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Simple Summary: Lung neuroendocrine neoplasms (NENs) are a subset of lung cancer that is difficult
to diagnose. MicroRNAs (miRNAs) are small RNA molecules that are valuable markers in many
cancers. In this study, we generated miRNA profiles for 55 preserved lung NEN samples (14 typical
carcinoid (TC), 15 atypical carcinoid (AC), 11 small cell lung carcinoma (SCLC), and 15 large cell
neuroendocrine carcinoma (LCNEC)), and randomly assigned them to either discovery or validation
sets. We used machine learning and data mining algorithms to identify important miRNA that can
distinguish between the types. Using the miRNAs identified with these algorithms, we were able to
distinguish between carcinoids (TC and AC) and neuroendocrine carcinomas (SCLC and LCNEC) in
the discovery set with 93% accuracy; in the validation set, we were able to distinguish between these
groups with 100% accuracy. Using the same machine learning and data mining techniques, we also
identified miRNAs that can distinguish between TC and AC, and SCLC and LCNEC, however more
samples are needed to validate these findings.

Abstract: Lung neuroendocrine neoplasms (NENs) can be challenging to classify due to subtle
histologic differences between pathological types. MicroRNAs (miRNAs) are small RNA molecules
that are valuable markers in many neoplastic diseases. To evaluate miRNAs as classificatory
markers for lung NENs, we generated comprehensive miRNA expression profiles from 14 typical
carcinoid (TC), 15 atypical carcinoid (AC), 11 small cell lung carcinoma (SCLC), and 15 large cell
neuroendocrine carcinoma (LCNEC) samples, through barcoded small RNA sequencing. Following
sequence annotation and data preprocessing, we randomly assigned these profiles to discovery and
validation sets. Through high expression analyses, we found that miR-21 and -375 are abundant in all
lung NENs, and that miR-21/miR-375 expression ratios are significantly lower in carcinoids (TC and
AC) than in neuroendocrine carcinomas (NECs; SCLC and LCNEC). Subsequently, we ranked and
selected miRNAs for use in miRNA-based classification, to discriminate carcinoids from NECs. Using
miR-18a and -155 expression, our classifier discriminated these groups in discovery and validation
sets, with 93% and 100% accuracy. We also identified miR-17, -103, and -127, and miR-301a, -106b,
and -25, as candidate markers for discriminating TC from AC, and SCLC from LCNEC, respectively.
However, these promising findings require external validation due to sample size.
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1. Introduction

Lung neuroendocrine neoplasms (NENs) are variably aggressive tumors that can be challenging
to differentiate based on morphological grounds [1–5]. Lung NENs are subdivided into four
pathological types, namely typical carcinoid (TC), atypical carcinoid (AC), large cell neuroendocrine
carcinoma (LCNEC), and small cell lung carcinoma (SCLC). Typical carcinoids and atypical carcinoids
are well-differentiated low-grade tumors, with the latter carrying a higher malignant potential.
In contrast, LCNEC and SCLC are poorly-differentiated high-grade malignant carcinomas [2,3]. Accurate
histologic diagnosis is critical as pathological type conveys prognostic information and guides clinical
management [4,6–9]. Although lung NEN classification has been increasingly refined [2], subtle
pathological features can result in sample misclassification [1]. Recently, NEN experts called for further
research to aid discrimination of lung NEN pathological types [3,10].

MicroRNAs (miRNAs) are small (19–24 nucleotides) RNA molecules that can be used to classify
tumor tissues [11]. These regulatory molecules also provide valuable mechanistic insights into
tumorigenic processes, through predictable targeting of messenger RNAs [12]. Based on their
widespread utility in cancer molecular diagnostics [13], we and others hypothesized that miRNAs
could be useful adjunct tissue markers for classifying lung NENs [14–19]. Some concerns have been
expressed about the variability of miRNA clinical testing [20]; however their stability in fresh and
archived tissue [21], in addition to advances in quantitative miRNA detection [22,23], small RNA
sequence annotation and genomic organization [24], and machine learning [25] readily support using
miRNAs to classify NENs.

Here, we assess miRNA-based classification of lung NENs using a machine learning approach [25].
Through high expression analyses, we identified miRNA tissue markers that are common to all lung
NENs. Leveraging prior knowledge that carcinoids (TC and AC) and NECs (SCLC and LCNEC) have
major clinical, epidemiologic, histologic, and genetic differences [2], we constructed a classifier that
discriminates carcinoids from NECs. We also identified candidate miRNA markers for discriminating
TC and AC, as well as SCLC and LCNEC.

2. Materials and Methods

2.1. Clinical Materials and Study Design

Lung NEN cases (14 TC, 15 AC, 11 SCLC, and 15 LCNEC) were identified in the Department
of Pathology and Laboratory Medicine, Weill Cornell Medicine. Hematoxylin-eosin-stained tissue
sections from each case were reviewed by experienced pathologists (Paula S. Ginter, Yao-Tseng Chen)
using the WHO classification of lung tumors [26]. Slides were reviewed and mitoses were counted
using an Olympus microscope, with a 40× objective, and with a field diameter of 0.55 in 6 mm2 of
viable tumor (25 HPF), and the average mitotic figure per 2 mm2 was calculated [27]. Slides were
scanned in a routine manner and areas of highest density staining were located. Using an Olympus
microscope, with a 40× objective, one author (Paula S. Ginter) manually counted a minimum of
2000 tumor cells to calculate the Ki-67 labeling index [28]. Positive nuclear staining of tumor cells
under the microscope was of varying intensity, mostly moderate to strong and some mild, and any
staining was considered as positive staining. Representative formalin-fixed paraffin-embedded (FFPE)
surgical resection specimen blocks of primary tumor from each case were obtained and randomly
assigned to discovery (n = 44) or validation (n = 11) sets prior to the miRNA sequencing below. Sample
assignment proportions, to discovery (80%) and validation (20%) sets, are in accordance with standard
machine learning practices [29]. Our project was approved through the Research Ethics Board at
Queen’s University (ethic code PATH-145-14, approved in 21 November 2019) and the Institutional
Review Boards of Weill Cornell Medicine (ethic code 0406007186, approved in 18 February 2020)
and The Rockefeller University (ethic code TTU-0707, approved in 22 May 2020). This is a study of
de-identified tissues from the pathology department so there is no informed consent form.
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2.2. Total RNA Isolation and Quality Control

Total RNA was isolated from two 1.5 mm tissue cores, bored from representative tumor-bearing
blocks for each case, using the Qiagen RNeasy FFPE Kit (QIAGEN, Venlo, The Netherlands) according
to the manufacturer’s guidelines. Total RNA concentrations and purity were determined using
Qubit® fluorometric quantitation (Thermo Fisher Scientific, Waltham, MA, USA).

2.3. Small RNA Sequencing

miRNA expression profiles were generated through quantitative barcoded small RNA sequencing
as described [25,30]. Small RNA cDNA libraries were sequenced on an Illumina HiSeq 2500 platform
(Illumina, San Diego, CA, USA) at the McGill University and Génome Québec Innovation Centre.
FASTQ sequence files were subsequently demultiplexed and annotated through an established small
RNA annotation pipeline, yielding individual miRNA, miRNA cistron, and calibrator expression
data [24,31]. miRNA content was calculated as described [25]. Sequencing data are presented in
Tables S1–S3.

2.4. Data Preprocessing

Data preprocessing and subsequent analyses were performed in MATLAB (Mathworks, Inc.,
Natick, MA, USA, version R2016b), as described in [25]. Briefly, data preprocessing comprised
normalization, and outlier detection and removal through correlation analyses. Following preprocessing,
all miRNA STAR sequences and non-human sequences were filtered. Additionally, only miRNAs
expressed above the 95th percentile in more than 5% of samples from each tumor type were included
in subsequent analyses. miRNA cistron expression data were similarly preprocessed.

2.5. High Expression and Discovery Analyses

To identify candidate miRNA tissue markers for lung NEN classification, high expression and
discovery analyses were performed as described [25]. For high expression analyses, we identified the
top 0.5% of expressed individual miRNAs and miRNA cistrons for all lung NENs, and then for each
pathological type. For discovery analyses using discovery set profiles (n = 44), we used a novel feature
selection algorithm with 5-fold validation [32] to rank individual miRNAs and miRNA cistrons that
discriminate carcinoids from NECs. Briefly, the feature selection algorithm is an ensemble classifier
that ranks the ability of each miRNA to discriminate between cancer types. Rankings are determined
using average performance over fourteen established feature selection methods. Only the top-ranking
5% individual miRNAs and miRNA cistrons were used for classification below.

2.6. miRNA-Based Classifier for Discriminating Carcinoids from NECs

Using our machine learning approach [25], we constructed a miRNA-based classifier for
discriminating carcinoids from NECs. After evaluating all available algorithms (n = 23) from the
MATLAB Classification Learner App, we selected the linear discriminant algorithm for this classifier.
Once established, we determined the accuracy of our classifier in the discovery and validation sets.
To better understand the transferability of our classifier, we assessed the expression of individual
miRNAs used for classification; miRNA cistrons were also examined to assess data consistency.

2.7. Candidate miRNA Markers for Discriminating Pathological Types

To identify candidate miRNA markers for discriminating TC from AC, and SCLC from LCNEC,
we applied the same feature selection algorithm and ranking criteria as above. Due to limited sample
size, we were unable to separate samples into discovery and validation sets; we instead identified
candidate pathological type markers using all samples in a single cohort. After evaluating all available
algorithms, we selected the Kernel Naïve Bayes algorithm to discriminate TC (n = 14) from AC (n = 15)
and the Cosine k-nearest neighbours (KNN) algorithm to discriminate SCLC (n = 11) from LCNEC
(n = 15).
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2.8. Statistical Analyses

Statistical analyses of clinical data were performed using SPSS Statistics (IBM, Armonk, NY, USA,
Version 25). Non-parametric Mann–Whitney U (MWW) or Kruskal–Wallis (K-W) tests were used to
assess differences between two continuous variables [33]. Spearman correlation was used to measure
correlation between variables [34]. Associations between categorical variables were analyzed using
two-tailed Fisher’s exact test (FET) for 2× 2 associations or the χ2 test for larger groups [35]; a two-tailed
p-value of < 0.05 was considered statistically significant. These statistical tests were also used to
correlate selected miRNA features (see Section 2.5) with Ki-67 staining (Spearman) and mitotic counts
(Spearman), and to compare selected miRNA features between tumors with, and without, necrosis
(MWW test), and with, and without, nodal metastases (MWW test). Only two patients were treated
prior to tumor biopsy (one neoadjuvant chemotherapy, one DNA vaccine trial for a prior cancer),
and only one patient had known distant metastasis at the time of diagnosis (i.e., stage 4); we were
therefore unable to perform statistical analyses to evaluate miRNA changes associated with treatment.

3. Results

3.1. Clinicopathologic Characteristics of Discovery and Validation Sample Sets

The clinical characteristics and proportions of tumors were similar whereas pathologic
characteristics varied by pathological type in discovery and validation sets. Age, gender, and other
relevant clinicopathologic data are summarized in Table 1. No significant differences in age (MWW,
U = 305.0, p = 0.958, r = −0.071) or gender (FET, χ2 = 0.024, df = 1, p = 0.877) were detected between
sets. Similar proportions of TC, AC, SCLC, and LCNEC were present in each set (χ2 = 0.041, df = 3,
p = 0.998). Ki-67 (K-W, H = 35.065, df = 3, p < 0.001), and mitotic counts (H = 39.291, df = 3, p < 0.001)
were significantly different between pathological types in the discovery set; similar results for Ki-67
(H = 8.587, df = 3, p = 0.035) and mitotic counts (H = 9.495, df = 3, p = 0.023) were found in the validation
set. We were unable to compare necrosis between pathological types due to low sample numbers.
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Table 1. Relevant clinical and pathologic data for the four pathological types of lung neuroendocrine neoplasm (NEN) included in discovery and validation sets.

Features

Discovery Set Validation Set

Carcinoids NECs Carcinoids NECs

TC
(n = 11)

AC
(n = 12)

SCLC
(n = 9)

LCNEC
(n = 12)

TC
(n = 3)

AC
(n = 3)

SCLC
(n = 2)

LCNEC
(n = 3)

Male:female 1:10 2:10 4:5 4:8 0:3 1:2 1:1 1:2
Age avg (min, max) 64 (41, 85) 61 (43, 79) 67 (50, 86) 69 (45, 85) 64 (50, 74) 60 (54, 64) 69 (65, 73) 71 (67, 73)

Tumor size avg in mm (min, max) 18 (5, 30) 25 (12, 66) 27 (11, 70) 28 (10, 70) 12 (3, 22) 28 (4, 43) 26 (18, 35) 26 (15, 32)
Ki-67 avg (min, max) 1 (<1, 3) 5 (<1, 38) 61 (33, 73) 27.5 (7, 51) <1 (<1, 3) <1 (<1, 5) 56 (53, 59) 69 (62, 75)

Mitosis avg (min, max) 0.3 (0, 1.3) 3.9 (2, 18) 88 (49, 183) 27 (11, 85.3) 0.3 (0, 1.3) 2 (2, 3) 80 (63, 97) 42.7 (39, 60)
Necrosis (yes, no, focal) 0, 11, 0 0, 4, 8 9, 0, 0 12, 0, 0 0, 3, 0 0, 3, 0 2, 0, 0 2, 0, 1

pT category
1 10 (91%) 8 (67%) 6 (67%) 4 (33%) 3 (100%) 1 (33%) 1 (50%) 1 (33%)
2 0 (0%) 4 (33%) 2 (22%) 8 (67%) 0 (0%) 2 (67%) 1 (50%) 2 (67%)
3 0 (0%) 0 (0%) 1 (11%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
4 1 (9%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

pN category
Unknown 1 (9%) 0 (0%) 1 (11%) 1 (8%) 1 (33%) 0 (0%) 0 (0%) 0 (0%)

0 8 (73%) 9 (75%) 5 (56%) 5 (42%) 2 (67%) 3 (100%) 2 (100%) 2 (67%)
1 2 (18%) 1 (8%) 1 (11%) 4 (33%) 0 (0%) 0 (0%) 0 (0%) 1 (33%)
2 0 (0%) 2 (17%) 2 (22%) 2 (17%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Inter-set comparison TC AC SCLC LCNEC
Gender χ2 = 0.029, df = 1, p = 0.588 χ2 = 0.417, df = 1, p = 0.519 χ2 = 0.020, df = 1, p = 0.887 χ2 = 0.000, df = 1, p = 1.000

Age U = 15.0, p = 0.863, r = −0.063 U = 14.5, p = 0.664, r = −0.131 U = 8.0, p = 0.909, r = −0.071 U= 17.5, p = 0.966, r = −0.019

Gender and age differences are evaluated with Fisher’s exact and Mann–Whitney U tests, respectively; mitosis is presented as mitotic figures per 2 mm2. Abbreviations: neuroendocrine
carcinomas (NECs), typical carcinoid (TC), atypical carcinoid (AC), small cell lung carcinoma (SCLC), large cell neuroendocrine carcinoma (LCNEC), average (avg), pathologic tumor
category (pT), pathologic nodal category (pN), degrees of freedom (df).
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3.2. Barcoded Small RNA Sequencing

Comprehensive miRNA expression profiles were generated for all samples through quantitative
barcoded small RNA sequencing. Annotated sequence read counts are presented in Table S4; a median
of 1,476,891 (range: 72,984–14,239,342) miRNA sequence reads, representing a median of 50.5% (range:
6.6–88.2%) total sequence reads, was obtained. Individual miRNA, miRNA cistron, and calibrator
sequence read counts are presented in Tables S1–S3. Median miRNA content was 10.8 (range: 0.4–123.0)
and 27.7 (range: 1.8–81.0) fmol per microgram total RNA per sample in discovery and validation sets,
respectively; no significant differences in miRNA content were seen between pathological types in
either set (K-W test, discovery: χ2 = 1.353, df = 3, p = 0.717; validation: χ2 = 6.242, df = 3, p = 0.100).

3.3. High Expression Analyses

Candidate miRNA markers for lung NENs were identified from the top 0.5% of expressed
individual miRNAs and miRNA cistrons in all samples (n = 55, Table 2). miR-375, -21, -143, -141, let-7a,
let-7f, -30d, and -148a were the highest expressed individual miRNAs, with median expression
ranging from 2.0–8.2%. Clusters-miR-98(13), -miR-375(1), -miR-21(1), and -miR-143(2) were the
highest expressed cistrons, with median expression ranging from 4.4–10.8%. We also identified the
top 0.5% of expressed individual miRNAs and miRNA cistrons for each pathological type (Table S5).
On further inspection, we observed that miR-21 expression was ranked lower in carcinoids than in
NECs. Conversely, miR-375 expression was higher in carcinoids than in NECs. Log2 transformed
ratios of miR-21 and miR-375 expression were significantly lower in carcinoids than NECs (MWW,
U = 66.0, p < 0.001, r = −0.825) (Figure 1).

Table 2. Median expression of the top 0.5% overall highest expressed microRNAs (miRNAs) and
miRNA cistrons.

miRNA Median % of miRNA in all Samples

miR-375 8.2
miR-21 7.9

miR-143 4.1
miR-141 2.9

let-7a 2.9
let-7f 2.5

miR-30d 2.4
miR-148a 2.0

miRNA Cistron Median % of miRNA Cistron in all Samples

cluster-mir-98(13) 10.8
cluster-mir-375(1) 8.2
cluster-mir-21(1) 7.9

cluster-mir-143(2) 4.4

Cluster-mir-98(13) comprises miR-125b-1, let-7a-2, miR-100, miR-99a, let-7c, miR-125b-2, let-7a-3, let-7b, let-7a-1,
let-7f-1, let-7d, miR-98, and let-7f-2; clusters-mir-375(1) and -mir-21(1) are monocistronic; and cluster-mir-143(2)
contains miR-143 and miR-145.
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Figure 1. Ratio of miR-21 and miR-375 expression in lung NENs. Log2 transformed ratios of miR-21 and
miR-375 expression were assessed in all samples. Ratios were significantly lower in carcinoids than NECs
(MWW, U = 66.0, p < 0.001, r = −0.825). Red crosses denote statistical outliers. Abbreviations: typical
carcinoid (TC), atypical carcinoid (AC), small cell lung carcinoma (SCLC), large cell neuroendocrine
carcinoma (LCNEC).

3.4. Discovery Analyses

Candidate miRNA markers that discriminate carcinoids from NECs were identified from the
top-ranking 5% individual miRNAs (Table S6) and miRNA cistrons (Table S7), in our discovery set
only. These rankings were used to build the miRNA-based classifier below.

3.5. miRNA-Based Classifier for Discriminating Carcinoids from NECs

Using the linear discriminant algorithm, the highest performing algorithm for this comparison,
we constructed a miRNA-based classifier for discriminating lung NENs using miR-18a and -155. Using
these features, the classifier discriminated carcinoids from NECs with 93% and 100% accuracy in
the discovery and validation sets, respectively (Figure 2 and Table 3). The median percentage of
individual miRNA or miRNA cistron expression for selected miRNA markers ranged from 0.00–0.17%
and 0.00–12.36%, respectively (Table S8). Based on our observation above, miR-21 and -375 were
also evaluated. However, these features discriminated carcinoid from NEC with 86% accuracy in the
discovery set, lower than miR-18a and -155.
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Figure 2. Scatter plot assessment of selected individual miRNAs for discriminating carcinoids from
neuroendocrine carcinomas (NECs). Carcinoids and NECs were discriminated using miR-18a and
-155, with three misclassifications in the discovery set (A) and no misclassification in the validation set
(B). Abbreviation: log2 normalized relative frequency (log2 RF).

Table 3. Overall accuracy of the miRNA-based classifier for discriminating lung NENs.

Hierarchical Classifier Designation

Pathologic Diagnosis

Discovery Set Validation Set

Carcinoids NECs Carcinoids NECs

Carcinoids 20 0 6 0
NECs 3 21 0 5

Overall accuracy 41/44 (93%) 11/11 (100%)

3.6. Candidate miRNA Markers for Discriminating Pathological Types

Based on ranked feature selection, we identified miR-17, -103, and -127 as candidate markers to
discriminate TC from AC, and miR-301a, -106b, and -25, as candidates to discriminate SCLC from
LCNEC (Figure S1). Using these features, the selected algorithms (Kernel Naïve Bayes and Cosine
k-nearest neighbors (KNN)) discriminated TC from AC in 29/29 (100%) cases, and SCLC from LCNEC,
in 25/26 (96%) cases.

3.7. Correlation of Candidate miRNA Markers and Pathologic Parameters

Correlation analyses in the discovery set revealed the candidate biomarkers miR-18a, -155, -17,
-127, -106b, and -25 are correlated with Ki-67 staining (Spearman’s rho = 0.785, 0.614, 0.788, −0.711,
0.685, 0.719, respectively; p < 0.05) and mitotic rate (Spearman’s rho = 0.670, 0.510, 0.694, −0.604, 0.641,
0.580; p < 0.05). Similar results were found in the validation set (Table S9). Pairwise comparisons of
samples with necrosis, without necrosis, and with focal necrosis showed that miR-18a, -17, and -127
were differently expressed in all pairwise comparisons (MWW, p < 0.05), and miR-155, -106b, and -25
were differently expressed in two of three pairwise comparisons (MWW, p < 0.05). Comparisons
between samples with, and without, necrosis were similar in the validation set; comparisons involving
samples with focal necrosis in the validation set were not found to be significant. However, this may be
because only one sample in the validation set had focal necrosis (Table S9). miR-103 and -301a were not
significantly correlated with Ki-67 staining nor with mitotic rate, nor were they differently expressed in
any pairwise comparisons of tumor necrosis. MWW tests showed that all candidate biomarkers were
not differently expressed between tumors with, and without, nodal metastases (Table S9).

4. Discussion

Lung NEN classification conveys prognostic information and guides clinical management.
Currently, lung NENs are classified based on morphological and cytological features, the presence
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or absence of necrosis, and immunoreactivity for markers of neuroendocrine differentiation [2,3].
However, accurate histologic evaluation can be impacted by sampling issues, uneven distribution of
mitoses in tissue sections, misleading artifacts and/or confounding pathologic features, and challenges
in identifying punctate necrosis or interpreting transitional cell characteristics [1]. To address the need
for further research on lung NEN classification [3], we used our recently established sequence data
mining approach to identify miRNA tissue markers that complement histologic evaluation [25].

The strength of our study stems from including all four pathological types of lung NEN
in the same study, comprehensive miRNA detection from archived clinical samples [22,36],
accurate sequence annotation [24], advanced computational approaches for ranked feature selection
and classification [25,32], assessment of data reliability through knowledge of miRNA cistron
composition [31], and accelerating transferability to other miRNA detection platforms by providing
miRNA abundance data. In addition, molecular classification circumvents issues arising from histologic
artifacts and/or confounding pathologic features.

High expression analyses indicated that miR-375, -21, -143, -141, let-7a, let-7f, -30d, and -148a
are the most abundant individual miRNAs in lung NENs, accounting for approximately 30% of all
miRNAs, in all samples. When analyzed by pathological type, we noticed that miR-21/-375 expression
ratios are useful for discriminating low- and intermediate-grade from high-grade NENs. miR-21 is
often upregulated in cancer and thought to be an oncogene [37,38], whereas miR-375 behaves like a
tumor suppressor [39]; the regulatory roles of the other abundant individual miRNAs and miRNA
cistrons in neuroendocrine tumorigenesis remain to be defined. The ratio of miR-21 and -375 may
directly or indirectly reflect the balance of oncogenic and tumor suppressive activities in lung NENs.
Despite the classificatory potential of this expression ratio, we found more accurate markers through
feature selection below.

Discovery analyses enabled the identification of discriminating miRNA markers for lung NEN
classification. Using our recently established method [25], we constructed and validated a classifier
that accurately discriminates carcinoids from NECs, based on miR-18a and -155 expression. We also
generated preliminary evidence for discriminating TC from AC, and SCLC from LCNEC, using miR-17,
-103, and -127, and miR-301a, -106b, and -25, respectively. Despite accuracy rates of >90%, these findings
require validation in prospective cohort studies, or external sample sets, due to limited sample size.

miRNAs selected for lung NEN classification also provide interesting pathomechanistic insights.
miR-18a and -155 are more highly expressed and discriminate NECs from carcinoids. miR-18a is
correlated with lung NEN aggression [17]; miR-155 has been previously identified as a discriminator
between NECs and carcinoids [16], and likely reflects the number of hematopoietic cells admixed
with the tumor sample [37]. miR-17 and -103 are less expressed and miR-127 more highly expressed
in TC than AC, suggesting oncogenic and tumor suppressive roles, respectively. miR-301a, -106b,
and -25 are more highly expressed in SCLC than LCNEC; given that both are high-grade tumors,
these miRNAs more likely mediate tumor morphology than aggression. Correlation analyses suggest
miR-18a, -155 -17, -127, -106b, and -25 are related to Ki-67 expression and mitotic rate; differential
expression analyses suggest they may also be related to necrosis, however we were unable to validate
these findings due to low sample size. As these pathologic parameters are all significantly different
in TC, AC, SCLC, and LCNEC, further investigation is required to elucidate the functional roles of
these miRNAs.

Our current study has similar limitations to our published study on miRNA-based
gastroenteropancreatic NEN classification [25]. Assembling large collections of rare tumor samples is
challenging, functional imaging and pathologic data are often not linked, assessing the prognostic value
of candidate miRNA markers may not be possible due to uneven clinical follow-up, and comparing
results between studies can be challenging due to inherent differences between miRNA detection
methodologies [13]. Nonetheless, we continue to build knowledge of miRNA expression in NENs that
can be leveraged by clinical and basic investigators.
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We have developed and validated a miRNA-based classifier for discriminating carcinoids from
NECs, provided candidate miRNA markers for differentiating pathological types, shown potential
for identifying aggressive AC cases through miRNA expression ratios, and provided comprehensive
reference miRNA profiles to stimulate further investigation. Our research directions include additional
miRNA profiling of well annotated lung NEN sample collections, and functional characterization of
selected miRNAs in neuroendocrine tumorigenesis.

5. Conclusions

Combined molecular and machine learning methods have much promise for accurate tumor
classification. Using a representative approach, we have developed, and internally validated, a simple
miRNA-based classifier, comprising miR-18a and -155, to discriminate low-grade carcinoids from
high-grade NECs, with a high degree (>90%) of accuracy. We have also identified miR-17, -103, and -127
as candidate markers to discriminate TC from AC, and miR-301a, -106b, and -25, as candidates to
discriminate SCLC from LCNEC. To fully explore the clinical utility of these markers, future studies
should incorporate larger numbers of well-annotated clinical samples.
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