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Abstract: The hybrid ion capacitor (HIC) is a hybrid electrochemical energy storage device that com-
bines the intercalation mechanism of a lithium-ion battery anode with the double-layer mechanism of
the cathode. Thus, an HIC combines the high energy density of batteries and the high power density
of supercapacitors, thus bridging the gap between batteries and supercapacitors. Two-dimensional
(2D) carbon materials (graphite, graphene, carbon nanosheets) are promising candidates for hybrid
capacitors owing to their unique physical and chemical properties, including their enormous specific
surface areas, abundance of active sites (surface and functional groups), and large interlayer spacing.
So far, there has been no review focusing on the 2D carbon-based materials for the emerging post-
lithium hybrid capacitors. This concept review considers the role of 2D carbon in hybrid capacitors
and the recent progress in the application of 2D carbon materials for post-Li (Na+, K+, Zn2+) hybrid
capacitors. Moreover, their challenges and trends in their future development are discussed.

Keywords: 2D carbon materials; sodium-ion hybrid capacitor; potassium-ion hybrid capacitor;
zinc-ion hybrid capacitor; challenges and prospects

1. Introduction

The depletion of fossil fuel and global warming are forcing human to reduce the
utilization of fossil fuel and cut carbon dioxide (CO2) emissions. Many countries in the
European Union announced a prohibition on the sale of oil-fuelled automobiles, which
will commence from 2025 and be completed in 2040. This has been impelling the rapid
development of electric vehicles, which must be accompanied by the development of
energy storage devices. Such energy storage devices must possess both high energy density
(related to the mileage) and high specific power density (related to charging time and
acceleration time). The state-of-the-art lithium-ion batteries (LIBs) can deliver a high
specific energy density of 200 Wh kg−1, but their specific power density is relatively low
(<350 W kg−1). In contrast, the commercial supercapacitors show high power density of
up to 10 kW kg−1 and long-term durability through the reversible adsorption/desorption
of ions on the electrode surface but have low specific energy densities (<5 Wh kg−1). To
obtain both high energy density and power density, the lithium hybrid ion capacitor (HIC)
emerged in 2001 to bridge the gap between LIBs and supercapacitors [1]. The HIC is a
hybrid electrochemical energy storage device that combines the intercalation mechanism of
a lithium-ion battery anode with the double-layer mechanism of the cathode. Thus, HICs
combine the high energy density of batteries and the high power density of supercapacitors
(Figure 1a) [2].
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Figure 1. (a) Comparison of the features of the battery, supercapacitor, and hybrid capacitor. (b) His-
torical timeline for capacitors. (c) The theme of this review.

Due to the increase in the cost of lithium precursors and unevenly distributed lithium
resources, some alternative batteries for LIBs have been developed recently [2], such as
sodium-ion storage batteries (Na-O2, Na-ion, Na-S, etc.) [3–11], potassium-ion batteries
(K-O2, K-ion battery, etc.) [12–16], and zinc-ion batteries (Zn-air, aqueous zinc-ion batteries,
etc.) [17–21]. Soon afterwards, the corresponding hybrid capacitors were reported. The
sodium-ion hybrid capacitor (NIC) has attracted tremendous research interest since 2012,
when Chen et al. reported sodium-ion pseudocapacitors based on a hierarchically porous
nanowire composite [22]. The first hybrid potassium-ion capacitor (KIC) prototype was
proposed by Azais’s group in 2017, which contained a positive active carbon electrode and a
graphite negative electrode (Figure 1b) [23]. Unlike the above-mentioned hybrid capacitors,
the zinc-ion hybrid capacitor (ZIC) consists of a zinc anode, with its operation based on
Zn2+ deposition/stripping instead of the intercalated/de-intercalated anode [24–26].

Carbon materials are widely utilized in the field of energy storage due to their low
cost, light weight, and easy recovery. Especially in capacitors, carbon materials function as
the various vital constituent parts, such as the activated carbon/porous carbon/graphene
for capacitive-type cathodes [27–32], graphite/graphene/disordered carbon/N-doped
carbon nanotubes for battery-type anodes [33–38], or graphite oxide as a filler for the gel
electrolyte [39]. The capacitor cathode requires the carbon materials to have ample active
sites for reversible anion adsorption/desorption. For the battery-type anode, expanded
interlayer spacing is needed for reversible insertion/extraction of large Na+, K+, or Zn2+

ions. Moreover, it was reported that oxygen-containing functional groups on the carbon
not only provide extra capacitance, but also expand the interlayer spacing of the carbon
and thus improve the diffusion of K+ [28].

Figure 2a compares the advantage and disadvantage of the carbonaceous materials
with different morphologies, from which it is easy to know that compared with 1D fiber
structure and 3D porous structure, 2D morphology is much more suitable for energy stor-
age systems due to its better physicochemical properties, good flexibility, good electrical
conductivity, reliable thermal and chemical stabilities, wider potential window, low pro-
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duction cost and availability of abundant surface functional groups [51,52]. Moreover, the
2D structure exhibits higher energy density and power density than 1D and 3D structures
(Figure 2b).

Figure 2. (a) Comparison of 1D/2D/3D carbonaceous materials when used in supercapacitors.
(b) Ragone plot of some typical 1D [40–43], 2D [33,44–46], and 3D [47–50] carbon-based supercapaci-
tors; rGO is reduced graphene; CNT is carbon nanotubes; CuHCF is copper hexacyanoferrate.

To date, there has been no review focusing on 2D carbon-based materials for the
emerging post-lithium hybrid capacitors. Therefore, in this conceptual article, we focus
on the latest applications of 2D carbon-based materials in emerging post-lithium hybrid
capacitors, and the theme of this review is summarized in Figure 1c. First, we describe the
energy storage mechanism of hybrid capacitors; then, we summarize the recent progress
in the utilization of 2D carbon materials in the field of sodium-ion hybrid capacitors,
potassium-ion hybrid capacitors, and zin-ion hybrid capacitors; finally, the challenges and
future prospects of 2D carbon materials for post-lithium hybrid capacitors are proposed.

2. Basic Knowledge of Hybrid Capacitors
2.1. Energy Storage Mechanism of Hybrid Capacitors

Based on the energy storage mechanism, supercapacitors can be classified into three
types [2]: (1) electrochemical double-layer capacitors (EDLCs), which store energy through
the adsorption of ions on the surfaces of the electrodes; (2) pseudocapacitors (PCs), which
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have a storage mechanism based on fast surface redox reactions; and (3) hybrid capacitors,
which store energy through a combination of the adsorption of ions on the surface of
the electrodes and redox reactions of their electrodes. In terms of cell configuration, the
capacitors are categorized into two types [2,53–57]: one type includes the symmetric
capacitors (such as EDLCs and PCs), in which the same material is used for both electrodes;
the other type includes the asymmetric supercapacitors such as hybrid capacitors, as shown
in Figure 3. Since the topic of this review is the post-Li hybrid capacitors, we will focus on
the energy storage of hybrid capacitors in the following part.

Figure 3. Schematic illustration of the configuration of hybrid capacitors.

Generally, hybrid capacitors contain both non-faradaic electrodes (based on ion ad-
sorption on their surfaces) and faradaic electrodes (based on redox reactions) [51]. The
non-faradaic electrodes act as cathodes, and the faradaic electrodes serve as anodes. During
the charging process, the anions from the electrolyte are adsorbed on the surface of the cath-
ode, while the cations take part in the redox reactions on the anode. Conversely, during the
discharging process, the anions desorb from the surface of the cathode, and the cations de-
intercalate/de-alloy from the anode. Thus, both anions and cations of electrolyte salts take
part in the energy storage mechanism of hybrid capacitors, where the anions are involved in
the non-faradaic process and the cations take part in the faradaic process. Carbonaceous ma-
terials are usually chosen as capacitor-type cathodes, such as active carbon [35,45,46,58–63],
graphene [64,65], etc., which store energy by adsorption of anions from the electrolyte.
The battery-type anode in hybrid capacitors, featuring redox reactions with cations, can
be classified into mainly four types, according to their reaction mechanisms, which are
related to the particular cations. (i) Insertion type: Generally, the charge carriers insert
into the layered structures like lithium-ion batteries, such as graphite [45,66], graphene (or
reduced graphene oxide (rGO)) [33,44,46,64,65], Ti oxides (TiO2 [67–70], Li4Ti5O12 [1,71,72],
Li2Ti3O7 [73], NaTi2(PO4)3 [65,74]) and spinel-LiMn2O4 [75–77]. (ii) Conversion type:
The cations directly react with anode materials. This group mainly contains iron oxides
(Fe3O4 [78], Fe2O3 [79]). (iii) Alloying type: Including silicon/copper [80], boron-doped
Si/SiO2/C [81] and Sn@N-rich CNT [82], which store energy by forming alloys with cations.
(iv) Plating/stripping type: Such as zinc foil in zinc-ion hybrid capacitors [26,83,84] and
Mg foil in Mg-ion hybrid capacitors [85,86].

2.2. The Classification of Hybrid Capacitors

Various hybrid capacitors have so far been reported. According to the valence of the cation
charge carriers, hybrid capacitors can be divided into two types: one contains alkali-metal-ion
(A+) hybrid capacitors, including Li-ion hybrid capacitors [46,87–95], Na-ion hybrid capaci-
tors [33,34,37,44,45,62,64,66,96–105] and K-ion hybrid capacitors [35,36,38,58,59,106–110]; the
other contains multivalent metal-ion hybrid capacitors, including Zn-ion hybrid
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capacitors [25–27,29–31,83,84,111–114], Mg-ion hybrid capacitors [85,86], Ca-ion hybrid ca-
pacitors [115], and Al-ion hybrid capacitors [116–118]. These hybrid capacitors can share
the same cathode materials, based on the adsorption/desorption of anions onto/from the
surface. However, there is a huge difference in the selection of anodes, since the cations take
part in the faradaic process on the anodes as stated in Section 2.1. In the case of alkali-metal-
ion (Li+, Na+, K+) hybrid capacitors, generally, the anode candidates are carbon materials,
Ti oxides, and iron oxides, for which the reaction mechanisms related to the cations are
based on intercalation, conversion, and alloying. Metals based on the plating/stripping,
however, are not suitable for alkali-metal-ion hybrid capacitors. In terms of multivalent
metal-ion hybrid capacitors, except for Al-ion hybrid capacitors, the metals (such as Mg, Zn,
and Ca) can be directly used as anodes based on the plating/stripping storage mechanism.
For Al-ion hybrid capacitors, the anode materials are usually intercalation-type materials,
such as MXene [117], W18O49 [118], and MoO3 [116].

2.3. The Roles of 2D Carbon Materials in Hybrid Capacitors

In hybrid capacitors, 2D carbon materials can play several roles, such as cathodes,
anodes, and the conductive matrix, which can greatly enhance the kinetics of electrodes.
To achieve excellent performance, 2D carbon materials must meet certain requirements.
When 2D carbon materials serve as capacitor cathodes, they must have ample active
sites for reversible anion adsorption/desorption. To increase the density of active sites,
graphene must be prevented from restacking by using some spatial pillars (such as carbon
nanotubes (CNTs) or polymer fibres) [35,84,101]. One example is reported by Zhao et al.;
by manipulating the interfacial chemistry and interactions between the polyimide and
graphene, the sodium-ion storage capacity of the composite was significantly improved,
from∼50 mAh g−1 for pure polyimide to 225 mAh g−1 for a polyimide−graphene compos-
ite [35]. In addition, it has been recognized that foreign atom doping can possibly adjust the
electronic structure and induce more edge sites and defects, which is favourable for enhanc-
ing the capacity via increasing the adsorption sites for anions [36,46,59,66,82,105,119–121].
Wen et al. co-doped graphene with S and N atoms; the supercapacitor based on the
doped graphene exhibited superior potassium storage capability with a high capacity of
449 mAh g−1 at 0.05 A g−1. On the contrary, single S- and single N-doped graphene show
lower capacitances of 310 and 183 mAh g−1 at the same rate [59].

In the case of battery-type anodes, 2D carbon materials are required to have large
enough interlayer spacing for reversible insertion/extraction of large-size Na+, K+ or
Zn2+ ions. It has been demonstrated that the interlayer spacing of carbon can be ex-
panded through rich P and N heteroatom doping into the carbon lattice [36]. Also,
the heteroatom-doped carbon could also increase the density of adsorption sites for
cations [36]. Moreover, functionalized carbon materials could improve capacitor per-
formance by expanding the interlayer spacing and enhancing adsorption sites for cations.
For example, oxygen-functionalized carbon nanofibers could store more K ions through
−C = O + e− + K+ ↔ −C−O− K , and the incorporation of the oxygen-containing func-
tional groups could expand the interlayer spacing of the carbons and thus result in im-
proved K+ diffusion [28].

In contrast to the capacitive-type cathodes, battery-type anodes suffer from sluggish
cation diffusion. Therefore, 2D carbon materials are generally utilized as conductive
matrices to form graphene composite electrodes, enhancing the diffusion kinetics to address
the kinetic imbalance between the two electrodes [60–63,65,87,108]. For example, Huang
et al. reported a hybrid sodium supercapacitor based on an interlayer-expanded MoS2/rGO
composite. The graphene skeleton frame delivered sufficient charges and the highly
interlayer-expanded MoS2 achieved fast ion diffusion; the as-prepared composite exhibited
excellent performance as the anode material for sodium capacitor, delivering 580 mAh g−1

capacitance at 100 mAh g−1 [87].
The roles of 2D carbon materials in hybrid capacitors and their relevant requirements

are summarized in Figure 4. In the following parts, we will discuss the application of 2D
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carbon materials in the post-Li hybrid capacitors in detail.

Figure 4. The roles of 2D carbon materials in hybrid capacitors.

3. Graphite/Graphene for Post-Li Hybrid Capacitors
3.1. Graphite/Graphene as Anode for Post-Li Hybrid Capacitors

Graphite is a commercial, layered anode material for Li-ion batteries, due to its natural
abundance. The application of graphite in anodes for the storage of sodium ions and potas-
sium ions, however, is inhibited by its sluggish kinetics, caused by the strong interactions
between graphite and Na+/K+. Recently, it has been recognized that the co-intercalation of
glyme-solvated Na+ or K+ can enable fast and highly reversible intercalation/extraction
of Na+/K+ into/from graphite [122–124]. Inspired by the successful utilization of natural
graphite as anode electrode material for sodium-ion batteries and potassium-ion batteries,
Liu X. et al. used natural graphite as anode electrode for sodium-ion hybrid capacitors
(NICs) and potassium-ion capacitors (KICs). The electrochemical performance of natural
graphite as anodes for NIC or KIC was first evaluated in three-electrode cells using the
electrolyte of 1 M NaPF6 or KPF6 in diglyme. The results showed a high initial Coulombic
efficiency (ICE) of over 94%, suggesting highly reversible intercalation–deintercalation of
diglyme-solvated Na+ or K+ (Figure 5a,b). Coupled with activated carbon (AC) as cathode,
graphite/AC NIC and KIC full cells showed high energy density and power density, with
21.8 Wh kg−1/17,127 W kg−1 and 18.8 Wh kg−1/15,887 W kg−1, respectively [45].

Graphene is widely utilized as anode electrode for sodium-ion batteries and potassium-
ion batteries [125–128] due to its excellent conductivity and larger interlayer spacing com-
pared to natural graphite. When graphene is used as a battery-type anode in hybrid
capacitors, its large interlayer spacing rather than a big surface area is crucial for the
capacitive performance. Table 1 summarizes graphene/graphite as anode in post-Li hybrid
capacitors. It was recognized that the heteroatoms doped into carbon can both enlarge the
interlayer spacing of the carbon and increase the adsorption sites for cations [33,36,46]. Y.
S. Lee’s group prepared S, N-doped graphene hollow spheres through the hard template
method. Graphene oxide was wrapped around amino-functionalized silica spheres and
then thermally reduced with thiourea in a furnace at 700 ◦C, as illustrated in Figure 5c.
After removing the SiO2 template, graphene with a hollow sphere morphology was ob-
tained (Figure 5d), which is beneficial for electron and mass transport. Transmission elec-
tron microscopy—energy dispersive spectroscopy (TEM–EDS) elemental mapping clearly
demonstrated the uniform doping of nitrogen and sulphur on the carbon lattices (Figure 5e).
Heteroatom doping can improve the electrical conductivity, resulting in graphene that
favours fast surface-mediated Na-ion storage (Figure 5f). In the potassium-ion hybrid



Polymers 2021, 13, 2137 7 of 23

capacitor, it was also demonstrated that N,P-doped graphene offered superior rate per-
formance and the largest capacity in comparison with bare graphene and single-atom (N
or P)-doped graphene, as shown in Figure 5g–i [46]. However, graphite/graphene as the
battery-type anode for hybrid capacitors suffers from kinetic imbalance between the anode
and the capacitor-type cathode, so it is necessary to improve its rate performance through
heteroatom doping.

Figure 5. Graphite/graphene as anode for post-Li (Na+, K+) hybrid capacitors: charge–discharge
curves of graphite as anode in three-electrode (a) sodium half-cells and (b) potassium half-cells.
Reproduced with permission [45]; Copyright 2019, American Chemical Society. (c–f) hollow sphere
composite of N,S-doped graphene (NS-GHNS) for sodium-ion hybrid capacitors: (c) schematic
illustration of the synthesis of NS-GHNS, (d) transmission electron microscope (TEM) image and
(e) energy dispersive spectroscopy (EDS) mapping of NS-GHNS, (f) rate performance of NS-GHNS
as anode in sodium half-cells; reproduced with permission [33], Copyright 2020, Elsevier. (g–i)
N,P-doped graphene (NPG) as anode for potassium hybrid capacitors: (g) TEM image, (h) EDS
mapping (h-1 to h-5 represent the distribution of C, O, N, P and all elements), and (i) rate performance
of NPG at different current densities; (G, NG, and PN stand for graphene, N-doped graphene, and
P-doped graphene, respectively) Reproduced with permission [46], Copyright 2019, Springer.
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Table 1. Graphite/graphene for post-Li hybrid capacitors.

Materials Function Counter-
Electrode Electrolyte

Energy
Density

(Wh kg−1)

Power
Density

(W kg−1)

Reported
Cycles Capacitance

Natural
graphite [45]

Anode for
NIC

Activated
carbon NaPF6/Diglyme 21.8 17,127 5000 at

15 A/g
83 mAh/g at

2 A/g

B-doped
graphite [66]

Cathode for
NIC

Hollow
carbon

NaPF6/EC-
DMC 108 495 2000 at 1 A/g

114
mAh/cm3 at

0.05 A/g

Graphene
[65]

Cathode for
NIC

NaTi2(PO4)3/
graphene

NaClO4 in
organic
solvent

— — 75,000 at
4 A/g

200 mAh/g
at 0.1 A/g

Oxygen-
functionalized

graphene
[44]

Anode/cathode
for NIC Same Gel polymer

electrolyte 121.3 300 2500 at 1 A/g 460 mAh/g
at 20 mA/g

N,S-doped
graphene

hollow
spheres [33]

Anode/cathode
for NIC Same NaClO4/EC-

DEC 69 51,000 10,000 at
5 A/g

272 mAh/g
at 0.5 A/g

Natural
graphite [45]

Anode for
KIC

Activated
carbon KPF6/Diglyme 18.8 15,887 5000 at

15 A/g
80 mAh/g at

2 A/g
N,P-doped
graphene

[46]

Anode for
KIC

Activated
carbon

KPF6/EC-
DEC 41.6 14,976 500 at

0.5 A/g
859 mAh/g
at 0.1 A/g

3.2. Graphite/Graphene as Cathode for Post-Li Hybrid Capacitors

Due to its large specific surface area, graphene is a suitable capacitor-type cathode
for hybrid capacitors [65]. Generally, graphene suffers from layer restacking during the
reductive synthesis, decreasing the energy density of capacitors. Apart from the specific
surface area, oxygen-containing functional groups, especially carbonyl and carboxyl, can
contribute to pseudocapacitance through surface redox reactions with cations, which is
able to increase the total capacitance of graphene. To obtain oxygen-group functionalized
graphene without restacking, X. Zhang et al. used in situ grown ZnO nanosheets as a
blocking agent to prevent the graphene layer from restacking during the heat treatment,
and then oxygen-rich graphene (OCG) was prepared after removing ZnO (Figure 6a,b) [44].
The high-resolution C 1s XPS spectrum suggested that some oxygen groups were detected
on the surface of graphene (Figure 6c), including C–O (286.4 eV), C=O (287.9 eV) and
O–C=O (288.9 eV). As a capacitor-type positive electrode, the OCG electrode was evaluated
in Na half-cells with a voltage window of 2.5–4.2 V at different current densities (Figure 6d).
The charge–discharge curves presented a quasi-linear relationship between the voltage
and the capacity, demonstrating dominant electronic double-layer capacitance and some
pseudocapacitance contribution. Although the oxygen groups could provide some pseudo-
capacitance, it should be noted that a much higher content of oxygen functional groups
would result in a drop in the conductivity, so that the reactivity is partly reduced [64]. It
is acknowledged that heteroatom doping in carbon can enhance the electronic conductiv-
ity of carbon materials. Thus, N, S-doped graphene with oxygen-functionalized groups
was prepared as cathode for NICs. It showed good capacitive capacity in NICs, with
discharge capacities of ~52 and ~19 mAh g−1 at current densities of 0.2 A g−1 and 20 A g−1,
respectively [33]. Its capacitance is derived from the pseudocapacitive reaction between
the sodium ions and the oxygen-functionalized group and heteroatoms. Moreover, it was
observed that heteroatom doping could improve the capacitance of graphite as cathode for
NICs through extra intercalation/deintercalation reactions [66]. In situ Raman spectroscopy
was conducted on a B-doped graphite cathode in the Na-ion hybrid capacitor, showing
that the D-band and G-band gradually became weak during charging (Figure 6e). These
changes to the G and D bands in Raman spectra suggest that anions were intercalated into
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B-doped graphite during the charging process. Furthermore, density functional theory
(DFT) was used to investigate PF6 anion storage in the cathode of hybrid capacitors. The
results showed that the energy barrier for PF6 diffusion in B-doped graphite is much lower
than that for natural graphite (Figure 6f,g), which contributed to the fast anion diffusion
in B-doped graphite in NICs [66]. Thus, there are two possible anion storage mechanisms
for the cathode in hybrid capacitors, that is, surface-controlled pseudocapacitive redox
reactions and diffusion-controlled intercalation/deintercalation redox reactions.

Figure 6. Graphite/graphene as cathode for post-Li capacitors. (a–d) Oxygen-functionalized
graphene (OCG) as cathode for Na-ion hybrid capacitors: (a) schematic illustration of the synthesis
of OCG, (b) TEM image, (c) C 1s XPS analysis, and (d) charge–discharge curves at different current
densities. Reproduced with permission [44], Copyright 2018, Elsevier. (e–g) B-doped graphite (BG) as
cathode for sodium-ion hybrid capacitors: (e) in situ electrochemical–Raman spectroscopy test of the
BG electrode in an Na-ion hybrid capacitor, (f) optimized PF6 diffusion in B-doped graphite layers,
and (g) the corresponding energy barriers from DFT calculations. Reproduced with permission [66],
Copyright 2018, Royal Society of Chemistry.

4. 2D Carbon Nanosheets for Post-Li Hybrid Capacitors
4.1. 2D Carbon Nanosheets as Anode for Post-Li Hybrid Capacitors

Carbon nanosheets are a key member of the 2D carbon material family, and they can be
prepared from decomposition of biowastes (peanut skin [129,130] and pencil shavings [30])
and organic molecules (C2H2 gas [58], citric acid [59], ethylenediaminetetraacetic acid tetra-
sodium salt [107], and sodium citrate [131]). Nanostructure and dimensional design have
been demonstrated as an effective approach to achieve fast sodium-ion insertion/extraction
of carbon materials. It was reported that 3D architectures composed of carbon sheets are
promising anode materials, which have both large surface area and short diffusion paths,
thus exhibiting fast kinetics [129–131]. Combined with heteroatom doping and oxygen
functionalization, the carbon nanosheet architecture presents excellent diffusion kinetics
in hybrid capacitors [58,59,107]. Representative examples of 3D architectures composed
of carbon nanosheets are summarized in Table 2. Oxygen-rich carbon nanosheets (CNSs)
were prepared by chemical vapour deposition using decomposing C2H2 gas on Na2CO3
templates, as illustrated in Figure 7a. The heating temperature deeply affected the carbon
nanosheet morphology, and the carbon nanosheets obtained at 800 ◦C showed typically
graphene-like features (Figure 7b). C 1s XPS spectra showed that there were abundant
oxygen groups in CNSs (Figure 7c). Owing to their unique structure and abundant exposed
surfaces with disordered and oxygen-rich sites, they exhibited excellent rate capability for
potassium-ion storage (Figure 7d,e). Coupled with activated carbon (AC) as cathode, a
CNSs/AC potassium-ion hybrid capacitor delivered high energy density and power den-
sity of 149 Wh kg−1 and 21,000 W kg−1, respectively [58]. X. Hu et al. confirmed that the
sulphur and nitrogen-doped into carbon nanosheets (S-N-PCNs) can enlarge the interlayer
spaces and provide ample structural defects and redox active sites, thus improving the
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pseudocapacitive activity from 100 to 380 mAh g−1 (Figure 7j) and enabling fast kinetics
towards efficient potassium-ion storage. When S-N-PCNs was used as anode and activated
carbon as cathode, the AC/S-N-PCNs potassium-ion hybrid capacitor showed a high
energy density of 187 Wh kg−1 and a high power density of 5136 W kg−1 [59]. Therefore,
the combination of nanostructured design of carbon nanosheets, heteroatom doping, and
oxygen functionalization is an effective strategy to obtain carbon anodes with excellent
energy density and power density for hybrid capacitors.

Table 2. Carbon nanosheets for post-Li hybrid capacitors.

Materials Function Counter-
Electrode Electrolyte

Energy
Density

(Wh kg−1)

Power
Density

(W kg−1)

Reported
Cycles Capacitance

Peanut skin
derived carbon

nanosheet
[129]

Cathode/anode
for NIC Same NaClO4/EC-

DEC 45 12,000 3000 at 5 A/g 461 mAh/g
at 0.1 A/g

Peanut shell
carbon

nanosheet
[130]

Cathode/anode
for NIC Same NaClO4/EC-

DEC 50 16,500 100,000 at
51.2 A/g

161 mAh/g
at 0.1 A/g

3D
architectures
composed of
carbon sheets

[131]

Anode for
NIC

Activated 3D
architecture
composed of
carbon sheets

NaClO4/DMC 111 200 10,000 at
10 A/g

400 mAh/g
at 0.1 A/g

Oxygen-rich
carbon

nanosheets [58]

Anode for
KIC

Activated
carbon

KPF6/EC-
DEC 149 21,000 3000 at 5 A/g 369 mAh/g

at 0.05 A/g

3D
architectures
composed of

N-doped
carbon

nanosheets
[107]

Anode for
KIC

Activated 3D
architecture
composed of

N-doped
carbon

nanosheets

KPF6/EC-
DMC 76.4 21,000 10,000 at

2 A/g
207 F/g at

1 A/g

S,N-doped 3D
porous carbon
nanosheet [59]

Anode for
KIC

Activated
carbon

KPF6/EC-
DEC 187 5136 6000 at 2 A/g 107 mAh/g

at 20 A/g

4.2. 2D Carbon Nanosheets as Cathode for Post-Li Hybrid Capacitors

Carbon nanosheets derived from biowaste have abundant oxygen-containing func-
tionalities and defects, thus providing extra reversible adsorption interaction of anions
at surface defects and functional groups [30,129,130]. The outer skin of a peanut shell
is rich in cellulosic fibrils and highly heterogeneous. These microfibrils are interlinked
by a minority phase of much shorter branched polysaccharide tethers and polyphenolic
polymers. Thus, the outer skin of a peanut shell is an ideal precursor to prepare carbon
nanosheets with abundant surface functional groups (PSNC) through hydrothermal and
chemical activation processes [130]. The XPS spectra show that there are three different
types of oxygen-containing functional groups on the surface of PSNC: C=O quinone groups,
C-OH phenol/C-O-C ether groups, and COOH carboxylic groups. When the PSNC was
used as cathode in Na half-cells, it showed high capacitance of 119 F g−1, greater than
commercial activated carbon with 36 F g−1. The excellent capacitive performance of PSNC
is possibly attributable to its large surface area and mesopore content, as well as its rich oxy-
gen content. Until now, the designed carbon nanosheet nanostructures have been applied
mainly as anodes for NICs and KICs, and as cathodes for NICs, although reports are still
few (Table 2). Moreover, there are no reports about the application of carbon nanosheets in
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zinc-ion hybrid capacitors. More investigations on the application of carbon nanosheets
and other nanostructures in hybrid capacitors are needed in the future.

Figure 7. Carbon nanosheets as anode for post-Li capacitors. (a–e) Oxygen-rich carbon nanosheets
(CNS) for potassium-ion hybrid capacitor: (a) schematic illustration of the growth of CNSs and
(b) TEM images of CNSs obtained at different deposition temperatures, (c) C 1s XPS analysis of CNS
deposited at 700 ◦C, (d) rate capability of CNSs, (e) schematic illustration of the unique features of
CNS as anode material in potassium-ion batteries. Reproduced with permission [58], Copyright
2019, Wiley-VCH. (f–j) S,N-doped porous carbon nanosheets (S-N-PCNs) as anode for potassium-ion
capacitors: (f) SEM image, (g) TEM image, and (h) EDS mapping of C, N, and S in the S-N-PCNSs, (i)
charge–discharge curves, and (j) cycling performance of S-N-PCNs. Reproduced with permission [59],
Copyright 2019, Wiley-VCH.

5. Graphene Composites for Post-Li Hybrid Capacitors
5.1. Graphene Composites as Anode for Post-Li Hybrid Capacitors

As electrode material, the tendency towards aggregation restricts the surface area of
graphene, limiting its capacitance. To separate 2D graphene sheets, carbonaceous pillars
(carbon nanotubes, polymers, and carbon polyhedral) are introduced into the graphene
composites, which not only inhibits the graphene aggregation, but also contributes to the
capacitance [32,132–135]. Ruan et al. reported a “dual-carbon” structure consisting of
graphene and microporous carbon polyhedral (NMCP) derived from metal–organic frame-
works (denoted as NMCP@rGO, where rGO is reduced graphene oxide) (Figure 8a), which
benefited from the synergistic effect of dual-carbon and showed superior performance in
K-ion hybrid capacitors. Owing to the NMCP pillars, NMCP@rGO had the largest inter-
layer distance of 0.378 nm compared with 0.341 nm for rGO and 0.355 nm for NMCP. As
shown in Figure 8b, NMCP@rGO showed a better K-ion storage capacity of 386 mAh g−1

at 0.05 A g−1 in comparison with pure graphene or NMCP [35]. When NMCP@rGO was
used as the anode and activated carbon (AC) as cathode, a NMCP@rGO/AC K-ion hy-
brid capacitor presented a high energy/power density (63.6 Wh kg−1 at 19,091 W kg−1).
Owing to the unique 2D morphology, the graphene composite is beneficial for preparing
free-standing electrodes. Zhao’s group fabricated a sodium-ion hybrid capacitor with
a free-standing polyimide–graphene composite as the negative electrode and reduced
graphene oxide as the positive electrode, showing a high energy density of 21.5 Wh kg−1

at a power density of 3400 W kg−1 (Figure 8c) [101].
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Figure 8. Graphene composites as anodes for post-Li hybrid capacitors. (a,b) NMCP@rGO anode for
potassium-ion hybrid capacitors: (a) TEM image, (b) rate capability of NMCP@rGO potassium half-
cell. Reproduced with permission [35], Copyright 2020, Wiley-VCH; (c) flexible sodium-ion hybrid
capacitor with a graphene composite anode. Reproduced with permission [101], Copyright 2018,
American Chemical Society; (d–f) NiCo2O4@N-doped rGO (NCO@N-rGO) as anode in a sodium-ion
hybrid capacitor: (d) TEM image, (e) EDS mapping, and (f) rate performance of NiCo2O4 (NCO) and
NiCo2O4@rGO. Reproduced with permission [62], Copyright 2018, Royal Society of Chemistry.

The intercalated anodes (such as TiO2 [61], Nb2O5 [60], NaTi2(PO4)3 [65], etc.) possess
poor intrinsic electronic conductivity, thus suffering primarily from a kinetic imbalance
between the two electrodes that causes the entire capacitor system to collapse, with con-
sequent poor and inferior performance. The adsorption kinetics of the carbon-based
electrodes must be equivalent to that of the intercalation electrode by the storage of equiv-
alent amounts of anions on the surface of the carbon-based electrode [68]. Graphene is
used as a conductive matrix to greatly enhance the kinetics with superior sodium inser-
tion/extraction at high current rates [65,136]. NiCo2O4 was tested as the anode electrode
for sodium-ion hybrid capacitors, but it showed inferior rate performance. When encap-
sulated into N-doped graphene, the electronic conductivity of NiCo2O4@N-doped rGO
was significantly improved due to close contact between the NiCo2O4 particles and the
graphene sheets (Figure 8d,e), thus enhancing the diffusion kinetics for sodium-ion storage
(Figure 8f). Using activated carbon as the cathode, the AC//NiCo2O4@N-doped rGO
sodium-ion hybrid capacitor exhibited a high power density of 9750 W kg−1 with an
energy density of 48.8 Wh kg−1 [62]. Examples of graphene as conductive matrix in hybrid
capacitors are summarized and listed in Table 3.
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Table 3. Graphene composites for post-Li hybrid capacitors.

Materials Function Counter-
Electrode Electrolyte

Energy
Density

(Wh kg−1)

Power
Density

(W kg−1)

Reported
Cycles Capacitance

Polyimide/
graphene

composite [101]
Anode for NIC Graphene NaClO4/EC-PC-

0.3%FEC 55.5 395 200 at
25 mA/g

225 mAh/g at
100 mA/g

NaTi2(PO4)3/
graphene [65] Anode for NIC Graphene NaClO4 80 8000 75,000 at 4 A/g 118 F/g at

0.15 A/g
Nb2O5/graphene

[60] Anode for NIC Activated
carbon

NaPF6/EC-
DMC+5%FEC 76 20,800 3000 at 1 A/g 750 mAh/g at

0.025 A/g

MoS2/rGO [87] Anode for NIC N-doped 3D
graphene

NaClO4/EC-
DMC 43 103,000 10,000, no rate 585 mAh/g at

0.1 A/g for Na
TiO2/graphene

[61] Anode for NIC Activated
carbon

NaClO4/EC-
PC+5%FEC 25.8 1367 10,000 at

3.35 A/g
162 mAh/g at

1.675 A/g
NiCo2O4/N-
doped rGO

[62]
Anode for NIC Activated

carbon

NaPF6/diethylene
glycol dimethyl

ether
48.8 9750 100 at 0.1 A/g 439 mAh/g at

0.05 A/g

Nitrogen-doped
carbon

polyhedron@
rGO [35]

Anode for KIC Activated
carbon KPF6/EC-DEC 63.6 19,091 6000 at 5 A/g 351 mAh/g at

0.05 A/g

Nitrogen-doped
MoSe2/graphene

[63]
Anode for KIC Activated

carbon KPF6/EC-DEC 119 7212 3000 at 1 A/g 401 mAh/g at
0.2 A/g

Co2P nanorod/
graphene [108] Anode for KIC Activated

carbon
KPF6/EC-DEC-

EMC 87 4260 5000 at 0.2 A/g 374 mAh/g at
20 mA/g

MXene-rGO
aerogel for ZIB

hybrid [83]

Cathode for
ZIC Zn foil 2M ZnSO4 34.9 279.9 75,000, no rate 128.6 F/g at

0.4 A/g

rGO/CNT for
flexible zinc-ion
hybrid capacitor

[84]

Cathode for
ZIC Zn foil ZnSO4/PAA

hydrogel
48.5

mWh/cm3
179.9

mW/cm3
10,000 at

3.2 A/cm3
104.5 F/cm3 at

0.4 A/cm3

Binder-free
PANI@graphene

[26]

Cathode for
ZIC Zn foil 2M ZnSO4 138 2455 6000 at 0.1 A/g 154 mAh/g at

0.1 A/g

5.2. Graphene Composites as Cathode for Post-Li Hybrid Capacitors

To date, graphene composites reported as cathodes for post-Li hybrid capacitors have
mainly been applied in Zn-ion hybrid capacitors. Moreover, these reported graphene com-
posites are prepared as flexible electrodes for flexible Zn-ion hybrid capacitors [26,83,84]. It
was demonstrated that a graphene composite hydrogel with a 3D porous nanostructure
can significantly enlarge the active interface area between the electrode and the electrolyte,
boosting the capacity of hybrid capacitors [26,137]. MXene (Ti3C2Tx)/reduced graphene ox-
ide aerogel (MXene-rGO) was prepared by immersing rGO aerogel in an MXene nanosheet
dispersion and freeze-drying, which showed the lightweight characteristic (Figure 9a).
MXene-rGO presented a porous fishing net structure with the MXene uniformly attached
to the rGO, as shown in Figure 9b,c. MXene-rGO aerogel was directly used as flexible
cathode electrode, coupled with Zn foil to assemble Zn-ion hybrid capacitors. The charge—
discharge curves formed symmetrical triangles at various current densities, suggesting
good reversibility of the MXene-rGO/Zn hybrid capacitor [83]. 3D graphene@polyaniline
(PANI) hydrogel was reported as flexible cathode for Zn-ion hybrid capacitors, exhibiting
excellent capacitive performance (Figure 9e–h). The PANI@rGO featured a 3D intercon-
nected porous network with PANI particles tightly anchored on the graphene (Figure 9f,g).
This unique structure combined the properties of good interface effects (e.g., large surface
area, short diffusion path) and the good conductivity of graphene, thus promoting the
transport of charges and ions, so that it demonstrated better capacitive performance than
bare graphene aerogel (Figure 9h). Besides flexible capacitors, graphene composites can be
easily used to assemble fibre-shaped capacitors, which can be manufactured to be suitable
for integrating into weavable textiles. Zhang et al. reported a fiber-shaped Zn-ion hybrid
capacitor with rGO/CNT composite fiber as cathode [84]. rGO/CNT fiber was prepared
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by hydrothermally assembling in capillary columns using CNT and graphene oxide, as
illustrated in Figure 9i. It is the limitation of the liquid electrolyte that challenges the
utilization of Zn-ion capacitors in flexible and wearable devices. Hence, it is imperative to
present new design chemistries for Zn-ion capacitors using solid/quasi-solid electrolytes
to show their possible application in wearable electronics. Neutral ZnSO4-filled polyacrylic
acid hydrogel was shown to act as such a quasi-solid-state electrolyte, which offered high
ionic conductivity and excellent stretchability (Figure 9j). The assembled fibre-shaped
Zn-ion hybrid capacitor delivers a high energy density of 48.5 mWh cm−3 at a power den-
sity of 179.9 mW cm−3, with excellent mechanical flexibility under different deformations
(Figure 9k). Due to their low cost and direct utilization of Zn metal as anode, Zn-ion hybrid
capacitors are possibly promising and attractive energy storage devices. At present, the
corresponding research is still in its infancy, and more investigations on developing new
cathode materials need to be undertaken.

Figure 9. Graphene composites as cathodes for Zn-ion hybrid capacitors. (a–d) MXene@rGO
aerogel for Zn-ion hybrid capacitors: (a) MXene-rGO aerogel standing on a piece of leaf, (b) SEM
image, (c) EDS mapping, and (d) charge–discharge curves at current densities from 0.4 to 6 A g−1.
Reproduced with permission [83], Copyright 2019, Wiley-VCH. (e–h) PANI@graphene hydrogel
for a Zn-ion hybrid capacitor: (e) optical images of a 3D graphene hydrogel cylinder and the
free-standing electrode film, (f) SEM and (g) TEM images of PANI@graphene, (h) galvanostatic
charge–discharge profiles. Reproduced with permission [26], Copyright 2018, Royal Society of
Chemistry. (i–k) CNT@rGO composite for Zn-ion hybrid fiber capacitors: (i) schematic illustration
of the synthesis of CNT@rGO and the assembly of a Zn-ion hybrid fibre capacitor, (j) schematic
illustration of a PAA hydrogel electrolyte and a photograph of a polyacrylic acid (PAA) electrolyte;
(k) cyclic voltammetry (CV) curves of the flexible Zn-ion hybrid fibre capacitor when bent at different
angles. Reproduced with permission [84], Copyright 2019, Wiley-VCH.

6. Current Issues for 2D Carbon Materials for Post-Li Hybrid Capacitors
6.1. Issue of the Massive Production of 2D Carbon Materials

The massive production of 2D carbon materials is the prerequisite for their wide
application. “Massive scale” in industry is typically a kilogram of powder or suspension
containing graphene flakes that can be produced in one batch, which has controllable
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and uniform properties. On the contrary, scotch tape and Hummer’s method are only
suitable for lab scale as only milligrams of sample could be obtained each time. The
following factors must be considered for the massive production of 2D carbon materials:
(i) how to achieve the desired properties and morphology for target graphene products;
(ii) the scalability (or feasibility) from laboratory to industry; and (iii) the overall cost and
environmental requirements. According to a review released by Cheng et al., there were
three commercialized routes towards producing 2D carbon materials: direct liquid-phase
exfoliation of graphite; oxidization of graphite and the subsequent exfoliation and/or
reduction; and chemical vapour deposition (CVD) [138]. However, each method has
its own problems: direct and subsequent exfoliation may present the problem of waste
liquid, while the CVD route requires high facility input and precise parameter control.
Therefore, there is still an urgent need for new, low-cost, and greener synthesis routes for
2D carbon materials.

6.2. Issue of the Stability of Carbon Materials

The stability of carbon-based materials in a battery system has long been a big issue,
especially in the Na/Li–O2 system, in which the high operation voltage and presence of
superoxide ions will corrode the carbon electrode [139]. However, the stability of carbon
in a supercapacitor has been rarely mentioned as most of the researchers believe that
carbon materials are super-stable in supercapacitors, as proved by the excellent cycle
performance shown in Tables 1–3. Unfortunately, the stability of carbon materials in a
supercapacitor also depends on conditions. If used as electrode only in the low potential
(<2 V) range, the carbon materials will be very stable [140,141]. By contrast, for some
high-voltage supercapacitors (>4 V), which use ionic liquids (ILs) as electrolyte, it is still
possible that carbon will react with certain ILs due to high potential [142]. If used as an
anion adsorption/desorption cathode, carbon materials will be stable. However, once
2D carbon materials are used as an insertion-type anode, repeated insertion/desertion
of cations during charge/discharge may lead to the collapse and aggregation of the 2D
structure, leading to deteriorated performance of the supercapacitor, even in low-potential
capacitors [51]. In most cases, the thermal and electrical conductivity of carbon materials
are excellent; the carbon materials should be stable. However, although not common, heat
may be produced and accumulated if these properties are not so “good”, especially on
discharge/charge with an extremely high current density. The heat and high voltage may
promote the corrosion of carbon if a strong alkaline (such as 6 M KOH) electrolyte is used
( C− 4e− + 4OH− → CO2−

3 + H2O + 2H+ ). Hence, the stability of carbon, although could
be ignored in most cases, may be an issue under some conditions.

6.3. Issue of the Kinetic Balance between the Two Electrodes

Rather than the mass balance between the electrodes, it is the kinetic imbalance
between the two electrodes that causes the entire capacitor system to collapse, with conse-
quently poor and inferior performance. Therefore, it is important to balance the kinetics of
the cathode and the anode to fabricate a stable and efficient hybrid capacitor system [143].

The intercalation kinetics of the intercalated electrode must be equivalent to that of the
adsorption electrode by storage of equivalent amounts of cations in the intercalation-type
electrode [68]. Generally, the intercalated anodes have poor intrinsic electronic conduc-
tivity. Therefore, one approach to overcome the kinetic limitation of intercalated-type
electrodes is by increasing the electrical conductivity of these electrodes via introducing
highly conductive additives. Graphene has a high surface area (>2600 m2 g−1), unique
physicochemical properties, and ultrahigh electronic conductivity [65]. Graphene is usually
used as a conductive matrix to form graphene composites, thus greatly enhancing the
kinetics of cation insertion/extraction at high current rates [65,136]. Secondly, to increase
the kinetics of carbon materials, nanostructure design is an effective approach, such as 3D
porous structures and fine constructed nanoarrays. In addition, the functionalization and
heteroatom doping on a carbon lattice could also enhance the kinetics of carbon materials.
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6.4. Issues for the Electrolyte

The electrolyte, as an important component of hybrid capacitors, plays a crucial
role by providing ionic charge carriers for the charge and discharge process. To improve
the electrochemical performance of hybrid capacitors, the electrolyte must have high ion
conductivity, low viscosity, good thermal stability, and a wide potential window. At
present, the electrolytes explored for hybrid capacitors include organic electrolyte, aqueous
electrolyte, and quasi-solid-state electrolyte [144]. There are some issues related to the
electrolyte. In the organic electrolyte system, porous structures with large specific surface
areas tend to incur severe electrolyte decomposition to form a thick solid electrolyte
interphase (SEI), resulting in low initial Coulombic efficiency. Moreover, sometimes the
SEI film that is formed is unstable, causing continuous electrolyte decomposition and
low Coulombic efficiency. To form a suitable and stable SEI layer, usually fluoroethylene
carbonate (FEC) is used as an electrolyte additive. Although organic electrolytes have been
widely used, their volatility and flammability remarkably limit their practical applications
in hybrid capacitors. Thus, developing new electrolytes, including aqueous and quasi-
solid-state electrolytes, is urgent.

Zn-ion hybrid capacitors, which commonly use aqueous electrolytes, suffer from the
issues of a narrow electrochemical window (caused by the decomposition of water at
~1.23 V) and low Zn stripping/plating efficiency. The electrolyte is a key component of
Zn-ion hybrid supercapacitors, and its capability of enabling high Zn stripping/plating
efficiency is essential to the cycling stability of the metallic Zn anode and high-performance
Zn-based hybrid supercapacitors [31]. The concept of “water-in-salt” (WIS) has been
applied to expand the working window of the aqueous electrolyte. Wang’s group reported
that lithium-ion water-in-salt electrolyte (LiTFSI) solutions at a concentration of 21 M
exhibited superior electrochemical properties over a wide working voltage window of
3 V [145,146]. Moreover, the highly concentrated electrolyte was found to improve the
initial Coulombic efficiency of the Zn-ion hybrid capacitor [31]. Thus, the “water-in-salt”
electrolyte could widen the electrochemical window and improve the Zn stripping/plating
efficiency. The “water-in-salt” electrolyte, however, increases the production cost, due to
the utilization of a high salt concentration. Therefore, more investigations are required
to develop new electrolytes with a wide voltage window, high ionic conductivity, and
high safety.

7. Summary and Outlook

In this conceptual review, we have summarized the recent progress on the application
of 2D carbon materials in post-Li hybrid capacitors, including sodium-ion hybrid capacitors,
potassium-ion hybrid capacitors, and zinc-ion hybrid capacitors. This article provides a
comprehensive overview of the mechanisms and variety of hybrid capacitors, the functions
of 2D carbon materials in hybrid capacitors, and current problematic issues for hybrid
capacitors. The storage mechanism of hybrid capacitors is based on both non-faradaic
cathodes (based on anion adsorption on their surfaces) and faradaic anodes (based on
redox reactions of the cations). According to the valence of cation charge carriers, the
hybrid capacitors can be divided into two types: one comprises the alkali-metal-ion hybrid
capacitors, including Li-ion hybrid capacitors, Na-ion hybrid capacitors and K-ion hybrid
capacitors; the other comprises the multivalent metal-ion hybrid capacitors, including
Zn-ion hybrid capacitors, Mg-ion hybrid capacitors, Ca-ion hybrid capacitors and Al-ion
hybrid capacitors. In hybrid capacitors, 2D carbon materials can play several roles such
as cathode electrodes, anode electrodes and conductive matrices to greatly enhance the
kinetics of electrodes.

Currently, the application of 2D carbon materials in post-Li hybrid capacitors suffers
from the following issues: (1) The difficulty in massive production and stability of carbon
materials; (2) the kinetic imbalance between the two electrodes causing the entire capacitor
system to collapse, with consequently inferior performance; (3) some issues related to the
electrolyte resulting in low initial Coulombic efficiency and a narrow electrochemical win-
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dow. To overcome the kinetic limitations of 2D carbon electrodes, there are some strategies
including: (i) increasing the electrical conductivity of the electrodes by introducing highly
conductive additives; (ii) nanostructure design, such as 3D porous structures and fine
constructed nanoarrays; (iii) functionalization and heteroatom doping on the carbon lattice.
To overcome the issues for the electrolyte, some approaches that have been reported can be
summarized into two aspects: (i) introducing electrolyte additives (such as fluoroethylene
carbonate (FEC)) to form a stable SEI layer; and (ii) increasing the salt concentration to
widen the voltage window of an aqueous electrolyte.

Post-Li hybrid capacitors are expected to play important roles in energy storage
fields that can benefit from their high energy densities and high power densities. 2D
carbon materials (graphite, graphene, carbon nanosheets) are promising candidates for
hybrid capacitors, owing to their unique physical and chemical properties, including their
enormous specific surface area, abundant active sites (surface and functional groups) and
large interlayer spacing. Nevertheless, the utilization of 2D carbon materials in post-
Li hybrid capacitors is still in its early stages, and further research and exploration are
necessary. In the future, more investigations are required to develop new electrolytes with
wide voltage windows, high ionic conductivity, and high safety. Moreover, it is necessary
to develop new capacitor-type electrodes that can work without a binder or a conductive
additive, which increase the total weight and thus decrease the final specific capacitance of
the devices.
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