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Abstract: An identity management system is essential in any organisation to provide quality services
to each authenticated user. The smart healthcare system should use reliable identity management to
ensure timely service to authorised users. Traditional healthcare uses a paper-based identity system
which is converted into centralised identity management in a smart healthcare system. Centralised
identity management has security issues such as denial of service attacks, single-point failure,
information breaches of patients, and many privacy issues. Decentralisedidentity management can
be a robust solution to these security and privacy issues. We proposed a Self-Sovereign identity
management system for the smart healthcare system (SSI-SHS), which manages the identity of each
stakeholder, including medical devices or sensors, in a decentralisedmanner in the Internet of Medical
Things (IoMT) Environment. The proposed system gives the user complete control of their data
at each point. Further, we analysed the proposed identity management system against Allen and
Cameron’s identity management guidelines. We also present the performance analysis of SSI as
compared to the state-of-the-art techniques.

Keywords: internet of things; blockchain; self-sovereign identity; IoMT; security; privacy

1. Introduction

Blockchain plays a crucial role in healthcare applications, from improving med-
ical record management, enhancing insurance claim processes, and accelerating clini-
cal/biomedical research to advancing healthcare data by recording on the ledger. Blockchain
technology can provide feasible and secure solutions to healthcare applications. The
blockchain’s main characteristics, i.e., decentraliseddata management, data provenance, im-
mutable audit trails, high availability, and, most importantly, security and privacy, increase
the usability of blockchains in healthcare applications compared to traditional databases [1].

In smart healthcare applications, patients are implanted with wearable biosensors on
their bodies and non-wearable sensors in nearby environments. These wearable biosensors
and non-wearable sensors collect vital and biological data (e.g., cardiac activity, pulse
rate, blood pressure, temperature, etc.). Biological data and personal patient profiles are
addressed as an Electronics Health Record (EHR). The security and privacy requirements
for an EHR have become more difficult and necessary as the movement to an EHR is
one click away from being across the world. Challenges emerge as more health data is
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collected from wearable devices and Electronic Health Record (EHR) systems. The current
centralized smart healthcare system has data isolation, data ownership, accountability,
security, and privacy issues. Further, patients do not have control over their health data; the
self-sovereignty concept is an excellent way to deal with these privacy issues. The current
centralized concept is better for the scalability and mobility of the system. However, it is not
good in terms of privacy, security, usability, single-point failure, and system complexity [2].

Identification is essential for public health management and quality delivery of health
services to the end-user. Patients should be uniquely identified in the smart healthcare
system to access the appropriate medical treatment and services. The service providers
should also ensure that they provide consistent and correct services to the right person.
The unique identification of patients helps researchers and administrators analyze records
in order to generate statistics and other data planning, pandemic management, treatment
improvements, tracking a patient in case of spreading diseases like covid, emergency
response, and many more. Further, health insurance companies must also identify a patient
to ensure the correct claims are submitted and provide insurance money based on the
patient’s treatment history [3]. Smart healthcare consists of smart medical equipment,
wearable sensors, or the internet of medical things, making identity management difficult
for health service providers [4]. We can summarize that the healthcare system needs a
secure, inclusive identity management system to provide quality health services.

The existing centralized identity management system for smart healthcare faces secu-
rity, privacy, single point of failure, and interoperability issues. Further, individuals are
given fewer or no options to control their health data and data transactions encompassing
how, where, when, by whom, to whom, by what time, and which specific data is shared.
The right of users to control and rectify personal information, including health information,
has decreased in the digital era [4,5]. To solve the issues of a centralized identity model and
patient privacy, the Self-Sovereign Identity Model (SSI) is an emerging concept of identity
management. An SSI is a decentralised and owner-centric identity model that can solve the
identification issues of a smart healthcare system.

In this paper, we are proposing a decentralised identity management SSI for smart
healthcare to provide patients control over their EHR. The proposed identity model covers
the IoMT identification and gives control of device data to the device owner. The smart
healthcare system has IoMT devices or sensors at different stages, like sensors installed
with patients for remote monitoring, wearable devices, patient motion detection, and at
hospitals to measure different health parameters. In the proposed identity model, the
owner of the device (mostly the patient) has complete control of the sensors or the IoMT
devices that collect data, and the owner chooses to share the information.

The motivation of this research is to consider the IoMT device as an essential identity
in the smart healthcare system. The identity management system aims to ensure that the
service provider provides services to the trusted user based on the trusting relationship
with an identity provider. However, there is no limit on the IoMT for providers to offer
their services to any requestor. Traditional identity management systems focus only on real
users’ identities and negate the end-users like the application, the IoMT. Researchers were
motivated to do this research to provide solutions to these limitations.

The contribution of this paper can be summarized as follow:

• First, a system architecture is presented for a Self-Sovereign Identity Model for smart
healthcare, including the IoMT network. The IoMT network is integrated with the
smart healthcare distributed network.

• Second, the registration and authentication process of stakeholders in smart healthcare
is presented along with the smart device installed or the patient’s collected EHR,
registration, and authentication in the smart healthcare system.

• Third, we have implemented a prototype for the proposed SSI model using the per-
mission blockchain, Hyperledger Indy, to collect the results for performance analysis.

• Finally, the proposed identity model is analysed with respect to the Allen identity
model rules. Further performance analysis with respect to the execution time and
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storage is presented. The proposed distributed identity model gives complete control
of personal data to the data owner. The patient and other stakeholders can choose the
limited disclosure of personal information.

The organisationof the paper is as follows. Section 2 describes Preliminaries on Smart
Healthcare and Identity Management concepts. In Section 3, we reviewed the existing identity
model based on blockchains and without blockchains for smart healthcare. Section 4 describes
the proposed identity model with architecture, communication flow, and process. The
experimental implementation, results and their analyses are discussed in Sections 5 and 6,
respectively. Section 7 concludes the research paper and discusses future direction.

2. Preliminaries on Smart Healthcare and Identity Management
2.1. IoT Enabled Smart Healthcare Model

The internet of things (IoT) has been used as a potential solution to reduce the pres-
sure on the healthcare system and provide healthcare services to everyone, anytime and
anyplace. A large amount of research focuses on this direction. It shows the considerable
use of the IoT in healthcare, such as remote monitoring of specific conditions, aiding re-
habilitation through constant monitoring of a patient’s progress, constant monitoring of
patients using wearable devices, and many more. Baker et al. presented a range of uses for
the IoT in healthcare and proposed a unique identity model for future IoT-based healthcare
systems [5].

Figure 1 presents the IoT-enabled healthcare system. Figure 1 captures all stakeholders
of smart healthcare. The healthcare system comprises many stakeholders such as doctors,
hospitals, clinics, pharmaceuticals, insurance companies, researchers, and core healthcare
“patients.” The second important factor in the IoT-enabled healthcare is that the sensors are
deployed with patients, and the generated large data is sent to the storage location. The
storage server, like cloud, blockchain, or any database, stores this large health data, and the
end-user applications access this data for further analysis and provide the services. Further,
machine learning, deep learning, and soft computing or other computation techniques are
used in the analysis to get specific results.

Figure 1. IoT enabled healthcare system.

In this work, we present the four key players as follows:
Healthcare Consumers: People or patients who receive healthcare services, treatment,

or care. Patients access their healthcare records and share the same with doctors or hospitals,
or other healthcare providers party to get the health services.
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Healthcare Regulators: Government institutes or public health departments that
regulate health services among consumers. Health regulators monitors and fame the
policies related to healthcare services. They aggregate the health data and process it to
make new healthcare frameworks or policies.

Healthcare Providers: Any entity that provides healthcare services to patients. It
can be doctors, hospitals, nurses, ambulances, clinics, and others who are responsible for
delivering health services. They collect the health data to provide health services.

Industry Representative: Includes pharmaceutical firms, insurance companies, drug
manufacturers, and medical device companies. They help operate the healthcare system
and provide the latest and advanced solutions for health services. They collect the health
data to provide good solutions to advance the health system.

2.2. Digital Identity Management System

An identity management system (IDMS) or digital identity management system
contains a set of rules and conditions for authentication, authorization, and the system’s
access control. The IDMS ensures that only authorized entities can access the services in an
organization. The core entities of any IDMS are the user, the identity issuer, and the service
provider. In most IDMSs, a single centralized authority, like an organization, controls and
owns the digital identities of specific organizations or systems [6].

Mainly, three types of IDMS models have been present since the internet’s beginning:
Centralized Identity, Federated Identity, and user-centric Identity/decentralised identity
model. The service provider authenticates users in the centralized Identity model before
providing a service. Here, the service provider controls the identities and provides the
credentials to access each service and time. The centralized system is the model we have
been using for a long time: government ID, license card, college identity card, voter
ID, Facebook, Twitter login, and so on. The identity issuer (mainly government and
service provider) issues the identifiers and credentials to the user in the centralized identity
model [7,8].

In the federated identity model, the identity provider manages the identities of more
than one service provider. Users register for identity providers and can access the services
from a federation. There are three popular federated identity protocols available: SAML,
OAuth, and OpenID since 2005. Using protocols like OpenID Connect, social login buttons
from Facebook, Google, Twitter, LinkedIn, etc., are now a standard feature on many
consumer-facing websites [8,9].

In the user-centric identity model, the user controls its identifiers and defines a policy
to share the attributes with the service provider to access the service. The decentralised
identity model is based on peer-to-peer connection and does not have a centralized author-
ity to manage the identity of a system. uPort, ShoCard, BitID, and soverin are examples
of decentralised identity models. Further, the self-sovereign identity (SSI) model is a de-
centralised model that facilitates the recording and exchange of identity attributes and the
propagation of trust among participating entities [9,10].

2.3. Self-Sovereign Identity (SSI)

In February 2012, a developer, Moxie Marlinspike, first wrote about the “Sovereign
Source Authority” and mentioned that “individuals have a right to an “Identity”” [10].
Simultaneously, In March 2012, Patrick Deegan also started working on an open-source
framework that gives the control of a digital identity to the user [11]. SSI introduces a layer
of flexibility and security in distributed identity management systems. SSI is the concept
where organizations and individuals have whole ownership of their identities along with self-
defined attributes and identifiers, while the distributed identified management system (DIMS)
uses the user’s already existing trusted credentials like PAN, Voter ID, Passport, etc [7].

In the SSI model, there is no central authority that holds user data and passes data
on to other parties on a request. The user holds his/her own data. The cryptography and



Sensors 2022, 22, 4714 5 of 25

distributed ledger technology allow users to present claims about identity, and others can
verify it with cryptographic certainty [11].

2.4. Architecture of Self Sovereign Identity Model

The SSI model uses the core concept of identity management, blockchain or distributed
ledger technology, distributed computing, and cryptography and provides a user-centric
identity model. These concepts have been well established for a long time, and SSI put them
together to create a more secure, persistent, and interoperable identity model. Figure 2
represents the sequence flow along with the important component of the SSI model. The
conceptual architecture of the SSI model has four layers: Identifiers and Keys (DID), Secure
communication and Interfaces, Verifiable Credentials, and Governance. Further, these
four layers need seven building blocks to achieve the user-centric identity management
goal [12,13]. The seven building blocks are:

• The trust triangle (issuer, holder, and verifier): Issuers are the source of credentials.
The holder saves credentials issued by the issuers in its digital wallet and presents
proof of claims when a verifier requests. The verifier verifies the credentials presented
by the holder.

• Verifiable credentials or digital credentials: The digital equivalent of physical creden-
tials are the verifiable credentials to prove the identity. The subject of the credentials
creates a set of claims, and the verifiable credentials contain those claims. The issuer
in the SSI model issues the verifiable credentials.

• Digital wallets: Digital wallets store credentials and other sensitive data and work
with digital agents to securely exchange credentials among peers.

• Digital Agent: Digital agent is a software on the digital wallet that provides security to
the digital wallet, participates in secure credentials exchange, and forms connections
via a decentralised, secure message protocol. Edge Agents and cloud agents are two
general categories of the digital agent.

• Decentralised Identifiers (DIDs): DIDs are decentralised, cryptographically verifiable,
resolvable, and unique identifiers. DIDs are combinations of the private and public
keys of a user. DIDs are decentralised by the nature that makes credentials available
at all times for verifications. DIDs create a secure, unique, and private peer-to-peer
connection between two parties who agree to connect with each other based on their
requirements. The identity owner has complete control of the DIDs.

• Verifiable Data registries: A DID can be registered with any type of decentralised
network, verifiable data registry, or even exchanged peer-to-peer. Blockchain can be a
vital choice for verifiable data registry because a blockchain is a highly tamper-resistant
transactional distributed database that no single party controls.

• Trust Framework: The trust framework contains the set of business, legal, and technical
rules to use the SSI infrastructure and enables interoperable digital trust ecosystems of
any size and scale.

The basic steps of information flow in the SSI model are:

• The issuer issues the verifiable credentials to the identity owner/holder. The VC
includes the claims and attention.

• The user/holder stores this information himself. Users and holders can be the same
sometimes. Furthermore, the VC holders have complete control of the VCs.

• When the user wants to access any service, he/she presents its VC to the verifier.
• The verifiers verify the VC without connecting the issuers. The verifier connects with

a distributed registry (blockchain), verifies the user, and grants authorized services.
• The distributed verifiable registry has the VC schemas and DID, which helps in

user verification.
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Figure 2. SSI communication Sequence.

The SSI model is an advancement of DIMS and user-centric identity. The main focus
of the SSI model is that the user must be the controller of the identity, and the identity must
come with interoperability across multiple locations with the user’s permission. There is
vast literature available that writes about Self-Sovereign Identity Models. Here, we can
summarize the ten principles of SSI. These principles focused on the user’s identity control,
system transparency and fairness, and interoperability. Table 1 defines the ten principles of
SSI and categorizes them based on focus area [13,14].

Table 1. Principle of SSI.

User’s Control Security Portability

Users must have control of their data like
which information can be seen the other Keep identity information secure Users can move anywhere without being

tied to a provider

Existence Protection Access

Control Persistence Transparency

Consent Minimization Interoperability

Persistence

Alex Preukschat and Drummond Reed analysed and listed the major features and
benefits of the SSI model. The SSI model can help in the following areas: fraud detection,
reducing customer onboarding cost, auto authentication, auto authorization, automated
workflow, data security, privacy, protection, portability, and much more [15].

Limitations:

This part addresses the challenges and limitations of developing the fully decentralised
identity system or SSI system. The SSI is a distributed identity model and relies on the
DID and Blockchain system, so blockchain performance directly affects the system. The
issue faced in blockchain implementation, like storage limitations, scalability, predefined
set of users, and so on, is directly accepted in the SSI model. Key storage is also an essential
part of the implementation of SSI. When DID is created, the private keys and verifiable
credentials are stored in secure storage with the user. The challenges come when the user
loses the secure storage for any reason. In that case, it is like the user losing their access
to identity.
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3. Literature Survey

In this section, we have reviewed and analysed the literature on centralized and
decentralised identity management systems. As the literature on SSI and distributed
identity in smart healthcare is scarce, we consider access control and identity management
in smart healthcare, e-health, and traditional healthcare. Some surveys are presented
in the open literature on identity management based on blockchain technology. X, Zhu
et al. presented the survey on blockchain-based identity solutions for the internet of
things. The survey analysed the identity solution for IoT digital identity management and
studied the recent increment in blockchain-based SSI solutions for IDMS [15]. Further,
Kuperberg surveyed essential aspects of blockchain-based identity systems like compliance
and liability, regulations, standards, integration, and user-friendliness [16].

We divide the literature analysis into a centralized identity model and a decentralised
or SSI identity model for smart healthcare.

3.1. Centralised Identity Model

The health information system contains individuals’ personal information and critical
health data. Bouras et al. stated that the current centralized identity management system is
good in terms of scalability and mobility. However, the centralized identity model is poor
regarding security, privacy, usability, single point of failure, and complex ecosystem [17].

Aghili et al. proposed lightweight authentication and an ownership transfer proto-
col (LACO), a secure and energy-efficient protocol that provides authentication and key
agreement. The proposed work also covers the access control of health data and preserves
doctor and patient privacy. The author designed a threat model for IoT and analysed the
proposed protocol against around eleven security attacks. Further, the authors presented a
comparison between the proposed model and the ZZTL [18] protocol [19].

Yang et al. proposed a big data storage system with self-adaptive access control to
preserve privacy in smart IoT-based healthcare. The proposed work aims to provide emer-
gency and normal access control and prevent duplication from saving space. Further, the
system supports sharing encrypted medical files from IoT networks to different domains
by applying the cross-domain sharing policy [20]. PASH, privacy-centered access control
for the health system, is proposed. The proposed system revealed that only attribute names
of access policies and attribute values are encrypted and stored in records because the
attribute values have sensitive information, not the attribute names. Further, the security
analysis shows that PASH is also secure as per the standard model [21]. Farid et al. present
identity management solutions for IoT and cloud computing-based personal healthcare
systems. The solution uses biometrics to perform the authentication in the system. How-
ever, the framework does not have user consent and is a combination of federated and
centralized identity management. The proposed work does not present an end-to-end
security analysis [22].

3.2. Decentralised Identity Model

As we have already discussed the properties and technical aspects of the Self-Sovereign
Identity Model, the SSI model is a robust solution for protecting the data owner’s privacy
as SSI gives its owner control of identity. Further, Houtan et al. analysed identity projects
based on the SSI model, such as uPort, Soverin, evernym, ShoCard, TheKey, and other
projects based on blockchain technology for the patient identity system [22].

Augot et al. developed a zero-knowledge proof-based solution for identity man-
agement. However, the proposed framework has two significant drawbacks. First, the
authentication is not free. As the authentication is encoded with bitcoin transactions, the
users have to pay a transaction fee to the miners. Second, the bitcoin transactions are public,
so the user’s privacy is at risk [23]. Liang et al. presented personal health data manage-
ment using blockchain and Intel SGX. The intel SGX stores the healthcare records; these
records are trusted timestamping and free from redundancy, preserving both availability
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and accountability. However, the research does not include the identity management of the
IoMT device [24].

AU et al. also proposed user-centric and privacy-preserving identity management for
the distributed e-health system. Healthcare consumers maintain pseudonymous identifiers
for use in different healthcare systems. However, this work does not include the imple-
mentation of the proposed architecture in an e-health system controlled environment and
particle deployment in an e-health system [25]. Shuaib et al. explore the applicability of
blockchain-based SSI solutions for healthcare, their advantages, and their requirements.
Further, they proposed a model to demonstrate the use case of SSI. However, this work did
not present the proposed model’s formal implementation and performance analysis [26].
Mikula et al. proposed identity and access management for EHR in the healthcare system
to support authentication and authorization (use this in comparison). This paper does
not cover IoMT device authentication and authorization [27]. Further, Zoho et al. applied
sovereign identity claims to provide the distributed data vending system for the personal
healthcare system [28]. Buzachis et al. also used uPORT, a self-sovereign identity plat-
form, to identify patients in healthcare [29,30]. In recent times, researchers have included
new technologies along with blockchain to secure the health system. Neelakandan et al.
used deep learning with blockchain to secure the healthcare and diagnostic model [31].
Kamalraj et al. applied an interpretable filter-based convolutional neural network in the
healthcare system for glucose prediction and further analysis [32]. Harshavardhan et al.
proposed an optimization model for healthcare systems using LSGDM with biogeography-
based optimization [33]. It is clear from the literature survey and the surveys mentioned
earlier that no single distributed solution is fully distributed, covering users’ consent,
privacy, and compliance with privacy standards [34,35]. The proposed research has the
potential to be used in a smart city environment, such as smart traffic management [36–38].
Smart cities can be connected with smart healthcare to reduce the insurance claim process
time and prevent fraud in the traffic-centric health insurance process [39–42].

4. Proposed Framework

We proposed an SSI model to manage the digital identities for a smart healthcare
system. The proposed model includes the IoMT devices and provides digital identity to
all stakeholders in smart healthcare. Further, the model gives complete control to the data
owner at the time of sharing to PII and PHI. Whenever a user wants to access another
user’s data, the requester’s data must authenticate himself to the requestee user. This
provides the security and privacy of personal data and users’ health data. We proposed
a distributed blockchain-based SSI that does not require a central authority to control the
identity lifecycle. The following section will explain the whole SSI model in detail.

4.1. High-Level System Architecture of SSI Model for Smart Healthcare

In this section, we present the high-level system architecture of the proposed model
for the smart healthcare system. Figure 3 explains the main components of the SSI model
of smart healthcare system (SSI-SHS) with reference to the SSI architecture presented
in Section 2. The three main access-based roles of the SSI model are Subject (Identity
Holder), Issuer (Identity issuer), and Verifier (Identity Verifier) in the context of smart
healthcare as follows: the smart healthcare system (SHS) issues the verifiable credentials to
all stakeholders (patients, doctors, labs, researchers, and others) based on DID. The subjects
who hold the identity can be any stakeholders, and we include IoMT devices to cover the
end-to-end information flow of smart healthcare. The verifier is the entity that provides any
kind of service to others. For example, if a doctor wants to access the data of any medical
device, in this case, a patient who owns the device verifies the doctor’s identity directly
without any help from SHS (the issuer).
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Figure 3. SSI-SHS architecture.

Further, all the stakeholders are in the same blockchain network (SHS-BT), and any
entity that wants to access health services must register on the SHS-BT network. For the
transactions, we will discuss the generation of transactions (identity management related)
in the coming sections, stored at the SHS-BT blockchain distributed ledger (Li). The owners
of IoMT devices register their devices on SHS-BT by providing the DID of devices along
with their own DID. The SSI-SHS uses blockchain for verifiable data registry (VDR) also.

VDR sets the rules in the distributed system for entities to create identifiers as per their
own rules. VDR is a role or system that mediates the creation and verification of identifiers,
verifiable credentials schema, keys, and other relevant data, such as public keys, revocation
registries and so on, which are required in the verification of verifiable credentials.

4.2. Communication Sequence Flow

In this section, we will describe the flow in SSI-SHS. The backbone of communication
is DID communication between the Edge Agents of respective users. A user contains the
user’s Edge Agent, front-end DID wallet, secure element, and micro ledger. The URL
consists of a community resolver, a driver for DID methods, and a cache. We choose
Sovrin [34] to demonstrate the interaction of DID among the users. A steward, a DID
syntax checker, cache and resolution result constructor, and serialization validators are part
of Sovrin. The VDR is any blockchain network.

The system uses an agent that is a delegated entity by the DID subject. The agent
controls the agent-to-agent DID communication, DID wallet cryptography-based oper-
ations, and sharing of credentials to authorized agents as per the relationships. Agents
are categorized as Edge Agents and cloud agents. The Edge Agent resides within the
wallet software locally. The cloud agent resides in the cloud and has extended features
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like identity wallet backup to the cloud, 24/7 DID communication when an Edge Agent is
offline, data storage in the cloud, and key management. We use an Edge Agent (EA) in the
proposed system.

To explain the architecture, we take the most common communication in smart health-
care, where a patient wants to talk with a doctor, share health data, and device readings to
get medical service. To establish the communication, the patient’s Edge Agent first queries
the doctor’s DID from the Edge Agent to the community resolver within the universal
resolver (UR). Then DID methods return the DDO of the doctor’s EA to the UR through
VDR interaction. Now, the patient’s EA retrieves the DDO from UR. After that, the patient’s
EA establishes the DID communication as per the data present in DDO.

The whole smart healthcare identity architecture can be discussed in two parts: high-
level user interaction named “SSI-SHS: SSI for smart healthcare system”; and the second
part, “SSI-SHS-IoMT: Interaction of IoMT to SSI-SHS”, is a network among sensor and
patient named as IoMT network. The term “IoMT” covers all types of medical devices,
sensors, and other smart medical devices with the patient, as elaborated in Figure 4, the
high-level SSI-SHS architecture.

Figure 4. Authentication Process.

Part 1: SSI-SHS
Phase 1: Registration: Identity Wallet and Agent Installation
In the registration phase, the shareholders create their own DID with the help of a

digital wallet and Edge Agent. We described the registration of patients on the SHS-BT
network. The following steps describe the process of getting the verifiable credentials from
the SHS and registration:

Step 1: The patient installs the digital wallet software and initiates the creation of the
first Edge Agent. The user uses the wallet to receive credentials from various entities and
presents these credentials to prove himself on the system.

Step 2: The Edge Agent (EA) creates a DID for agent communication, credentials
for secure element and link secret (link secret is used in DID relationship establishment
through a blinded commitment).

EApatient → DIDEA, CredSE, linksecret (1)
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Step 3: The Edge Agent requests the Secret Element to create verifiable credentials
(VC) and a VC presentation (VCP) for specific credentials schema (CS). The EA requests
different types of keys like DID keys for signing and verification, Agent Policy (AP) keys,
and encryption and decryption keys for the wallet.

EApatient Req(VC, VCP, CS)→ SE (2)

Step 4: The Secret Element (SE) stores the following: VC, signing key of DID, decryp-
tion key of wallet, and AP keys.

SE← stores VC, PRpatient, D.Keywallet, KeyAP (3)

Step 5: The SE returns the following to the front-end wallet: VCP for CS, DID verifica-
tion keys, and decryption keys for wallet backup.

SE return
(

D.Keywallet, VCP, PRpatient
)
→ DigitalWallet f rontend (4)

Step 6: The EA asks to store the following in the front-end wallet: agent IDs, CS
registry address P, and a link secret. The address P denotes the storage location of CS in
the public ledger. After that, CS establishes the authorization level for each agent based on
each different credentials. The newly added agent stores VCP at address P in the PROVE
section of CS.

DigitalWallet f rontend ← store
(
EApatient ID, linksecret, PAP

)
(5)

The result of the above process achieves the SSI and ensures that the privacy of
the identity system is preserved via control and confidentiality. The system provides
minimum controllable disclosure of the proof to achieve control of identity. The system
stores the user credentials in the decentralised key management system identity wallet to
satisfy confidentiality.

Further, the EA proves the authorization using VCP without disclosing the secret
value defined in Step 6. The CS Address Commitment (CSAC) can also be generated via
the VCP with CS address to achieve herd privacy in the system.

The DID keys are composed of a signing and verification key, as defined in steps 3
and 5. The signing key is based on the Edwards curve Digital Signature Algorithm using
SHA-2 and Curve 25519 (ED25519). Next, when a new relationship is started, the DID and
verification keys are shared with other parties. Lastly, CA is created for backup purposes.

Phase 2: Authentication using DID Method
After installing the agent and identity wallet, if the doctor wanted to access the

patient’s data, the doctor would have to send a DID communication request to the patient.
The EA of the patient gets the invitation for a DID connection from a remote doctor. The
process flow is as follows:

EAdoctorconnect(DIDdoctor)→ EApatient (6)

Step 1: The EA of the patient asks the query to the Community resolver (CR) of the
Universal resolver (UR).

EApatientquery(DIDdoctor)

Step 2: The CR checks the cache first after receiving the DID query.
Step 3: The CR returns the stored DDO (DID Document) immediately if the DID query

hits the cache. The DDO is passed with other metadata like DDO metadata, and DID
resolution metadata.

CR return(DDO, DIDdoctor)→ EApatient (7)
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If the cache miss in Step 3, the CR invokes the resolution process (RP). The CR
first chooses the driver that is similar to the DID method, as received in DID. The pro-
posed system uses the DID method as defined in the sovran for demonstration and
implementation purposes.

CR invoke(RP, methodDID)

Step 4: The driver passes the DID and DID Resolution Input Metadata (DRIM) to RP
to get the DID method. After getting the DID method, the DRIM is passed to the DDO.

Step 5: The steward hits the cache to check that the DDO is present in the cache for the
provided DID.

Step 6: If the cache hits, the steward returns the DDO immediately. If the cache misses,
the steward resolves the DID query.

Step 7: the steward first checks the DID format; the input DID should be in a standard
format. The steward throws an error on any syntax or semantics error.

Step 8: The steward passes the DID method to invoke the read operation to VDR.
If the DID has a public DID URL, then the DID URL has to be dereferenced to get more
information regarding the specific resources to be targeted in the DDO. The DDO resources
are identified with the help of the DID URL components like query, path, and fragments.

Step 9: In the first VDR operation, the DDO is returned to the steward after processing
the read operation on VDR.

Step 10: The serialization validator validates the DDO format as per defined in the
DID. The serialization format can be JSON, JSONLD, and CBOR as per the DID core data
model standard. If the serialization validator gives an error on a query, then the steward
forwards the error to the requestor (driver from UR).

Step 11: The requested DDO is sent to the steward and to the resolution constructor.
The resolution result constructor makes the representation form of the DID resolution result.

Step 12: The resolution result constructor sends the DDO to the serialization validator,
and the cache updates with DDO.

Step 13: The serialization validator sends this DDO to the steward.
Step 14: The steward sends the DDO to the driver of UR.
Step 15: The driver of UR returns the DDO to CR and caches updates with the DDO.
Step 16: The CR passes the DDO to the patient’s EA.

CRsend(DDO, DIDdoctor)→ EApatient (8)

Step 17: After verifying the DDO, if the patient is satisfied and ready to connect,
then the EA of the patient sends a DID communication message along with a delta of
micro ledger.

EApatient send
(

DIDcommn, encryptPREA(∇L)
)

(9)

The EAs use a message-based protocol to communicate and exchange a series of
messages with each other. The delta of the micro ledger consists of the record of DID events
from each EA. The delta represents the updates of the micro ledger, and it is organized
in the Merkle tree. The EA exchanges the delta via authenticated encryption using the
verification key of the EA.

Step 18: The doctor’s EA stores the DID events in the relationship between patient
and doctor. The micro ledger of the doctor stores the delta of the micro ledger sent by the
patient to make sure that the patient and doctor have the same copy of the DID events.

Step 19: The change of state of the doctor’s micro ledger is sent in response to the
recording operation.

Step 20: The doctor’s EA sends a reply of DID communication message and a copy of
the micro ledger delta of the doctor to the EA of the patient.

Step 21: The EA of the patient stores the DID events in the micro ledger and stores the
delta of the micro ledger sent by the doctor.

Step 22: The micro ledger sends a state change response to the EA of the patient.
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Step 23: The EA of the patient checks that the DID events are in sync with the doctor’s
DID events.

Step 24: The identity ledger (Li) stores the transaction as either failed or passed. The
blockchain transactions include the EA of the requester and provider along with the status
(pass or fail) and a hash of the ledger with a timestamp as below.

Tx (EApatient, EAdoctor, status, timestamp, hash(L))
Figure 4 describes the authentication process of a doctor by a patient without any

centralized system or hospital authority. These two phrases describe the registration and
authentication of high-end users and stakeholders. The privacy and secrecy concerns
in smart healthcare increase with the number of IoT devices in the system, and smart
healthcare is loaded with lots of medical devices, and these devices are exposed and
vulnerable to the outside world.

Part 2 SSI-SHS-IoMT: Interaction of IoMT to Healthcare SSI
Here, we present the second part, where a medical device connected with a patient

registers itself and authenticates in a smart healthcare system. We assume that all the
medical devices/sensors (IoMT) are connected to the internet and pass the information to a
remote doctor/hospital to analyze the patient’s health and provide health services. Now
the patient owns his DID and VC and has some medical sensors and devices which send
data to smart healthcare.

We design smart contracts for authentication named “DIDMaster” that provides the
information related to the device after supplying the DID: (diddev.H(docdev). URIdocdev
.stadiddev). The “AccessData” smart contract provides access to the data of the patient’s
devices. These smart contracts are deployed on VDR, and the node in the SHS-BT network
calls the smart contract by passing the correct parameter, as explained in the next part.

Phase 1: Registration of IoMT devices
Here, we consider that all the devices are bootstrapped in the patient’s environment.

Now, the device registration of the device is with the patient. The patient is an onsite
registration authority for devices in SSI healthcare. In smart healthcare, a device is owned
by a single patient, and a single patient can own many devices. After receiving the VC
from smart healthcare, the patients register their IoMT device and bind the ownership of
the device.

The Bootstrapping process:

1. Once the device is active, the patients send their own DID to the device.
2. The device creates an authentication token that includes the patient’s DID, signs this

token with a private key (AuthToken1), and sends the token back to the patient.
3. The client creates another token (AuthToken2), including AuthToken1, and signs this

with its own private key.
4. The patient calls the “DIDRegister” smart contract as a message sender and passes

the device address. “DIDRegister” registers the assignment between the device and
registrar with a tentative state.

5. The patient submits the AuthToken2 to a smart health system node which is a server
application connected to the blockchain.

6. The SHS checks the validity of AuthToken2 and the registration status of “DIDRegis-
ter” (step 4). If both are valid, the identity provider node proofs the assignment of
“DIDRegister”. Afterward, the “DIDRegister” changes the state to active.

7. The SHS node generates an AuthToken3 with a confirmation about the assignment,
signs it with its private key, and sends it to the patient.

8. The client forwards AuthToken3 to the device.
9. The device verifies the signature of the SHS node with its built-in list (in a secured

environment) and, if ok, adds the patient to its trust list.

Phase 2: Authentication of IoMT on network
Here, the patient who is the owner of the medical device has complete control over

the data collected by their medical/IoT device. A detailed description of how the doctor
accesses the data from IoMT with user consent:
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Step 1: The patient provides the DID of a device to the doctor to access the data; after
receiving the DID of the device, the doctor calls the “DIDMaster” smart contract bypassing
the DID of the device and the patient.

Step 2: The smart contract returns the details of the device: hash of the DID device,
hash of DDO of the device, status of the device, and URI of the device.

Step 3: If the status of the device is active, the doctor sends the DID to the verifier to
verify the DID.

Step 4: The EA of the doctor gets the address of “AccessData” from step 3.
Step 5: The EA of the doctor calls “AcesssData” by passing his own parameters: didoc,

reqdoc; where diddoc is the doctor’s DID and reqdoc denotes the data set that doctor
would like to access. Moreover, the smart contract AcesssData also checks whether the data
access request reqdoc is valid. After the successful execution of AcesssData, a data request
event, which contains the doctor’s request parameters, is emitted on the blockchain.

Step 6: Successful execution of the “AcesssData” smart contract saves on the blockchain.
Step 7: The EA of the patient, on receiving a new data request, sends the DID of

the doctor to the UR to resolve. Moreover, the further process is the same as “Phase 2:
Authentication using DID Method”.

Step 8: If the doctor’s data request passes all the validations, the patient’s EA invokes
the smart contract AccessData with parameters diddoc, reqdoc, and Sigskpatient (Addrs
doc. Reqdoc), which grants the doctor’s data access request, and saves the data access
granted txn on the identity ledger (Li).

Tx (EApatient, DIDdev, EAdoctor, statusdev, timestamp, hash(L)) (10)

Step 9: When a doctor’s data access request is granted, he obtains the access token
Sigskpatient (addrdoc, reqdoc) from the saved txn event and requests to download data
from the service endpoint specified in the docdev.

Step 10: To identify that the data requester is a doctor, the patient sends a random
challenge r to the doctor. Then, the doctor generates a tuple 〈addrdctr, reqdctr, pkdctr,
Sigskpatient (addrdctr, reqdctr), Sigskdctr (r, pkdctr)〉 as the response.

Step 11: The patient first checks that the access token Sigskpatient ( addrdctr, reqdctr)
is valid, which indicates patient authorization for the doctor making the reqdctr query on
data collected by the patient’s IoT device.

Step 12: The patient then checks that addrdctr is derived from pkdctr. Finally, it
verifies the signature Sigskdctr(r, pkdctr) to confirm that the response actually comes from
the doctor.

Step 13: If the doctor’s response passes all the above validations, the patient generates
a download link and sends it back to the doctor. Otherwise, the data retrieval request
is rejected.

We have described the registration and authentication process of all entities of smart
healthcare in the proposed identity model SSI-SHS. Figure 5 presents the complete process
of SSI-SHS; the most common scenario starts with a doctor who wants to connect a patient
to a doctor who gets access to the IoMT data based on the request. Other communication
also follows the same process. Any nodes who want to participate in smart healthcare first
get the identity and then present the identity proof to get the healthcare services.
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Figure 5. SSI-SHS process flow scenario: The doctor access the IoMT data.

5. Implementation

A prototype of the proposed SSI-SHS identity model is implemented. The blockchain
network (SHS-BT) is designed on Hyperledger Aries blockchain, a private network using
four nodes: doctor, patient, hospital, and laboratory. Further, the patient’s IoMT device is a
health band that measures the patient’s heartbeat, BP, and sugar.

Terminology:
Identity Ledger (Li): The ledger is the verifiable directory that stores identity records

and transactions. The public data like public keys, service endpoints, credentials schema,
credentials definition, etc. define the identity record. The relationship between identity
record and DID is 1:1, meaning each record has one DID. The DID is unique and resolvable
via an identity ledger without needing any third-party centralized authority.

Trust Anchor: A trust anchor (person or organization) that the ledger already knows,
bootstrap others. In the smart healthcare system, we can think that an organisation(SHS),
hospital, doctors, and other stakeholders must trust anchor roles that bootstrap other
entities into the process.

DID Creation: The DID creation is defined in the DID method, and according to
the DID method, the node passes the minimum information for DID creation. The W3C
organisationmaintains the DID specification registries that include all implemented DID
specifications.

Here, we took the minimum input parameter and generated the DID using the “gen-
rateDID” function. The IoMT device generates cryptographically verifiable public and
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private keys in a trusted execution environment. The device stores the Private key in its
secure environment and passes the public key to generate the DID.

genrateDID(“0x5576E95935566Ebd2637D9171E4C92e60543 f g10”,
“8806157 f dcbcae265667576 f a72d88568db7 f 9ca8b36tyd f e3755ae80457ea f 5”,

“user : password@tcp(example_connection_string : 3106)/”)

This “genrateDID” function returns the DID for the subject in a format:

did : abc : H3C2AVvLMv6gmMNam3uVAjZp f kcJCwDwnZn6z3wXmqPV

Here, “did” is scheme, “abc” is DID method, and the remaining part is method
specific identifier.

DID Documents (DDO): The DID document, as per the W3C following parameter,
must be present in DDO while creating a new DID for a node. The DDO expresses the
cryptographical equations, verification methods, services, and controls. The services enable
secure and trusted interaction of DID subjects with others. The verification method defines
the verification of the DID subject by the verifiers. The DID resolver resolves the DID into
DDO. We used hyperledger aries blockchain to implement the prototype. Listing 1 presents
the DID and DDO used in a prototype implementation.

Verifiable credentials: Verifiable credentials represent statements made by an issuer in
a tamper-evident and privacy-respecting manner. When an organisationissues verifiable
credentials, they attach their public DID to the credential, and the verifier can verify the
same without contacting the issuing authority. The verification method is presented in the
DID document along with other attributes. The issuer cryptographically signs the VC. The
VC includes proofs and claims for the subject. The sample of VC from the implementation
environment is presented by Listing 2.
Listing 1: Example of blockchain based security implementation DDO.
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Listing 2: Example of blockchain based security implementation credential schema.

The Credential Schema is a document that is used to guarantee the structure and, by
extension, the semantics of the set of claims comprising a Verifiable Credential. A shared
Credential Schema allows all parties to reference data in a known way.

The ledger stores a number of different types of transactions. The transactions that:

• Write a new DID and DDO to the ledger.
• Update existing DDO such as rotating keys
• Define a new Schema name, version, and list of attributes for new credentials
• Define a revocation registry for specific credentials
• Update the revocation registry when the issuer issues or revokes the credentials.

Write the public key from a generated pair of signature algorithms for a specific
credentials schema.
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6. Result and Analysis
6.1. Identity Framework Evaluation and Result Analysis

The SSI Identity Model for smart healthcare, including IoMT, has been described in
detail in the previous section. Here, the SSI-SHS framework is evaluated and analyses the
results derived from the prototype experiment.

SSI-SHS Identity Model Evaluation

There are no standard criteria available on how to evaluate an SSI system. Allen
proposed the SSI requirements focusing on personal data control, security, and privacy [12].
In the same direction, Cameron also presented “Seven Laws of Identity” [14]. This is a
well-established framework for the digital identity system. NIST has a standard for “digital
identity.” We reference both guidelines to evaluate the SSI-SSH. We have modified and
deleted some rules per the framework requirement and the practicality of implementing
the guidelines. For example, the interoperability of identities is designed within the smart
healthcare system, but the interoperability outside the smart healthcare system needs a
standardized format and procedure.

The requirements and guidelines are divided into three groups: User control, Security
and Privacy, and Portability.

User Control: This group includes “Existence”, “Control”, “Consent”, and “protection”.

1. Existence: NIST defines that every digital identity must have a non-digital existence
that manages and represents the online identity. In the proposed architecture, the
device and the stakeholder generate their public and private key pair and register
themselves on smart healthcare. The main focus is on the patient and his own devices.

2. Control: “Control” of the owner on their identity is proposed by Allen and Cameron.
This principle defines that users must have control over their identity and be able to
decide which part of their identity they want to share. They should be able to decide
which data they share with others, for how long, and be able to refer to, update or
hide the identity. In the proposed framework, multiple DID can be derived with a
single key pair with different DDOs.

3. Consent: The use of the user’s identity should always be with the user’s agreement.
The user should decide which information and with whom it is shared. Further, the
user should decide the time; this also means what time the other party can have access
to this information.

Security and Privacy: This group includes “Access,” “Transparency,” and “Minimization.”

1. Protection: To preserve the freedom of the user and to keep the balance in the system,
a censorship-resistant, independent, and force-resilient algorithm needs to be run in a
decentralised manner.

2. Minimization: This law describes that the closure of credentials should be as minimal
as possible. The minimum disclosure protects the privacy of the user. The proposed
framework uses zero-knowledge proofs (ZKP) as verifiable credentials presentation.
The ZKP allows cryptographically proven claims without sharing the actual informa-
tion. The claims and proofs are present on the identity ledger, where a verifier can
verify the specific claims.

3. Persistence: The lifetime of the digital address of identity/identifiers should be under
the user’s control. The identifier should exist till the user wants it. In the proposed
system, the revocation of the DID is covered, which fulfils this requirement.

4. One further principle could be privacy-preserving. Even though this is already partly
integrated without explicitly saying it, the privacy-preserving design of services plays
a key role in Self-Sovereign Identity. Reselling user-related information is a large
business on the internet.
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Portability

1. Access: Access to the user’s identity should be accessible to the user at any time. No
intermediaries should prevent the user from accessing their identity. The distribution
and access of data or identity should be accessible to the authorized parties only. In
the proposed framework, only public information is available on the ledger, and the
stakeholders have their personal information (or PII) on local storage. An Access
Control List (ACL) is also designed on blockchain to prevent unauthorized access. If
any party (doctor, hospital, pharmaceuticals, and other stakeholders) wants to access
others’ information, they must first authenticate themselves in the system.

2. Transparency: The identity system must be transparent to each stakeholder. This leads
to high trust and continuous improvement. Further, the participants can control the
actions of each other and prevent and detect malicious actions from happening. The
proposed framework is designed on a blockchain distributed network. Blockchain is
the solution for transparency and trust.

3. Interoperability: The identities should be usable for many services; they should not
be limited to a single service.

We proposed SSI for smart healthcare, and smart healthcare has many services with a
large number of stakeholders. The identity information should be accessible by services in
a standardized way. This should be created.

6.2. Security Analysis of SSI-SHS

In the proposed solution, private information does not store on blockchain. The PII
is stored within the wallet (mobile wallet in implantation) in encrypted mode, and the
wallet is secured using a fingerprint (or PIN or biometric feature the vendor provides). The
proposed system defines the requirement of a secure interface while accessing the wallet
and considers that vendors provide their implementation, so the security analysis of these
implementations is generally challenging. Here, we suppose the vendor provides a secure
way to protect the wallet and its data.

Even though the data in rest compiled the privacy of the design concept, at some point,
the private information must be processed by the service provider’s server. At the time of
personal information processing, data privacy depends on the trust level of implementation
and the segregation of the component. This implies that the highest level of privacy may
only be achieved if a separate organisationoperates each component and there is a process
set up to ensure the implementation does not store data that are supposed to be transient.
Both of these may be done by regular organizational audits.

The security analysis of the issuance and authentication process can tell the security
strength of any system. In the proposed framework, the issuance of the entity’s creden-
tials and authentication is crucial. The analysis will be done for the security strength of
both processes.

6.2.1. Issuance Process Security Analysis

The issuance of VCs to the user consists of many steps, starting from getting the DID
from the user and passing the VC to the user storing these VCs in a secure wallet. The
identity requestor/holder and issuer communicate via a secure communication channel.
The following threats can happen while issuing the credentials:

• The attacker gets the exchanged data between the issuer and holder;
• Man in the middle attacks over DID communication;
• Key Exposure attack;
• DDO forgery attack.

In the proposed SSI-SHS framework, the communication between the issuer and the
requestor is protected at several levels. The certificate pinning is where the public key is
associated with its host and is recommended and used in a prototype implementation. The
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framework considers the exchange of critical encrypted data and is implemented in the
prototype. The certificate pinning prevents the man-in-middle attacks.

Most of the attacks are rooted in key vulnerability exposure attacks. In the proposed
system, the keys, VC, and secret links are secured elements (TEE). Moreover, the keys are
maintained through DKMS. This method can prevent key exposure.

Further, the wallet stores all data in encrypted form. For the DDO forgery, the attacker
needs a trapdoor key with the help of the key exposure technique. Moreover, we have
already discussed that the proposed framework is resistant to key exposure, so DDO
forgery can also be prevented using the proposed framework.

6.2.2. Authentication Process Security Analysis:

The authentication process can have the following attacks:

• Wallet attacks;
• Man in the middle attacks on DID communication;
• By passing an authentication attack.

All wallets at the user’s end need strong encryption. The encryption algorithm must
be strong and searchable, and it should not depend on the storage technology of data in the
wallet. The encryption technique should be able to hide the data pattern in the encrypted
data and rotate the key to protect the wallet without having to re-encrypt the whole data.
This would not be possible with the help of a trivial encryption algorithm. Some strong
encryption, like Ethereum, uses AES-128-CTR cipher with decrypt and MAC, and Indy
wallet uses HMAC-SHA256 and other identity wallets implemented while keeping the
above two requirements. We used a sovrin wallet to store the keys and PII of the user in a
prototype implementation.

Two situations may threaten user personal information: the data are disclosed to the
attacker during the authentication process, or the VC discloses more that the user consented
to share. A common strategy mitigates the first threat by the solution: mandatory TLS
usage with optional certificate pinning with additional application-level encryption. The
second threat relies on Mobile Wallet implementation: it must ensure no data leaves
the Mobile Wallet without the user’s consent. The proposed framework considers that
each function call to obtain data has an exact authorization procedure associated, and the
authorization is applied to the whole identity and each item separately: the user enables
access to his identity, but to access personal information, an additional step is needed. The
verification processes differ for each VC technology. During the verification process of
basic PKI credentials, personal information is exchanged as attributes linked to the VC
after VC verification. During verification, data are exchanged. From this point of view, the
verification approach is more privacy-friendly and provides a much better solution.

6.3. Performance Analysis:
Execution Time Analysis

We first run the primary operation of the SSI-SHS network, i.e., registration of new
stakeholders, registration of IoMT devices with a patient, authentication of an entity on
the network, credentials issuance, and credentials verification. We recorded the execution
time of these primary operations to evaluate the performance of the proposed identity
model. We analysed the model in terms of execution time with 50 peers and ten medical
devices. We put data on medical devices directly (not real-time monitoring). The execution
time depends on many factors like connectivity, hardware, and program complexity, so
the execution time varies from network to network. Here, we captured the data as our
local machine.

Figure 6a presents the time taken in the registration of a stakeholder and the medical
device of a patient. It is clear from Figure 6a,b that IoMT device registration and authenti-
cation take more time than the registration and authentication of stakeholders. The reason
is that the IoMT device lacks communication power and energy. Furthermore, device
registration and authentication include smart contracts, unlike the direct registration and
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authentication of stakeholders. Figure 6b presents the authentication time for stakeholders
and medical devices.

Figure 6. (a) Registration and (b) authentication time of stakeholders and IoMT devices.

Further, we recorded the registration and authentication time with a varying number
of transactions (50, 100, 150 txn) in the network and drew it into Figure 7a,b. Figure 7a
presents the registration time when the number of transactions increases on a network
scale, and Figure 7b presents the authentication time when the number of transactions
increases on a network scale. The scalability of the network depends on the infrastructure
resources used in the implementation. However, as the number of participants increases in
the network, the number of transactions used in both the registration and authentication
process increases. If we use high computation and large storage sources, then increased
transactions can be handled in a timely manner.

Figure 7. (a) Registration time on network scale; (b) authentication time on network scale.

Figure 8 presents the time analysis and the contract deployment analysis for varying
numbers of transactions and peers, and Figure 9 presents the execution time analysis of
off-chain storage. The smart contract is deployed on the blockchain, and nodes trigger
queries through smart contracts for different functionalities. As the network increased, the
smart contract queries also increased. As shown in Figure 8, the execution time of a smart
contract is increased with the number of nodes participating in the network. Further, the
transactions storage also increases with the number of nodes in the network, as presented
in Figure 9.
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Figure 8. Contract deployment analysis.

Figure 9. Execution time analysis of off-chain storage.

We compare our proposed identity model performance with the existing model pro-
posed by Xueping Liang et al. [24] and Rafael Belchior et al. [30]. Our SSI-SHS provides
better performance, as presented in Figure 10. SSI-SHS is better in both phases, i.e., regis-
tration and authentication. Further, we also include the authentication and registration of
IoMT devices, which makes our approach much more robust to security issues.

Figure 10. Performance comparison.
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7. Conclusions

The SSI system is proposed for smart healthcare (SSI-SHS) to protect the user’s privacy
and give the owner control of health data. Smart contracts are designed to request the
user’s data and provide IoMT data access to other trusted parties with a time limit. First, we
designed a distributed network of all stakeholders of smart healthcare on a permissioned
blockchain to limit the participants at the healthcare level, which provides application-level
security. In the proposed identity system, the SSI-SHS and IoMT-SSI are connected through
the common participants in both networks, like patients. The IoMT-SSI manages the identity
of IoMT devices through the device owner rather than the device’s manufacturer. The
device owner controls their health data even if the data is gathered via some smart medical
devices. Further, the results and analysis show that SSI-SHS complies with the identity
guidelines proposed by Allen and Cameron. For future research, the identity model can
be expanded to make it interoperable with other smart parts of a smart city. For example,
smart traffic management in smart cities can be connected with smart healthcare to reduce
the insurance claim process time and prevent fraud in the health insurance process.
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