	
the	 loading	 of	 endogenous	 glycolipids	 into	 CD1d	 molecules		
(100,	 106).	The	exact	mechanism	of	how	 these	 signaling	path-
ways	lead	to	the	loading	of	endogenous	glycolipids	into	CD1d	is,	
however,	unknown.

In	 contrast	 to	 TCRs	 on	 conventional	 T  cells	 that	 recog-
nize	 specific	 peptides	 presented	 by	 MHC	 class	 I	 or	 II,	 the	
Vα24Jα18	 TCR	 present	 on	 type	 I	 NKT  cells	 recognizes	 a	
diversity	of	glycolipids	 that	are	presented	by	CD1d	molecules.	
For	 instance,	 type	 I	 NKT  cells	 recognize	 glycosphingolipids,	
α-galactosyldiacylglycerols,	 diacylglycerols,	 and	 phospholipids	
derived	from	mycobacteria	in	addition	to	α-GalCer	(107–111).	
Furthermore,	 type	I	NKT cells	can	be	activated	upon	encoun-
tering	 the	 self-glycolipids	 isoglobotrihexosylceramide	 and	
β-glucosylceramide	 (11,	 112).	 In	 addition,	 type	 II	 NKT  cells	
have	 been	 reported	 to	 recognize	 the	 self-glycolipids	 sulfatide	
and	β-glucopyranosylceramide,	as	well	as	lysophospholipids	and	
microbial	lipids	(19,	83,	89,	113,	114).	As	a	consequence	of	their	
diverse	TCR	repertoire,	different	type	II	NKT cell	subsets	exist,	
recognizing	different	lipids	(19,	85).

Activated	NKT cells	are	able	to	kill	 tumor	cells	directly	 in	a	
CD1d-dependent	manner	 (115).	This	 antigen-specific	 cytotox-
icity	 is	 CD95/CD95L	 dependent,	 unlike	 NK-	 and	 T  cells	 that	
predominantly	 use	 perforin/granzyme-mediated	 mechanisms	
(115).	Upon	activation	via	their	TCR	in	a	CD1d-dependent	man-
ner,	NKT cells	rapidly	expand	and	secrete	a	range	of	cytokines	
(68,	116–120).	Crowe	et al.	reported	~10-fold	expansion	of	type	
I	NKT cell	numbers	in	the	murine	spleen	2–3 days	after	injection	
with	2 µg	α-GalCer	in	mice	(116).	Besides,	~7-	and	~3-fold	type	I	
NKT cell	expansion	was	reported	in	the	liver	and	bone	marrow	of	
mice	2–3 days	after	α-GalCer	injection,	respectively	(116).	Due	to	
their	memory-activated	phenotype	(69),	NKT cells	have	the	ability	
to	respond	quickly	upon	encountering	an	antigen.	Within	an	hour	
after	injection	with	α-GalCer,	a	burst	of	cytokines	can	be	detected	
in	mice.	For	instance,	studies	reported	maximal	levels	of	IFN-γ+	
and	IL-4+	murine	liver-	and	splenic-derived	type	I	NKT cells	within	
2 h	after	α-GalCer	activation	in vivo	(116,	117).	In	addition,	high	
IFN-γ	(400 pg/ml)	and	IL-4	(1,500 pg/ml)	 levels	were	detected	
in	the	serum	of	these	mice	90 min	after	injection	with	100 ng/ml		
α-GalCer	(117).	Although	the	percentage	of	IL-4+	splenic-derived	
type	I	NKT cells	dropped	to	baseline	levels	16 h	after	injection	of	

mice	with	2 µg	α-GalCer,	elevated	IFN-γ+	type	I	NKT cells	could	
still	be	detected	after	72 h	(116).	In	conclusion,	NKT cells	rapidly	
secrete	a	range	of	cytokines	following	activation	with	α-GalCer.

Activation via NK Cell-Like Mechanisms
NKT cells	seem	to	behave	similar	to	NK cells	when	it	comes	to	
their	activation.	Like	in	NK cells,	activation	is	dependent	on	the	
balance	 between	 inhibitory	 and	 stimulatory	 signals	 obtained	
via	NKRs	and	KIRs	(121,	122).	As	discussed	earlier,	phenotype	
studies	showed	that	NKT cells	also	express	a	wide	range	of	these	
receptors	(27–31).	Activating	NKRs	are	able	to	recognize	a	variety	
of	MHC-like	molecules	and	cellular	targets	often	referred	to	as	
“stress	proteins.”	For	 instance,	 the	NKG2D	receptor	 recognizes	
MHC	 class	 I-like	molecules	 (MIC)	A	 and	B	 and	unique	 long-
binding	proteins	(123),	whereas	DNAM-1	recognizes	the	poliovi-
rus	receptor	and	Nectin-2	(124).	Besides,	NKT cells	express	KIRs,	
with	 less	 well-defined	 ligands,	 that	 provide	 activating	 signals	
(125–128).	Furthermore,	NKT cells	express	NKRs	and	KIRs	that	
provide	 inhibitory	 signals	 upon	 binding	 with	 HLA	molecules	
(129–134).	When	the	balance	of	signals	is	shifted	toward	activa-
tion,	an	NKT cell	 is	activated,	resulting	in	cytokine	production	
as	well	 as	direct	 killing	of	 tumor	 cells	 in	 a	CD1d-independent	
manner	(Figure 3).	Interestingly,	studies	showed	that	inhibitory	
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signals	 provided	 by	KIRs	 and/or	NKRs	were	 able	 to	 interrupt	
TCR	signaling	in	conventional	T cells	without	CD1d	restriction	
(31,	130,	131,	133).	 Since	NKT cells	 express	 similar	 functional	
receptors,	 it	 is	 likely	that	similar	 interruption	of	TCR	signaling	
also	occurs	 in	NKT cells	 (Figure  3).	 In	 addition,	 a	part	of	 the	
NKT cell	population	expresses	the	low	affinity	Fc	receptor	CD16	
which	 is	 known	 to	 induce	 antibody-dependent	 cytotoxicity	
when	present	on	NK cells	(135).	This	phenomenon	has,	however,	
not	been	studied	as	yet	in	relation	to	NKT cells.	In	conclusion,	
NKT cells	can	be	activated	via	different	NK-	and	T cell-associated	
mechanisms	 that	 lead	 to	 immediate	 killing	 of	 tumor	 cells	 and	
secretion	of	large	amounts	of	cytokines	that	have	a	major	influ-
ence	on	the	immune	system.

Finally,	studies	showed	that	NKT cells—like	NK cells—can	also	
be	activated	by	IL-12	in	combination	with	IL-18	via	cytokine	recep-
tors	in	a	CD1d-independent	manner	(Figure 3)	(136–138).	These	
cytokines	are	secreted	by,	i.e.,	active	macrophages	or	dendritic	cells	
(DCs)	(139–141).	Upon	interaction	with	IL-12	and	IL-18,	NKT cells	
secrete	 high	 amounts	 of	 IFN-γ,	 as	 also	 observed	 after	 CD1d-
dependent	and	NKR-mediated	activation	(127,	136,	137,	142).

NKT Cell Anergy
Importantly,	 murine	 studies	 have	 indicated	 that	 overstimula-
tion	and	chronic	activation	of	 type	 I	NKT cells	with	α-GalCer	
via	 TCR–CD1d	 interaction	may	 result	 in	NKT  cell	 death	 and	
induction	of	anergy	(116,	143–147).	This	resembles	the	response	
of	conventional	T cells	upon	activation	in	the	TME	in	presence	
of	coinhibitory	stimuli	or	checkpoint	molecules	like	programmed	
death-ligand	1	(PD-L1)	(148,	149).	Upon	binding	with	α-GalCer	
in	the	context	of	CD1d,	type	I	NKT cells	downregulate	their	TCR	
and	NKR	expression	and	upregulate	the	inhibitory	molecules	pro-
grammed	cell	death	protein	1	(PD-1)	and	B-	and	T-lymphocyte	
attenuator	 (144,	 146,	 150),	 resulting	 in	 hyporesponsiveness.	
Furthermore,	 chronic	 stimulation	 of	 type	 I	 NKT  cells	 with	
α-GalCer	in vivo	resulted	in	activation-induced	cell	death	(AICD)	
via	upregulation	of	the	death	receptor	CD95,	thereby	contribut-
ing	to	active	depletion	of	type	I	NKT cells	(151,	152).	This	is	most	
likely	a	feedback	mechanism	used	by	NKT cells	to	prevent	tissue	
damage.	Anergy	induced	by	α-GalCer	also	resulted	in	impaired	
proliferation	and	production	of	IFN-γ	by	type	I	NKT cells	upon	
α-GalCer	 restimulation.	 By	 contrast,	 anergic	 type	 I	 NKT  cells	
retained	 their	 capacity	 to	 produce	 TH2-associated	 cytokines	
(144).	 Moreover,	 pretreatment	 with	 α-GalCer	 skewed	 type	 I	
NKT cells	toward	a	TH2	or	Treg-like	profile	(153–156).	α-GalCer	
pretreated	type	I	NKT cells	acquired	characteristics	of	regulatory	
cells	in vivo,	including	production	and	secretion	of	IL-10,	which	
is	known	to	 induce	and	maintain	an	 immunosuppressive	TME	
(153–155).	Chronic	stimulation	of	NKT cells	in	the	TME	might	
therefore	contribute	to	immune	escape	in	cancer	patients.

THe RegULATORY FUNCTiON  
OF NKT CeLLS

Depending	on	which	functional	NKT cell	subsets	are	involved,	
both	type	I	and	type	II	NKT cell	subsets	are	able	to	either	skew	
the	immune	response	toward	inflammation	or	toward	tolerance.	
Activated	NKT cells	shape	the	TME	via	modulation	of	cells	from	

both	the	innate	and	adaptive	immune	system	(Figure 4),	thereby	
implementing	an	important	regulatory	function.

NKT	cells	are	unique	in	the	sense	that	they	can	activate	and	
induce	 full	maturation	of	DC	(139,	140,	157).	This	maturation	
requires	direct	 interaction	of	DC	with	NKT cells	via	 the	TCR–
CD1d	 complex	 in	 combination	 with	 CD40/CD40L	 costimula-
tion.	As	a	result,	DC	produce	IL-12,	which	further	drives	IFN-γ	
production	by	TH1-like	NKT cell	subsets.	By	contrast,	IL-13	and	
IL-4,	produced	by	TH2-like	NKT cell	subsets,	indirectly	suppress	
T  cell	 function	 and	 drive	 TH2	 differentiation,	 respectively	 (49,	
158–160).	 IL-10,	 produced	 by	Treg-like	 type	 I	NKT  cells	 drives	
T  cell	 differentiation	 toward	 Tregs,	 thereby	 contributing	 to	 the	
establishment	of	an	immunosuppressive	TME	(161).	Finally,	the	
IL-21	producing	TFH-like	type	I	NKT cell	subset	interacts	directly	
with	B cells	that	present	the	same	glycolipid	in	context	of	CD1d	as	
used	to	activate	the	NKT cells,	resulting	in	fast	immunoglobulin	
production	and	affinity	maturation	(53,	162–165).

In	 addition	 to	 production	 of	 large	 amounts	 of	 cytokines	 as	
discussed	earlier,	NKT cells	secrete	a	range	of	chemokines	upon	
activation,	 including	 RANTES,	 Eotaxin,	MIP-1α,	 and	MIP-1β,	
that	 lead	 to	 the	attraction	of	NK cells,	neutrophils,	and	mono-
cytes	toward	the	inflammatory	microenvironment	(166).	IFN-γ	
secreted	 by	 TH1-like	 NKT  cell	 subsets	 then	 leads	 to	 the	 local	
activation	of	NK cells,	neutrophils,	and	macrophages	(167–169).	
Furthermore,	 granulocyte	macrophage	 colony-stimulating	 fac-
tor	(GM-CSF),	IFN-γ,	and	IL-4	secreted	by	NKT cells	may	shift	
the	 functional	 capacity	 of	 monocytes	 toward	 a	 more	 DC-like	
phenotype	 which	 contributes	 to	 the	 activation	 of	 T  cells	 and,	
indirectly,	B cells	 (170,	171).	NKT cells	are	also	able	 to	reverse	
the	phenotype	of	 immune	suppressive	neutrophils	by	 reducing	
secretion	of	IL-10	and	enhancing	IL-12	production	in	a	CD1d-
dependent	manner	(105).

In	conclusion,	NKT cells	are	able	to	rapidly	respond	to	a	wide	
variety	of	glycolipids	and	stress	proteins	using	T-	and	NK cell-like	
mechanisms,	respectively.	Although	NKT cells	comprise	a	minor	
immune	cell	subset	in	most	organs,	they	have	a	major	effect	on	
immune	 regulation	 since	 they	 can	 skew	 an	 immune	 response	
toward	inflammation	or	tolerance	in	a	very	short	time	by	secreting	
pro-	or	anti-inflammatory	cytokines.	Besides,	NKT cells	have	the	
ability	 to	kill	 tumor	cells	directly	upon	activation	but,	probably	
reflected	by	their	relative	low	numbers,	NKT cells	primarily	have	
a	regulatory	function.	Based	on	this	information,	it	is	clear	that	
NKT cells	 are	not	 just	 cells	with	NK-	and	T cell	properties:	by	
combining	characteristics	of	both	cell	types,	NKT cells	are	able	to	
add	unique	functions	to	the	immune	response.	NKT cells	may	play	
a	uniquely	central	role	during	the	very	first	steps	in	the	initiation	
of	an	antitumor	immune	response.	The	main	reasons	are	the	abil-
ity	of	NKT cells	to	respond	fast	by	influencing	other	immune	cells,	
resulting	in	amplification	or	dampening	of	the	immune	response.

THe IN VITRO AND IN VIVO ANTiTUMOR 
ACTiviTY OF NKT CeLLS

Type i NKT Cells in Tumor immunity
Twenty	years	ago,	it	was	first	reported	that	the	glycolipid	α-GalCer,	
discovered	 in	 marine	 sponges,	 had	 potent	 antitumor	 activity	
in vivo	(172–174).	Mice	that	were	intravenously	inoculated	with	
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B-16	 (melanoma)	 or	 intraperitoneally	 inoculated	 with	 EL-4	
(lymphoma)	cells	showed	a	significantly	prolonged	lifespan	after	
injection	with	α-GalCer,	with	a	stronger	potency	than	the	typical	
chemotherapeutic	agent	mitomycin	C	(172).	A	role	for	NKT cells	
in	this	antitumor	activity	was	suggested	a	few	years	later	when	it	

was	discovered	that	α-GalCer	is	recognized	by	type	I	NKT cells	
via	their	TCR	in	the	context	of	CD1d,	leading	to	their	activation	
(175).	Thereafter,	studies	showed	that	type	I	NKT cells	were	the	
key	effectors	of	antitumor	responses	in	a	murine	B-16	melanoma	
metastasis	model	(176–178).	For	instance,	Toura	et al.	reported	
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that	activation	of	type	I	NKT cells	via	injection	with	α-GalCer-
pulsed-DC	resulted	in	complete	eradication	of	established	B-16	
melanoma	liver	metastases	(178).	Administration	of	α-GalCer	to	
activate	type	I	NKT cells	even	prevented	primary	tumor	forma-
tion	in	different	in vivo	models	(179).	By	contrast,	mice	lacking	
type	I	NKT cells	were	more	prone	to	chemical	or	p53	loss-induced	
tumor	 development	 (180–182).	 Recently,	 it	 was	 reported	 that	
type	I	NKT cells	also	play	a	role	in	preventing	metastatic	disease	
in	a	4T1	mammary	carcinoma	model	(183).	Upon	resection	of	
the	primary	breast	tumors,	treatment	with	α-GalCer-pulsed-DC	
limited	formation	of	tumor	metastases,	prolonged	survival,	and	
provided	curative	outcomes	 in	~45%	of	 the	mice.	Thereafter,	 it	
was	 shown	 that	 α-GalCer-pulsed-DC	 could	 also	 be	 combined	
with	 the	 chemotherapeutics	 cyclophosphamide	 or	 gemcitabine	
to	 enhance	 survival	 of	 mice	 with	 metastatic	 disease	 (184).	
Importantly,	 studies	 showed	 that	 the	 anti-metastatic	 effect	 of	
α-GalCer	was	 impaired	 in	NK cell-depleted	or	 IFN-γ-deficient	
mice	(185,	186).	Smyth	et al.	showed	that	IFN-γ	production	by	
type	I	NKT cells	and	subsequent	IFN-γ	production	by	NK cells	
was	 crucial	 for	α-GalCer-mediated	 tumor	 protection	 (177).	 In	
line	 with	 these	 results,	 it	 was	 observed	 that	 the	 TH2-skewing	
synthetic	α-GalCer-analog	OCH	provided	less	tumor	protection	
in	 the	CT26	mouse	model	 compared	with	α-GalCer	 (187).	By	
contrast,	studies	reported	that	analogs	of	α-GalCer,	which	skewed	
the	 cytokine	 profile	 of	 type	 I	NKT  cells	 toward	TH1,	 provided	
superior	protection	against	metastases	formation	compared	with	
α-GalCer	 (188–190).	 This	 implicates	 a	 crucial	 role	 for	 type	 I	
NKT cells	with	a	TH1	cytokine	profile	in	antitumor	activity.

After	the	discovery	of	 the	 important	role	of	activated	type	I	
NKT cells	in	antitumor	responses	in vivo,	studies	focused	on	the	
mechanisms	used	by	these	NKT cells	to	eradicate	tumor	cells.	As	
mentioned	earlier,	CD1d	is	primarily	expressed	by	APC,	although	
malignant	hematopoietic	cells	have	also	been	reported	to	express	
CD1d	on	their	cell	membrane	(4,	191–193).	In	addition,	there	is	
evidence	 that	 solid	 tumors	 also	 express	CD1d,	 including	 renal	
cell	and	colorectal	carcinomas	(194,	195).	Upon	activation	with	
α-GalCer,	type	I	NKT cells	were	able	to	kill	CD1d+	tumor	cells	in	
a	CD1d-dependent	manner	(4,	191–193,	195).	To	kill	tumor	cells	
directly	via	CD1d	 interaction,	 they	need	 to	present	glycolipids	
that	 can	 be	 recognized	 by	 NKT  cells.	There	 is	 evidence	 from	
murine	studies	that	type	I	NKT cells	can	be	activated	by	tumor-
derived	glycolipids	that	are	cross-presented	by	APC	in	the	context	
of	 CD1d	 (196–199).	 However,	 until	 now,	 the	 nature	 of	 tumor	
glycolipids	 that	 are	 recognized	 by	 NKT  cells	 remains	 poorly	
elucidated.	Since	the	cytolysis	and	eradication	of	tumor	cells	via	
type	I	NKT cells	was	shown	to	be	dependent	on	CD1d	expression	
on	their	cell	surface,	it	was	suggested	that	CD1d	expression	might	
be	a	predictor	of	whether	α-GalCer-activated	type	I	NKT cells	are	
able	to	eradicate	tumor	cells	or	not	(3,	4).	However,	other	stud-
ies	showed	that	CD1d−	hematopoietic	cells	could	also	be	killed	
directly	by	type	I	NKT cells,	for	instance,	via	NKG2D	activation	
(5,	200,	201).	This	illustrates	that	type	I	NKT cells,	like	NK cells,	
are	able	to	kill	tumor	cells	via	NKR	activation,	even	in	the	absence	
of	 CD1d.	Moreover,	 although	 type	 I	NKT  cells	 are	 capable	 of	
killing	 tumor	 cells	 directly,	 they	 primarily	 mediate	 antitumor	
activity	via	the	activation	of	downstream	immune	effector	cells	
as	demonstrated	by	human	and	mouse	studies	(4,	177,	202,	203).	

Especially	TH1-like	type	I	NKT cells	play	an	important	role	in	this	
antitumor	activity	via	secretion	of	large	amounts	of	IFN-γ,	which	
leads	to	generation	of	tumor-specific	CD8+	cytotoxic	T cells,	and	
rapid	activation	of	NK cells	(4,	177,	188,	202–204).

Type ii NKT Cells in Tumor immunity
In	contrast	to	type	I	NKT cells,	only	limited	information	is	avail-
able	regarding	the	role	of	type	II	NKT cells	in	cancer.	However,	
some	in vivo	models	provided	important	information.	In	general,	
type	 II	NKT cells	 are	 associated	with	 immunosuppression	and	
tumor	 progression.	 For	 instance,	 murine	 carcinoma	 and	 lym-
phoma	models	showed	that	the	tumor	burden	of	CD1d−/−	mice,	
without	type	I	and	type	II	NKT cells,	was	lower	compared	with	
Jα18−/−	mice	that	lack	type	I	NKT cells	only	(86–88).	Injections	
with	sulfatide	increased	the	number	of	tumor	nodules	in	a	CT26	
colon	carcinoma	lung	metastasis	mouse	model	via	activation	of	
type	II	NKT cells	(205).	Besides,	administration	of	sulfatide	abro-
gated	the	protective	effect	of	α-GalCer-activated	type	I	NKT cells	
against	tumor	development.	Type	II	NKT cells	were	reported	to	
produce	 IL-13	 through	 the	 IL-4R–STAT6	 pathway,	 which	 was	
necessary	 for	downregulation	of	 tumor	 immunosurveillance	 in	
a	 15-12RM	fibrosarcoma	mouse	model	 (49).	Thereafter,	 it	was	
shown	 that	 IL-13	 induced	 TGF-β-secreting	 myeloid-derived	
suppressor	 cells	 (MDSCs)	 in  vivo	 that	 inhibited	 tumor-specific	
T cells	(158,	206).	A	role	 for	MDSC	in	 inhibition	of	antitumor	
immunosurveillance	was	supported	by	the	study	of	Renukaradhya	
et al.	that	showed	large	numbers	of	these	cells	at	the	tumor	site	of	
B cell	lymphoma-bearing	Jα18−/−	mice	without	type	I	NKT cells	
(87).	This	implicates	an	important	role	for	type	II	NKT cells	in	
suppression	 of	 immunosurveillance	 in	 cancer.	 Although	 Zhao	
et al.	showed	in	an	in vivo	murine	model	that	activation	of	type	II	
NKT cells	with	CpG	oligodeoxynucleotides	resulted	in	antitumor	
activity	of	these	cells	via	the	production	of	IFN-γ	(83,	207).	The	
involvement	of	IFN-γ	implies	that	type	II	NKT cells	are	able	to	
contribute	 to	antitumor	 responses,	but	only	when	 the	TH1-like	
subset	is	involved.

In	conclusion,	a	crucial	role	is	implicated	for	type	I	NKT cells	
with	a	TH1	cytokine	profile	in	antitumor	activity.	Although	it	is	
generally	accepted	that	the	type	II	NKT cell	population	promotes	
tumor	growth,	there	is	evidence	that	TH1-like	type	II	NKT cells	can	
be	involved	in	antitumor	responses.	Hence,	the	role	of	NKT cells	
in	malignancies	is	highly	dependent	on	which	functional	type	I	
or	type	II	NKT cell	subsets	are	involved.

THe FUNCTiON AND PHeNOTYPe OF 
NKT CeLLS iN PATieNTS DiAgNOSeD 
wiTH CANCeR

Several	 human	 studies	 have	 addressed	 the	 presence,	 function,	
and/or	phenotype	of	NKT cells	in	cancer	patients.	Here,	we	will	
focus	on	both	tumor-infiltrating	and	-circulating	NKT cells.

Tumor-infiltrating NKT Cells
Studies	showed	a	difference	in	the	presence	of	NKT cells	between	
tumor	 tissue	 and	 non-tumor	 tissue.	 The	 frequency	 of	 type	 I	
NKT cells	was	reported	to	be	higher	 in	 intrahepatic	malignant	
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tumors	and	colorectal	 carcinomas	compared	with	normal	 liver	
tissue	and	normal	mucosa,	respectively	(208,	209).	The	opposite	
pattern	was	reported	by	Kenna	et al.	who	showed	a	significantly	
lower	presence	of	liver-infiltrating	type	I	NKT cells	in	colorectal	
liver	 metastases	 compared	 with	 healthy	 liver	 tissue	 (35).	 In	
addition,	several	studies	showed	a	correlation	between	infiltrat-
ing	NKT cell	numbers	and	clinical	outcome.	High	numbers	of	
tumor-infiltrating	 type	 I	NKT  cells	 correlated	with	 a	 relatively	
good	clinical	outcome	in	patients	diagnosed	with	colorectal	can-
cer	and	neuroblastoma	(209,	210).	High	density	of	NK/NKT cells	
was	 also	 associated	with	prolonged	overall	 survival	 in	periam-
pullary	 adenocarcinoma	 (including	pancreatic	 cancer)	 patients	
(211).	Accordingly,	absence	of	infiltrating	type	I	NKT cells	and	
low	numbers	of	infiltrating	NKT-like	cells	correlated	with	poor	
patient	 survival	 and	disease	progression	 in	neuroblastoma	and	
gastric	cancer,	respectively	(91,	212).

The	function	and	phenotype	of	 infiltrating	type	I	NKT cells	
was	addressed	in	studies	on	hepatocellular	carcinoma,	colorectal	
cancer,	and	neuroblastoma	(35,	209,	212).	Lower	expression	of	
CD56	and	CD161	was	reported	on	infiltrating	type	I	NKT cells	
in	 tumor-bearing	 livers	 compared	 with	 normal	 livers	 (35).	
In	 addition,	 in	 a	 study	 on	 colorectal	 cancer,	 expression	 of	 the	
activation	markers	 CD69L	 and	 FasL	 was	 reported	 on	 a	 larger	
fraction	of	infiltrating	type	I	NKT cells	in	tumor	tissue	compared	
with	normal	mucosa	(209).	Tumor-infiltrating	type	I	NKT cells	
expressed	IFN-γ	and	granzyme	B,	but	the	authors	did	not	com-
pare	the	expression	of	these	markers	to	that	of	type	I	NKT cells	
in	normal	mucosa	(209).	In	addition,	it	was	observed	that	type	
I	 NKT  cell	 infiltration	 in	 neuroblastomas	 was	 associated	 with	
CCL2	 expression	 on	 tumor	 cells,	 indicating	 that	 expression	 of	
homing	receptors	on	tumors	was	essential	for	infiltration	of	type	
I	NKT cells	in	neuroblastoma	(212).	Furthermore,	in	two	studies	
(91,	92)	the	function	and	phenotype	of	infiltrating	NKT-like	cells	
in	tumors	were	described.	Peng	et al.	reported	impaired	effector	
function	of	 infiltrating	NKT-like	cells	 in	gastric	cancer-derived	
tumor	tissue	compared	with	non-tumor	tissue,	characterized	by	
decreased	expression	of	IFN-γ,	TNF-α,	granzyme	B,	and	Ki-67	
(91).	Furthermore,	this	study	also	showed	decreased	expression	
of	the	lymphocyte	proliferation	marker	CD69,	the	homing	recep-
tors	CXCR3	and	CCR5,	and	the	NKRs	NKG2D	and	DNAM-1	on	
NKT-like	cells	in	tumor	tissue	compared	with	non-tumor	tissue.	
In	addition,	 a	 study	on	patients	with	hepatocellular	 carcinoma	
showed	that	NKT-like	cells	in	tumor	tissue	expressed	FOXP3	and	
lost	expression	of	IFN-γ	and	perforin	compared	with	NKT-like	
cells	in	non-tumor	tissue	(92).

In	conclusion,	tumor-infiltrating	type	I	NKT cells	and	NKT-
like	cells	may	express	less	activating	receptors,	homing	receptors	
and	proliferation	markers	 and	produce	 lower	amounts	of	TH1-
associated	cytokines	compared	with	type	I	NKT cells	and	NKT-
like	cells	in	healthy	tissue,	indicating	tolerance	and	not	antitumor	
activity.

Circulating NKT Cells
In	addition,	studies	also	showed	altered	function	of	circulating	
type	 I	NKT  cells	 in	 cancer	 patients.	 For	 instance,	 the	 number	
of	 circulating	 type	 I	 NKT  cells	 was	 significantly	 decreased	 in	

patients	with	different	 cancers	 compared	with	healthy	 controls	
(213–221).	In	line	with	the	results	on	infiltrating	type	I	NKT cells,	
low	 circulating	 type	 I	NKT  cell	 numbers	 correlated	with	 poor	
clinical	outcome	in	patients	with	head	and	neck	squamous	cell	
carcinoma	 (214,	 215).	 Interestingly,	 late-stage	 cancer	 patients	
presented	with	lower	type	I	NKT cell	numbers	than	early-stage	
cancer	patients	with	oral	squamous	cell	carcinoma	or	laryngeal	
cancer	 (218,	 221),	 suggesting	 cancer-mediated	 depletion	 of	
NKT cells.	After	resection	of	the	primary	tumor,	type	I	NKT cell	
numbers	did	not	increase	in	patients	with	different	cancer	types	
(213,	220).	By	contrast,	circulating	NKT-like	cell	numbers	were	
not	decreased	in	patients	diagnosed	with	laryngeal	cancer,	gastric	
cancer,	or	hepatocellular	carcinoma	(91,	92,	220).

Besides	being	reduced	in	numbers,	circulating	type	I	NKT cells	
are	 often	 functionally	 impaired	 in	 patients	 (216,	 218,	 219,	
222–224).	For	instance,	circulating	type	I	NKT cells	derived	from	
patients	with	 prostate	 cancer	 or	 oral	 squamous	 cell	 carcinoma	
had	a	TH2-biased	cytokine	profile	(218,	219).	Furthermore,	type	
I	NKT cells	obtained	from	patients	with	advanced	cancer	stages	
showed	impaired	cytokine	production	and	proliferative	capacity	
upon	ex vivo	activation	with	α-GalCer	(216,	219,	222).	In	accord-
ance	with	this	observation,	lower	numbers	of	IFN-γ-producing	
type	I	NKT cells	were	observed	in	patients	with	colon	carcinoma,	
head	 and	 neck	 cancer,	 breast	 cancer,	 or	 renal	 cell	 carcinoma	
compared	with	healthy	controls	(213).	These	changes	in	cytokine	
profile	imply	that	type	I	NKT cells	switched	from	a	TH1-	toward	
a	TH2-like	NKT cell	subset.

In	 conclusion,	 reduced	 frequency	 of	 circulating	 NKT  cells	
and	 altered	 phenotype,	 resulting	 in	 altered	 function,	 of	 both	
infiltrating	 and	 circulating	 NKT  cells	 are	 often	 observed	 in	
cancer	 patients,	 especially	 in	 patients	 with	 late-stage	 disease.	
Since	altered	function	was	not	observed	in	infiltrating	NKT cells	
in	healthy	 tissue,	 it	 can	be	 argued	 that	 this	 altered	 function	of	
NKT  cells	 is	 cancer/TME	mediated:	 tumors	may	 suppress	 the	
immune	system,	and	skew	the	cytokine	profile	of	NKT cells	from	
TH1	 toward	 TH2	 to	 escape	 from	 recognition	 and	 elimination.	
Although	 the	 mechanisms	 behind	 the	 cancer/TME-mediated	
altered	 function	of	NKT cells	are	not	 fully	understood,	 studies	
suggested	 a	 role	 for	metabolic	 derivative	 lactic	 acid	 (225),	 the	
production	of	soluble	factors	by	tumors	such	as	sMIC	(226),	and	
the	expression	of	CD1d	by	tumors	(194,	227).

SHAPiNg THe TMe BY NKT CeLLS

Shaping the TMe by TH1-Like NKT Subsets
As	 discussed	 earlier,	 TH1-like	 NKT  cells	 are	 promising	 candi-
dates	to	initiate	effective	antitumor	immune	responses.	TH1-like	
NKT cells	might	play	an	important	role	in	antitumor	responses	by	
shaping	the	TME	(Figure 5).	For	instance,	they	have	been	reported	
to	colocalize	with	tumor-associated	macrophages	(TAM)	with	an	
M2-polarized	phenotype	that	promote	tumor	growth	and	progres-
sion	(155,	228).	This	colocalization	resulted	in	CD1d-dependent	
killing	 of	 TAM	 that	 cross-presented	 tumor-derived	 glycolipids	
in vivo	(197,	229).	Furthermore,	TH1-like	NKT cells	and	second-
ary	 activated	 NK  cells	 contributed	 to	 the	 inhibition	 of	 tumor	
angiogenesis	 by	 IFN-γ	 via	 suppression	 of	 M2-polarized	 TAM	
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(230,	231).	Finally,	Courtney	et al.	showed	that	type	I	NKT cells	
were	able	to	kill	CD1d+	M2	TAM	or	polarize	M2	TAM	toward	an	
M1-polarized	phenotype	via	GM-CSF	production	(232).	Hence,	

the	presence	of	TH1-like	 type	 I	NKT cells	might	minimize	 the	
presence	of	tumor	growth-promoting	M2-polarized	TAM	in	the	
TME.	 On	 the	 other	 side,	 an	 immature	 tolerogenic	 DC	 subset	
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has	been	described	that	produces	reduced	amounts	of	IL-12	and	
high	amounts	of	IL-10,	resulting	in	an	immunosuppressive	TME	
(233).	As	a	result,	 tolerogenic	DC	skew	differentiation	of	naïve	
T cells	 into	Tregs,	which	might	 lead	to	immune	escape	of	tumor	
cells	(234–236).	Since	TH1-like	NKT cells	are	able	to	fully	mature	
DC,	 the	presence	of	 immature	 tolerogenic	DC	might	be	mini-
mized	in	tumors	where	sufficient	numbers	of	these	NKT cells	are	
present.	 Importantly,	 TH1-like	 NKT  cells	 are	 able	 to	 stimulate	
both	tumor	antigen-restricted	T cells	that	recognize	tumor	cells	
with	HLA	expression	and	effector	NK cells	that	eliminate	tumor	
cells	 with	 low	 or	 absent	 HLA	 expression	 (234).	 In	 this	 way,	
immune	escape	of	tumor	cells	might	be	prevented.	In	addition,	
as	discussed	earlier,	tumors	have	been	reported	to	express	CD1d	
on	their	cell	membrane	(194,	195)	and	might	therefore	be	killed	
in	a	CD1d-dependent	manner.	Besides,	 tumors	are	reported	to	
express	high	cell	surface	densities	of	stress-related	proteins	that	
activate	the	NKRs	NKG2D	and	DNAM-1	(237,	238),	suggesting	
that	these	cells	can	also	be	killed	in	a	CD1d-independent	manner.	
HLA	class	I	 loss	or	downregulation	has	often	been	reported	 in	
tumors	 including	 carcinomas,	 sarcomas,	 neuroblastomas,	 and	
melanomas	(239–242).	Since	inhibitory	NKRs	and	KIRs	prevent	
NKT  cell	 activation	 upon	 interaction	 with	 HLA	 molecules	
(Figure 3),	NKT cells	might	be	able	to	directly	kill	 tumor	cells	
with	 low	HLA	 expression,	 similar	 to	NK  cells.	NKT  cells	may	
have,	however,	primarily	a	 regulatory	 function,	 suggesting	 that	
the	antitumor	activity	mediated	by	direct	killing	of	tumor	cells	is	
of	lesser	importance.

Shaping the TMe by TH2-/Treg-Like  
NKT Subsets
As	discussed	 in	 the	previous	chapter,	 the	phenotype	and	 func-
tion	 of	 TH1-like	 subsets	 is	 frequently	 altered	 in	 patients.	 The	
NKT cell	population	in	patients	is	skewed	toward	a	TH2	profile,	
proliferative	 impaired	 and,	 in	 addition,	 reduced	 in	 size.	These	
data	 indicate	 many	 similarities	 with	 overstimulated/anergic	
NKT cells.	During	cancer	progression,	NKT cells	may	be	exposed	
to	chronic	stimulation,	which	is	known	to	induce	anergy	and	skew	
NKT cells	toward	immunosuppressive	subsets.	Moreover,	chronic	
stimulation	of	NKT cells	activates	AICD,	which	might	explain	the	
reduced	NKT cell	population	observed	in	cancer	patients.	Based	
on	 this	hypothesis,	we	propose	 that	TH1-like	NKT cells	 induce	
an	effective	antitumor	response	during	early	tumor	development	
and	perhaps	prevent	further	tumor	development	in	many	cases.	
However,	 in	 some	 cases,	 at	 some	point	 during	 tumor	 progres-
sion,	NKT cells	become	overstimulated.	As	a	result,	a	part	of	the	
NKT cell	population	is	deleted	in	cancer	patients	via	AICD.	In	
addition,	 the	 remaining	NKT  cells	 become	hyporesponsive,	 or	
switch	 to	 TH2-/Treg-like	 NKT  cell	 subsets,	 thereby	 facilitating	
tumor	 progression	 and	 immune	 escape	 (Figure  5).	 TH2-	 and	
Treg-like	NKT cell	subsets	do	not	produce	IFN-γ	which	is	respon-
sible	for	most	of	the	antitumor	effects	of	TH1-like	NKT cells	as	
discussed	earlier.	By	contrast,	TH2-/Treg-like	NKT cells	produce	
large	 amounts	 of	 IL-13	 and	 IL-10,	 respectively,	 that	 suppress	
the	 TME	 (i.e.,	 via	 fibroblasts	 and	 MDSC),	 thereby	 indirectly	
stimulating	 tumor	progression.	 In	 addition,	Treg-like	NKT  cells	
promote	differentiation	of	M2-polarized	TAM	and	Tregs	that	are	
also	able	to	suppress	the	TME	via	production	of	IL-10	(154,	155).	

In	 contrast	 to	 TH1-like	NKT  cells,	 TH2-like	NKT  cells	 are	 not	
capable	of	inducing	DC	maturation	and	do	therefore	not	induce	
activation	 of	 tumor-specific	 T  cells	 (157).	 TH2-like	 NKT  cell	
subsets	further	inhibit	the	activation	of	tumor-specific	T cells	via	
secretion	of	IL-13	(49,	158,	159),	while	Tregs	inhibit	tumor-specific	
T cells	via	cell–cell	interactions	and	secretion	of	IL-10	and	TGF-β		
(243,	 244).	 TH2-	 and	 Treg-like	 NKT  cell	 subsets	 might	 still	 be	
able	 to	 kill	 tumor	 cells,	 either	 via	 CD1d-dependent	 or	 CD1d-
independent	 mechanisms.	 However,	 overstimulated	 NKT  cells	
produce	large	amounts	of	immunosuppressive	cytokines,	resulting	
in	a	net	effect	of	immunosuppression.	TH2-	and	Treg-like	NKT cell	
subsets,	 therefore,	 counteract	 the	 antitumor	 effects	 of	 TH1-like	
NKT cells	and,	in	addition,	actively	promote	tumor	progression.

In	 conclusion,	we	discussed	 evidence	 supporting	our	hypo-
thetical	model	(Figure 5)	that	TH1-like	NKT cells	are	responsible	
for	initiating	effective	antitumor	immune	responses	during	early	
tumor	 development.	When	 NKT  cells	 become	 overstimulated	
and	 anergic	 due	 to	 tumor	 progression,	 a	 part	 of	 the	NKT  cell	
population	is	deleted	in	cancer	patients.	In	addition,	the	remain-
ing	NKT cells	lose	their	antitumor	function	and	start	facilitating	
immune	 escape	 and	 tumor	progression.	 In	 summary,	we	 illus-
trated	 three	 problems	 regarding	NKT  cells	 in	 cancer	 patients.	
First,	the	numbers	are	lower	compared	with	healthy	individuals.	
Second,	NKT  cells	 are	 often	 anergic	 in	 cancer	 patients.	Third,	
NKT cells	are	often	skewed	toward	immunosuppressive	TH2-like	
subsets.

CURReNT NKT CeLL-BASeD 
iMMUNOTHeRAPY FOR THe  
TReATMeNT OF CANCeR

Because	of	their	potential	to	induce	effective	antitumor	responses	
in vivo,	several	NKT cell-based	immunotherapies	in	humans	have	
been	developed	over	the	past	years	as	thoroughly	reviewed	by	Nair	
and	Dhodapkar	(245).	These	immunotherapies	primarily	focused	
on	activation	and	expansion	of	the	type	I	NKT cell	population.

For	 instance,	 a	 phase	 I	 clinical	 trial	was	 executed	 in	which	
intravenous	 (i.v.)	 injections	 of	 50–4,800  µg/m2	 α-GalCer	 were	
administered	 to	 24	 patients	 with	 different	 solid	 tumors	 (217).	
The	majority	of	patients	presented	with	reduced	numbers	of	type	
I	NKT cells	at	baseline	(median	333 cells/ml	PB)	compared	with	
healthy	donors	(median	1,013 cells/ml	PB).	Following	α-GalCer	
administration,	 NKT  cells	 disappeared	 from	 the	 circulation	
within	24 h.	Although	not	 investigated	 in	details	 in	 this	 study,	
recovery	of	NKT cell	numbers	was	not	observed	within	a	week.	
Furthermore,	 increased	 serum	 levels	 of	 TNF-α	 and	 GM-CSF	
were	detected	in	five	patients	and	increased	serum	IFN-γ	levels	
were	 detected	 in	 one	 patient	 after	 α-GalCer	 administration.		
A	phase	II	trial	using	administration	of	α-GalCer	was	not	executed.	
In	addition,	clinical	trials	were	conducted	in	which	patients	were	
injected	with	α-GalCer-pulsed	autologous	DC	(246–252).	These	
injections	resulted	in	expansion	of	the	type	I	NKT cell	population	
in	some	patients	(246–252).	For	instance,	Chang	et al.	reported	
>100-fold	 expansion	 of	 type	 I	 NKT  cells	 in	 5  patients	 upon	
i.v.	 injections	with	5 × 106	α-GalCer-pulsed	DC	(247).	Besides	
NKT  cell	 expansion,	 treatment	with	α-GalCer-pulsed	DC	 also	
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increased	 the	 systemic	 levels	 of	 IFN-γ	 in	 patients	 (246–252).	
Treatment	did,	however,	not	result	in	a	clinical	tumor	response	
in	the	majority	of	patients	(246–252).	In	addition,	a	phase	II	study	
reported	stable	disease	in	5	of	17	patients	with	non-small	cell	lung	
cancer	(NSCL)	upon	i.v.	administration	of	α-GalCer-pulsed	IL-2/
GM-CSF-cultured	PBMC	(1 × 109	cells/m2)	(251).	Patients	with	
increased	IFN-γ	producing	TH1-like	type	I	NKT cells	after	treat-
ment	showed	a	prolonged	median	survival	time	compared	with	
non-responsive	patients.	These	data	indeed	indicate	a	crucial	role	
for	TH1-like	 type	 I	NKT  cells	 in	 antitumor	 immune	 responses	
and	emphasize	the	essential	need	for	expansion	of	this	NKT cell	
population	 in	 cancer	 patients.	 Hence,	 immunotherapeutic	
approaches	focused	on	skewing	NKT cells	toward	a	TH1	profile	
should	be	developed.

In	 later	 clinical	 trials,	 ex vivo-activated	 type	 I	 NKT  cells	
were	adoptively	 transferred	to	patients	diagnosed	with	NSCL,	
advanced	melanoma,	 or	 head	 and	 neck	 squamous	 cell	 carci-
noma,	in	some	cases	in	combination	with	α-GalCer-pulsed	APC	
(253–256).	 In	 this	 therapy,	 PBMC	obtained	 from	 the	 patient,	
i.e.,	by	leukapheresis,	were	cultured	in	the	presence	of	IL-2	and	
α-GalCer	 to	 facilitate	 proliferation	 and	 activation	 of	 the	 type	
I	NKT cell	population.	Thereafter,	 the	ex vivo-activated	type	I	
NKT cells	were	administered	to	the	patients.	Phase	I	and	II	clini-
cal	trials	were	conducted	in	which	patients	with	head	and	neck	
carcinomas	 received	 nasal	 submucosal	 injections	 of	 1  ×  108	
α-GalCer-pulsed	APC,	in	combination	with	intra-arterial	infu-
sion	of	5 × 107	ex vivo-activated	autologous	type	I	NKT cells	via	
tumor-feeding	arteries	(255,	256).	Tumor	regression	and	stable	
disease	were	reported	in	10	of	10	of	these	patients	(255).	These	
clinical	 responses	did,	 however,	 not	 correlate	with	 the	 induc-
tion	of	immunological	responses	in	blood	(i.e.,	increase	in	type	
I	NKT cell	numbers	and/or	IFN-γ-producing	type	I	NKT cells	
and	NK cells).	 In	addition,	ex vivo-activated	 type	I	NKT cells	
were	adoptively	transferred	to	patients	diagnosed	with	advanced	
or	recurrent	NSCL	(1 × 107	or	5 × 107/m2	NKT cells	per	infu-
sion)	or	advanced	melanoma	(~4 × 106–~2 × 108	NKT cells	per	
infusion)	in	phase	I	clinical	trials	(253,	254).	Treatment	was	well	
tolerated	and	resulted	in	stable	disease	in	2	of	9	NSCL	patients	
and	 3	 of	 9	 patients	 with	 advanced	 melanoma,	 respectively.	
However,	the	majority	of	patients	developed	progressive	disease.	
This	might	be	due	to	the	fact	that	the	numbers	of	administered	
ex vivo-activated	autologous	type	I	NKT cells	were	too	low	in	
comparison	 to	 the	 tumor	 load.	 Obtaining	 sufficient	 numbers	
of	 type	 I	 NKT  cells	might	 be	 a	major	 challenge	 since	 type	 I	
NKT cell	numbers	are	low	in	general,	and	especially	in	patients	
with	cancer.

Recently,	 studies	 focused	 on	 increasing	 the	 specificity	 of	
NKT cells	by	transducing	them	with	chimeric	antigen	receptors	
that	are	not	HLA	or	CD1d	restricted	(58,	70,	257).	In	addition,	
α-GalCer/CD1d-antitumor	 fusion	 proteins	 were	 suggested	 as	
a	 treatment	 for	 cancer	patients.	 For	 instance,	α-GalCer-loaded	
CD1d	 molecules	 fused	 with	 an	 antibody	 fragment	 specific	
for	 HER2	 or	 CEA	 antigens	 induced	 potent	 antitumor	 activity	
in vitro	and	in vivo	(258,	259).	Recently,	Horn	et al.	showed	that	
CD3 × PD-L1	Bi-specific	T cell	engagers	activated	both	T cells	
and	NKT cells	to	kill	PD-L1+	tumor	cells	in vitro	(260).	Another	
strategy	that	was	suggested	for	the	treatment	of	patients	with	solid	

tumors	 is	vaccination	with	NKT-activating	agents	 in	combina-
tion	with	tumor	antigens.	For	instance,	a	phase	I	study	showed	
detectable	NKT cell	activity	in	patients	with	high-risk	melanoma	
upon	treatment	with	cancer/testis	antigen-loaded	DC	in	combi-
nation	with	α-GalCer	(261).	However,	in	our	opinion,	increasing	
the	specificity	of	NKT cells	is	not	the	most	promising	method	of	
increasing	the	effectiveness	of	NKT-based	immunotherapies.	The	
strength	of	NKT cells	does	not	rest	in	their	cytotoxic	capacities,	
but	 in	 their	 regulatory	 function.	When	 the	appropriate	 subsets	
are	 activated	 (i.e.,	 TH1-like	 NKT  cells),	 NKT  cells	 might	 shift	
the	tolerogenic	and	immunosuppressive	state	of	both	innate	and	
adaptive	 cells	 toward	 antitumor	 activity.	 Therefore,	 instead	 of	
increasing	the	specificity	of	NKT cells,	immunotherapies	should	
focus	on	the	most	important	function	of	NKT cells,	their	regula-
tory	function.

In	 conclusion,	 several	 NKT  cell-based	 immunotherapies	
have	been	tested	in	clinical	 trials.	To	date,	a	beneficial	effect	 in	
a	minority	of	 cancer	patients	has	been	 reported.	These	clinical	
trials	were	mainly	based	on	the	activation	and	expansion	of	type	
I	 NKT  cells	 with	 α-GalCer.	 As	 addressed	 in	 our	 hypothetical	
model	(Figure 5),	NKT cells	may	switch	to	immunosuppressive	
functional	subsets	or	become	anergic	due	to	chronic	stimulation	
during	 cancer	progression	which	might	 explain	 the	 absence	of	
beneficial	 clinical	 responses	 in	 patients	 upon	 treatment	 with	
α-GalCer.	We	propose	 that	 it	 is	 essential	 to	prevent	 and	break	
NKT cell	anergy	in	cancer	patients	and	skew	NKT cells	in	cancer	
patients	toward	TH1-like	subsets	with	antitumor	activity	in	addi-
tion	to	expansion	of	the	NKT cell	population.

FOCUS OF FUTURe NKT CeLL-BASeD 
iMMUNOTHeRAPieS

In	this	review,	we	discussed	the	role	of	NKT cells	in	cancer	and	
conclude	that	NKT cells	play	a	central	role	 in	anticancer	treat-
ment	 due	 to	 their	 important	 regulatory	 function.	 To	 improve	
NKT  cell-based	 immunotherapies	 for	 the	 treatment	 of	 cancer	
patients,	several	aspects	of	the	current	treatment	strategies	need	
further	attention.

expansion of the NKT Cell Population
TH1-like	NKT cells	 (either	 type	I	or	 type	II)	have	 the	potential	
to	induce	effective	antitumor	responses.	Combined	with	the	fact	
that	their	numbers	are	decreased	in	cancer	patients,	it	is	essential	
to	expand	this	cell	population	in	patients.	For	instance,	induced	
pluripotent	stem	cells	might	be	used	to	expand	the	numbers	of	
autologous	NKT cells	in	patients	ex vivo	(262–264).	Furthermore,	
culturing	 methods	 aiming	 at	 obtaining	 high	 numbers	 of	
NKT cells	must	be	optimized.	At	the	moment,	according	to	the	
Clinical	Trials	registry,	multiple	clinical	 trials1	are	ongoing	that	
study	the	safety	and	clinical	efficacy	of	adoptive	type	I	NKT cell	
transfer	in	patients	with	solid	tumors.	As	discussed	in	this	review,	
this	infusion	should	be	accompanied	by	a	protocol	that	prevents	

1	https://clinicaltrials.gov/ct2/show/NCT02562963,	 https://clinicaltrials.gov/ct2/
show/NCT03198923,	and	https://clinicaltrials.gov/ct2/show/NCT01801852.
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induction	of	NKT cell	anergy	and	generation	of	immunosuppres-
sive	NKT cell	subsets.

Prevention and Breaking of  
NKT Cell Anergy
Until	 now,	 only	 a	 limited	 number	 of	 studies	 focused	 on	 pre-
vention	 or	 breaking	 of	NKT  cell	 anergy.	 Parekh	 et  al.	 showed	
that	 blockade	 of	 the	 interaction	 between	 PD-1	 and	 its	 ligands	
prevented	the	induction	of	type	I	NKT cell	anergy	in vivo	(265).	
Blockade	of	the	PD-1/PD-L1	axis	was,	however,	unable	to	reverse	
established	NKT cell	anergy	(265,	266).	In	addition,	in vitro	and	
in vivo	studies	showed	that	stimulation	of	type	I	NKT cells	with	
IL-2	overcomes	anergy	and	restores	their	capacity	to	proliferate	
(144,	 146).	The	 proliferative	 capacity	 of	 patient-derived	 type	 I	
NKT cells	was	also	reported	to	increase	upon	COX-2	inhibition	
or	culture	with	G-CSF	(222,	267).	It	might,	therefore,	be	an	option	
to	treat	patients	with	a	combination	of	anti-PD-1	antibody,	such	
as	nivolumab,	combined	with	IL-2/G-CSF	or	COX-2	inhibition	
to	prevent	and	reverse	NKT cell	anergy.

Skewing of NKT Cells toward  
TH1-Like Subsets
NKT cells	in	which	anergy	was	reversed	retained	their	TH2-biased	
cytokine	profile	upon	IL-2	stimulation	and	did	not	change	back	
toward	a	TH1-like	subset	with	antitumor	activity	(146).	It	is	there-
fore	also	necessary	to	use	agents	that	are	able	to	skew	the	cytokine	
profile	of	activated	NKT cells	toward	a	TH1	profile,	which	means	
a	change	in	functional	subset.	For	instance,	culturing	of	patient-
derived	TH2-biased	type	I	NKT cells	with	IL-12	resulted	in	IFN-γ	
production	of	these	cells	in	response	to	α-GalCer	in vitro	(219).	
In	 addition,	 Laurent	 et  al.	 showed	 that	 chemical	modification	
of	the	α-GalCer	compound	was	able	to	increase	TH1-associated	
cytokine	production	by	activated	type	I	NKT cells,	whereas	stim-
ulation	of	type	I	NKT cells	with	conventional	α-GalCer	resulted	
in	production	of	both	TH1-	and	TH2-associated	cytokines	(268).	
Other	synthetic	agonists	have	also	been	described	that	induce	a	
TH1-skewed	cytokine	profile	in	type	I	or	type	II	NKT cells	(83,	
190,	269,	270).	Hence,	 the	use	of	modified	NKT cell-activating	
agents	 in	 cancer	 patients	 might	 skew	 the	 cytokine	 profile	 of	

NKT cells	toward	a	TH1	profile	while	simultaneously	preventing	
the	induction	of	anergy.

CONCLUDiNg ReMARKS

Due	to	their	important	regulatory	function,	NKT cells	are	prom-
ising	candidates	for	immunotherapies	in	patients	diagnosed	with	
cancer.	However,	NKT cell-based	immunotherapies	that	focus	on	
activating	NKT cells	have	resulted	in	beneficial	clinical	responses	
in	a	minority	of	patients	 so	 far.	 In	 this	 review,	we	 illustrated	a	
hypothetical	 model	 regarding	 the	 role	 of	 NKT  cells	 in	 solid	
tumors	 based	 on	 their	 function	 and	 phenotype.	 During	 early	
tumor	development,	TH1-like	NKT cell	subsets	have	the	potential	
to	initiate	effective	antitumor	immune	responses	against	tumors.	
However,	when	NKT cells	 become	overstimulated	 and	 anergic	
during	 tumor	 progression,	 they	 lose	 their	 antitumor	 function	
and	 start	 facilitating	 immune	 escape.	The	 role	 of	NKT cells	 in	
cancer	might	therefore	be	more	dynamic	than	initially	thought.	
So	 far,	 studies	 have	 primarily	 focused	 on	methods	 to	 activate	
and	expand	the	type	I	NKT cell	population	in	patients,	but	the	
contribution	of	 functionally	 altered	NKT cells	 to	 the	 failure	of	
NKT cell-based	 immunotherapies	has	 been	 largely	 ignored.	 In	
this	 review,	we	 conclude	 that	 there	 should	 be	 three	 important	
focuses	of	future	research	in	cancer	patients:	(1)	expansion	of	the	
NKT cell	population,	 (2)	prevention	and	breaking	of	NKT cell	
anergy,	 and	 (3)	 skewing	 of	NKT  cells	 toward	TH1-like	 subsets	
with	antitumor	activity.
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