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Abstract

The instantaneous (ISA) and average (ASA) screw axes are techniques commonly adopted

in motion analysis to functionally locate the rotation axis and center of rotation of a joint. Sev-

eral approaches for calculating such axes were proposed in literature and the main limita-

tions were identified as the need for using a threshold on angular displacements or

velocities for handling the cases where the ISA is ill-defined and the need for a method for

reliably estimating the center or rotation in limit cases, such as a purely rotational motion in

the three-dimensional space. Furthermore, in many applications, such as in biomechanics,

it is useful to statistically estimate the dispersion or variation of the ISA with respect to the

ASA. In this paper we propose a novel method for estimating an ASA. Our method repre-

sents an improvement over previous methods as it: (i) exploits an optimization procedure

based on the instantaneous differential kinematics (screw twist); (ii) removes the need for a

threshold by introducing a weighting based on the norm of angular velocity; (iii) handles the

singular cases where the position of the ASA is ill-defined by proposing a regularization term

in the optimization. In addition, we proposed a method for estimating the uncertainty in the

ASA calculation. The same quantities serve as a measure of the dispersion of the ISAs with

respect to the ASA. The method was tested on real data and surrogate data: (i) a human

gait analysis trial representing the motion of a knee, (ii) the experimental recording of the

free swing motion of a mechanical hinge and (iii) synthetically generated motion data of a

purely rotational (cylindrical) motion. The results showed that the new method had a lower

sensitivity to noise, was able to reasonably handle the singular cases and provide a detailed

analysis of ISA dispersion.

Introduction

The calculation of the Instantaneous Screw Axis (ISA) is a common technique in motion anal-

ysis to analyze the motion of a joint. For example, in clinical motion analysis it is common to
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calculate the ISA of a hinge-like joint (e.g. the knee) during a controlled motion. In such a

case, the motion and variations of the ISA were correlated to the functionality of the joint itself

and to the healthiness of the ligaments [1–3]. The calculation of the ISA is based on the

Mozzi–Chasles’ theorem, that allows to represent any rigid-body motion as a translation along

an axis plus a rotation about the same axis [4, 5]. The literature refers to the ISA also as “helical

axis”, “twist axis” or “axis of rotation” [6, 7].

The most common method to measure the motion of a joint is by using some motion cap-

ture technique (e.g. optoelectronic systems or inertial sensors) to track the motion of the seg-

ments composing the joint. The segments are usually assumed as rigid bodies [8]. Commonly

the output of such measurements are the coordinates of skin-attached markers and/or the

poses of the two segments expressed in the form of a homogeneous matrix [9]. Several tech-

niques to compute the ISA, based on these data, were proposed in the literature. They can be

divided into two main categories: (i) techniques based on the differences in pose between two

configurations (angular displacements and/or variation of the homogeneous matrix between

two time instants) and (ii) techniques based on the differential kinematics of the joint (angular

velocity / screw twist). When the screw axis is computed in between any two given configura-

tions it is also named “finite screw axis” [10]. Examples of the equations for calculating the

screw axis based on poses/displacements are described in [10, 11]. Those are not discussed

here as it goes beyond the scope of the present paper. Instead, when the calculation is based on

the screw twist, the axis is often named “instantaneous” screw axis and the calculation is

described in [7, 12, 13].

When analyzing the ISA over a biomechanical motion, it is often necessary to compare it to

a reference to study the variations with respect to that reference.

In previous studies, a reference for the ISAs was obtained geometrically, for example using

the condyle-to-condyle line [14, 15], the rotation axis of a prosthesis [16], or anatomical planes

[17–19]. An alternative approach is to adopt a functional procedure to compute the reference

axis, as several studies showed that a functional approach outperformed the geometrical one,

especially for some ad-hoc applications, such as the design of prostheses [12, 20, 21]. Such an

axis is conceptually the “mean” of the set of ISAs associated to a given motion. It is also

addressed as “mean finite helical axis” [21] or “optimal flexion axis”. Several techniques for cal-

culating the average axis were proposed in the literature. Most of them were based on optimi-

zation procedures [12, 22, 23] that aim to find: (i) the orientation (unit vector, n) that is “the

most parallel” to the set of ISAs and (ii) the point P closest to all the ISAs, i.e. the pseudo-inter-

section of the ISAs. The previously cited quantities may be calculated via a least-squares

approach [12].

However, since the ISA is ill-defined, it should not be calculated when the norm of the

angular velocity is below a threshold, often assumed as ~0.3 rad/s [12].

To avoid using a threshold on the angular velocity, [23] proposed a weighted approach to

find the point that best approximates the pseudo-intersection of the ISAs, and the optimal ori-

entation of an average axis, named “mean finite screw axis”, or MFSA. It was based on the

finite screw axis between two poses observed at the i-th and j-th instants of the motion and it

minimizes the root mean square distance between all the possible pairs of finite screw axes,

with a weighting factor based on the sine of the angle between the considered axes. The

approach of [21] is effective in that it produces a reference axis with low sensitivity to measure-

ment noise without requiring the use of a threshold, but it is computationally slow since it

requires the calculation of all the possible couples of instants in the set: i,j. In addition, the

obtained reference axis is the mean of all possible finite screw axes, but not the average of the

ISAs, which are a representation of the local differential kinematics. The latter is the focus of

this paper. Another limitation of the previously cited methods is that the localization of the
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pivot point becomes unstable and less reliable for hinge-like motions. In the limit case of a per-

fect hinge, where ISAs are parallel to each other, the pivot point is undefined. Also, the ISA

itself is ill-defined for low values of angular velocity [7]. Instead, the calculation of the pivot

point becomes more accurate for joints having a spherical behavior [24, 25].

The calculation of an ASA is useful for many practical applications, such as: gait analysis,

human motion analysis, robotics, motion representation, etc. and it may also serve as an

approximation of the true rotation axis of joints that can be modelled as hinges [12]. From this

follows the aim of the current work. Furthermore, from a biomechanical point of view, it is

particularly important to quantify the dispersion or the deviation of the ISAs with respect to

the ASA, that was correlated to the stability and healthiness of the joint [17, 25, 26].

Aims

The aim of this work is to propose a novel optimal procedure for calculating the Average

Screw Axis (ASA) of a joint motion based on the measured screw twist. The improvements

with respect to the previous methods are: (i) implementation of an optimization procedure

based on the instantaneous differential kinematics (screw twist); (ii) the use of weights corre-

sponding to the magnitude of the angular velocity to handle cases where the ISA is ill-defined

due to low velocities; (iii) the introduction of a regularization term in the optimal calculation

of the ASA position to handle cases where the variation in ISA orientation is small and there-

fore the pseudo-intersection point of the set is ill-defined.

In addition, we propose a novel procedure for the analysis of the uncertainty occurring in

the estimation of the ASA which also serves as a measure of the dispersion or variation of the

ISAs with respect to the ASA.

Finally, we test our method and compare it against the current state-of-the-art methods.

We exploit three datasets: (i) a human gait analysis trial representing the motion of a knee, (ii)

the experimental recording of the free swing motion of a mechanical hinge and (iii) syntheti-

cally generated motion data of a purely rotational (cylindrical) motion.

Materials and methods

This paper presents a method for calculating an optimal ASA for the motion of a joint based

on the measured screw twist of the joint during the motion. Conceptually, the ASA represents

the line that is the closest and the “most parallel” to a set of ISAs.

The screw twist (tw) characterizes the velocity of a rigid body with respect to a coordinate

system (CS) as the rotational velocity vector ω and the translational velocity vector v0 of the

point on the rigid body that instantaneously coincides with the origin of the reference CS:

tw ¼
ω

v0

 !

: ð1Þ

For a joint, the screw twist can then be used to represent the relative motion between the

rigid segments composing the joint. The screw twist can be calculated based on ΔT, the differ-

ence between two consecutive relative poses T (homogeneous transformation matrices)

between the segments composing the joint, according to the following equation [7, 27]:

½ω�x v0

01x3 0

 !

¼
1

Dt
logm DTð Þ; ð2Þ

where Δt is the time step between consecutive samples and [ω]x is the skew symmetric matrix
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formed out of the coordinates of ω:

½ω�x ¼

0 � oz oy

oz 0 � ox

� oy ox 0

0

B
B
@

1

C
C
A: ð3Þ

In the following, we assume that the screw twist of the joint is already known, and we base

on it the calculation of the ISA. We then illustrate the procedures to calculate: (i) the ISA; (ii)

the ASA; (iii) a CS attached to the ASA; (iv) the analysis of the dispersion of the ISAs with

respect to the ASA that also represents the uncertainty in the estimation of the ASA.

Definition of the instantaneous screw axis

According to the Mozzi-Chasles theorem [4, 5] every rigid-body motion can be described as a

rotation and translation along an axis in space. At the velocity level, we refer to this axis as the

ISA. The axis can be defined by an orientation nisa and a point Sisa lying on the axis (Fig 1) that

are obtained according to the following equations [7]. The orientation nisa is given by:

nisa ¼
ω
k ω k

; ð4Þ

Fig 1. Definition of the ISA with respect to the world coordinate system.

https://doi.org/10.1371/journal.pone.0275218.g001
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while the position of the axis is defined by the point closest to the origin of the reference CS,

Sisa, which can be found as follows:

Sisa ¼
ω� v0

k ωk2
: ð5Þ

The orientation vector and the point calculated according to the previous equations are

expressed within the same coordinate system in which the screw twist was expressed. When

the angular velocity is low, the direction of the ISA becomes ill defined.

Calculation of the average screw axis

Given a set of ISAs, the goal is to find the axis that is the “best fit” of the set and can be assumed

as the average one. Intuitively, the orientation of the ASA, nasa, is the one that is “most parallel”

to the set of ISAs; the position, Sasa, is the pseudo-intersection point of the ISAs, i.e. the point

closest to all the ISAs.

In our approach, we exploit an optimization procedure to find these quantities and to han-

dle the samples where the angular velocity is low.

The orientation (Fig 2) of the ASA can be obtained as follows: for a given set of N rotational

velocity vectors ωi with i = 1,2,. . .,N, we look for the unit vector nasa that is the most parallel to

all rotational velocities:

nasa ¼ argmax
n

f nð Þ ¼ argmax
n

1

N

XN

i¼1

ðωi � nÞ
2

 !

subject to kn � nk ¼ 1

ð6Þ

The objective function f(n) considers the squared value of the scalar product between each

rotational velocity ωi and the unknown orientation nasa. The constraint ensures that nasa is a

unit vector. This optimization problem can be rewritten into the following form:

nasa ¼ argmax
n

nTCωn
nTn

; ð7Þ

Where Cω represents the covariance matrix associated with the angular velocity:

Cω ¼
1

N

XN

i¼1

ðωiω
T
i Þ: ð8Þ

This form of optimization problem can be shown to correspond to an eigenvalue maximi-

zation problem [28]. The global maximizer nasa is the eigenvector of Cω that corresponds to

the largest eigenvalue. Remark that the eigenvalues are always real since Cω is a real symmetric

matrix.

The position Sasa (Fig 2) can be calculated via an optimization procedure similar to the one

adopted for nasa.
The average intersection point, Sasa, is defined for a given set of N rotational velocity vectors

ωi and N translational velocity vectors v0,i with i = 1,2,. . .,N, as the point with the smallest
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average squared velocity due to all the twists (ωi, v0,i):

Sasa ¼ argmin
S

1

N

XN

i¼1

k ωi � Sþ v0;ik
2

 !

: ð9Þ

Problem (9) is a linear least squares regression problem in the variable S. A general linear

regression model has the following form Y = Xβ+η, where Y is the vector of observations, X
the matrix of predictors, β the parameters to be estimated and η the vector of residuals [29]. β
is estimated by minimizing the sum of the squared residuals:

b̂ ¼ argmin
b

ðY � XbÞTðY � XbÞ; ð10Þ

Fig 2. Definition of the ASA calculated as the average orientation of the ISAs and the optimal pseudo-intersection

of the ISAs.

https://doi.org/10.1371/journal.pone.0275218.g002
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which has the following closed-form solution:

b̂ ¼ ðXTXÞ� 1XTY: ð11Þ

In our case, the variables in the regression model correspond to:

Y ¼
1
ffiffiffiffi
N
p

v0;1

v0;2

. . .

v0;N

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;X ¼
1
ffiffiffiffi
N
p

� ½ω0��

� ½ω1��

. . .

� ½ωN ��

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; b ¼ S;

Z ¼
1
ffiffiffiffi
N
p

v0;1 þ ½o0��S

v0;2 þ ½o1��S

. . .

v0;N þ ½oN ��S

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

ð12Þ

Filling in these variables in the closed-form solution (11) leads to the following solution for

the average intersection point Sasa:

Sasa ¼ ð
XN

i¼1

½ωi��½ωi�
T
�
Þ
� 1
XN

i¼1

ð½ωi��v0;iÞ; ð13Þ

where we made use of the property ½ωi�
T
�
¼ � ½ωi�� in the right-hand side of the equation.

The matrix inverse in (13) is ill-defined when the matrix is rank-deficient. This happens

when all rotational velocities have the same orientation (ISA remains parallel to itself) or when

the rotational velocities are zero, resulting in many possible solutions corresponding to a mini-

mum. This problem can be resolved by adding the following regularization term to the objec-

tive function in (9):

� k ðS � S0Þk
2; ð14Þ

which biases the optimization problem towards a given prior value S0 in the directions which

are ill-defined. The prior value should be chosen as an approximation of the geometrical joint

center provided this information is available. Alternatively, the barycenter of the marker clus-

ter or the origin of the coordinate system attached to one segment of the joint can be entered

as prior value. This regularization has only a minor influence on the result in case of well-

defined problems.

The � is a weighting parameter for the contribution of the regularization term to the main

cost function (9) of the optimization problem. The resulting problem corresponds to a damped

or regularized least squares problem. Using a similar derivation as (11), the solution of the reg-

ularized optimization problem is found as:

Sasa ¼
1

N

XN

i¼1

½ωi��½ωi�
T
�

" #

þ �I3

 !� 1

1

N

XN

i¼1

ð½ωi��v0;iÞ þ �S0

 !

: ð15Þ
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Confidence analysis of the ASA with respect to the ISAs

The uncertainty of the ASA calculation can be studied in terms of the variance observed in ISA

orientation and position. It can be interpreted as a measurement of the goodness of fit of the

ASA with respect to the ISAs.

ISA orientation

The dispersion of the ISA orientation (Fig 3) with respect to the nASA can be analyzed through

the covariance matrix Cω of ωi (8). Since Cω is a real symmetric matrix, its eigenvalue decom-

position can be written as follows:

Cω ¼ Uω � Lω � U
T
ω ; ð16Þ

where Uω ¼ ½ u1 u2 u3 � is a 3×3 orthogonal matrix containing the eigenvectors and Λω is a

real diagonal matrix containing the eigenvalues λω,1, λω,2, and λω,3 in decreasing order of

Fig 3. Analysis of the dispersion of the ISAs with respect to the ASA, represented as the confidence ellipsoid.

https://doi.org/10.1371/journal.pone.0275218.g003
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magnitude with units rad2

s2

� �
. The first eigenvector u1 corresponds to the average orientation of

the ISA. The first and second eigenvectors u1 and u2 in Uω identify the plane where most of

the ISA variations occur. Consequently, the third eigenvector u3 indicates the normal vector to

this plane. Based on the eigenvalues and eigenvectors, it is possible to calculate the confidence

ellipsoid, i.e., the ellipsoid that contains the rotational velocity vectors ωi within a confidence

level α. The direction and magnitude of the ellipsoid axes give information about the disper-

sion of the ISAs with respect to the ASA. The directions of the axes of the ellipsoid are given by

the eigenvectors Uω. Considering the eigenvalues:

Lω ¼

lω1 0 0

0 lω2 0

0 0 lω3

2

6
4

3

7
5 ð17Þ

and the associated standard deviation:

sωi ¼
ffiffiffiffiffiffi
lωi

p
ð18Þ

the magnitude of the i-th axis of the ellipsoid is then given by:

mωi ¼
ffiffiffiffiffiffi
ga;3

p
� sωi ð19Þ

where γα,3 is the value of the inverse χ2 probability distribution with significance α = 0.95 and

3 degrees of freedom.

When the ratio of the sum of the second and third eigenvalues over the first decreases and

approaches zero, it can be concluded that the ISA tends to one dominant direction u1. When

the ratio of the third eigenvalue over the second decreases, the ISAs tend to lie in a dominant

plane spanned by u1 and u2. The two ratios can be defined as follows:

r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lω;2 þ lω;3

lω;1

s

r2 ¼

ffiffiffiffiffiffiffi
lω;3

lω;2

s ð20Þ

ISA position

For a linear regression model of the form Y = Xβ+η, where the variance var(η) is assumed to

be isotropic and equal to σ2I, the variance on the estimated p×1 parameter vector b̂ can be

determined as follows [29]:

varðb̂Þ ¼ s2ðXTXÞ� 1
: ð21Þ

The value of σ2 is unknown in practice, but can be estimated from the n×1 vector of

residuals

Ẑ ¼ ðY � Xb̂Þ as follows:

ŝ2 ¼
ẐT Ẑ

n � p
: ð22Þ

Applying these general equations to the least squares problem of finding the ASA position,

the variance on the position, referred to as CS, is worked out as follows for the unregularized
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case:

CS ¼ var Sasað Þ ¼ s2
XN

i¼1

1

N
½ωi��½ωi�

T
�

" #� 1

: ð23Þ

Assuming that the variance on the translational velocity residual η is isotropic and equal to

σ2I, the value of σ2 can be estimated by substituting the velocity residuals as defined in (9) into

(22) for S = Sasa and with n = 3N and p = 3:

ŝ2 ¼

PN
i¼1
ðωi � Sasa þ v0;iÞ

T
ðωi � Sasa þ v0;iÞ

Nð3N � 3Þ
: ð24Þ

The value of σ2 is influenced by two types of uncertainty. One type of uncertainty is due to

measurement noise on the recorded twists. The other type of uncertainty is caused by changes

in the position of the ISAs throughout the batch. The covariance matrix CS would ideally only

capture the latter source of uncertainty. Unfortunately, there is no way to distinguish between

the two sources of uncertainties solely from the velocity residuals. Despite this drawback, the

covariance matrix CS is still useful for studying the main directions of uncertainty for the ASA

position. This is done by using the eigenvalue decomposition on the covariance matrix CS as

previously described for the orientation:

CS ¼ US � LS � U
T
S ; ð25Þ

with orthogonal matrix US as the eigenvectors and the eigenvalues in ΛS in decreasing order of

magnitude. The first eigenvector in US will then indicate the direction with the highest uncer-

tainty on the ASA position. The procedure for determining the confidence ellipsoid is the

same as for the orientation. Remark that the corresponding ratios of the eigenvalues ρ1 and ρ2

are independent of the estimation of σ2.

By inspecting the formula for the covariance matrix of the position CS (25) and the covari-

ance matrix of the orientation Cω (8), the following relationship between the two can be

derived:

CS ¼ s
2ðCω � traceðCωÞÞ

� 1
: ð26Þ

Since CS and Cω are both symmetric matrices, they share the same eigenvectors. Conse-

quently, the direction with the highest uncertainty on the ASA position corresponds to the

average direction of the rotational velocities, i.e., the orientation of the ASA.

Coordinate system attached to the ASA

Once the ASA is determined, it is possible to define a local coordinate system based on it. Such

a coordinate system will be entirely determined in a functional way and exploits the eigenval-

ues decomposition of the covariance matrix associated to the angular velocity:

■Origin O≔ Sasa

■ ê1: nasa i.e. the eigenvector belonging to the largest eigenvalue.

■ ê2 : the 3rd eigenvalue of the covariance matrix of the ω vector (8).

■ ê3 : ê1 � ê2 to ensure a right-handed frame.
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The direction ê2 represents the normal to the plane containing the largest variation of the

ISA. The ASA CS is then represented in the form of a 4x4 homogeneous matrix:

ASAT ¼

..

. ..
. ..

. ..
.

ê1 ê2 ê3 O

..

. ..
. ..

. ..
.

0 0 0 1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð27Þ

Summary of the method

The different steps in the methodology for calculating the average screw axis and quantifying

its uncertainty are summarized to enhance the replicability of the method. Starting from a

batch of relative poses describing the motion of a joint, the following steps need to be followed:

1. calculate the screw twist according to Eqs (1), (2) and (3);

2. determine the average direction of the screw axis nasa as the eigenvector belonging to the

largest eigenvalue of the covariance matrix as in (8);

3. determine the average intersection point of the screw axes Sasa from (15) with a chosen reg-

ularization weight � and prior value S0;

4. study the dispersion of the orientation of the ISAs by first calculating the eigenvalues of the

covariance matrix in (8) according to (16) and (17), and then by considering the ratios of

the eigenvalues defined in (20) or the dimensions of the uncertainty ellipsoid found from

(18) and (19);

5. study the dispersion of the position of the ISAs by first calculating the eigenvalues of the

covariance matrix in (23) making use of the estimate of σ in (24), and then, similarly as for

orientation, by considering the ratios of the eigenvalues or the dimensions of the uncer-

tainty ellipsoid.

Calculation examples

In this section, we demonstrate the proposed approach by applying the previously described

procedures to some datasets. The aims of these tests were to: (i) demonstrate the calculation of

the ASA and the analysis of ISA dispersion on different datasets; (ii) study the sensitivity to

noise of the new method and compare it to the current state of the art (SoA); (iii) demonstrate

the effect of the regularization term.

Three datasets were tested: (i) the motion of a human knee during a gait cycle of a gait anal-

ysis exam; (ii) the motion of an artificial hinge recorded via motion capture and (iii) a numeri-

cally generated dataset representing a swing motion about a perfectly cylindrical joint.

Description of the datasets

Human knee. The studied data consist in the poses of the femur and the tibia of a subject

that underwent a total knee arthroplasty. The implant was on the left knee. The motion was

recorded over an entire gait cycle during a ground gait by means of fluoroscopy imaging. The

estimated accuracy was <1 degree for all rotations, <1 mm for in-plane and<3 mm for out-

of- plane translations. The original sampling frequency was 25 Hz. The analysis was limited to

an entire gait cycle defined by the samples between two consecutive heel strikes. The data were

part of the CAMS-Knee dataset [30] and they were visually represented in Fig 4:
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Hinge joint. An artificial, custom-made hinge was left free to swing after an initial pertur-

bation. The swing motion was recorded by means of an optoelectronic system (Vicon MX1,

Oxford, UK, 10 cameras, sampling frequency 100 Hz) and passive markers attached to the

hinge segments. The coordinate systems attached to each segment were reconstructed by

means of the point-cluster technique [31] based on the marker measurements (Fig 5). The first

swing cycle was discarded to remove possible artifacts and the analysis was limited to the sec-

ond complete swing cycle.

Ideal cylindrical joint. The dataset (Fig 6) was generated as a rotational trajectory about a

geometric axis (GA) defined by the following direction nGA and position SGA:

1nGA ¼ ½0 0 1�

1SGA ¼ ½0 � 0:25 0�m

The origin of CS 2 with respect to CS 1 was defined as:

1xc ¼ r � cos ðaÞ

1yc ¼ r � sin ðaÞ

1zc ¼ 0

2
1
Oc ¼ 1SGA þ ½1xc 1yc 1zc�

ð28Þ

Fig 4. Poses of femur and tibia across one gait cycle. The motion progresses from the left to the right. CS0 is the

world coordinate system, CS1 is the coordinate system attached to the femur, CS2 is the coordinate system attached to

the tibia. For CS 1 and CS 2, the x-axis is pointing forward, the y-axis is pointing upwards while the z-axis is on the

medio-lateral direction.

https://doi.org/10.1371/journal.pone.0275218.g004
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where r = 0.25 m and

a ¼ A � sin
2p

T
t

� �

þ U ð29Þ

with: A = 45 deg.; U = 180 deg.; T = 1 s; t2[0, Tmax]

Fig 5. a) Experimental setup for the hinge measurements and b) the three-dimensional reconstruction of the motion of the artificial

hinge. The poses of the two segments are visualized.

https://doi.org/10.1371/journal.pone.0275218.g005

Fig 6. Generated data for a swing cycle about an ideal cylindrical joint.

https://doi.org/10.1371/journal.pone.0275218.g006
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The orientation of CS 2 with respect to CS 1 was defined as follows:

2
1
jc ¼ �

2
1
Oc

k
2

1
Ock

2
1
kc ¼ ½0 0 1�

2
1
ic ¼2

1
jc �

2
1
kc

ð30Þ

Hence, the complete pose of CS2 with respect to CS1 is given by
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Results

Effect of the regularization

To test the effect of the regularization, we first calculated the ASA for each dataset with � = 0

(no regularization). Then the calculation was repeated for different choices of �. Each time, the

ASA calculated with regularization was compared to the non-regularized one by means of the

following parameters:

• common normal distance between the regularized and non-regularized ASAs

• distance between the position points (SASA) of the regularized and non-regularized ASAs.

We did not test the effect on the direction of the ASA as, by definition, the regularization

affects only the ASA position. Increasing the � led to larger variations in the ASA position.

This effect was more noticeable in the hinge dataset. In the case of the ideal cylindrical joint

the regularization was very effective in picking an ASA position close to the reference one,

thus a large SASA was observed. The choice of � did not affect the result.

The results are reported in Table 1:

Table 1. Effect of the regularization: Common normal distance and position point (SASA) of the regularized ASA

with respect to the non-regularized ASA.

Data � Common-normal distance [mm] SASA distance [mm]

Gait 0.0001 0.000 0.001

0.001 0.001 0.010

0.01 0.014 0.098

0.1 0.139 0.868

Hinge 0.0001 0.000 0.146

0.001 0.000 1.392

0.01 0.001 9.392

0.1 0.008 22.073

Ideal joint 0.0001 0.000 very large

0.001 0.000 very large

0.01 0.000 very large

0.1 0.000 very large

https://doi.org/10.1371/journal.pone.0275218.t001
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The reference point for the regularization was chosen as: the geometric center of the knee

in the case of gait data; the midpoint of the hinge joint in case of the hinge data; the defined

geometric center of rotation in the case of the artificial data of the ideal joint.

Sensitivity analysis

In the sensitivity analysis, we evaluated the effect of noise on the calculation of the ASA. The

noise was added to the relative pose matrix 2
1
T in terms of a small random displacement and

rotation according to the following equation:

2

1
Tnoise ¼

2

1
T � expm

0 � dz dy dx
dz 0 � dx dy
� dy dx 0 dz

0 0 0 0

2

6
6
6
6
6
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3
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7
7
7
7
5

0

B
B
B
B
B
@

1

C
C
C
C
C
A
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where the notation 2
1
T represents the homogeneous matrix of CS 2 expressed in CS 1

The ASA was then calculated based on the noisy data and compared to the one calculated

without noise. For this purpose, we assumed � = 0.01. We tested other choices of � and we con-

cluded that it did not significantly affect the sensitivity to noise analysis.

The comparison involved the following parameters:

1. angle between the two axes,

2. common-normal distance between the two axes,

3. distance between the position points (SASA) of the two axes.

The calculation was repeated 100 times, regenerating the random noise each time. Finally,

the standard deviation of each parameter across all the repetitions was reported.

The same analysis was conducted on the state-of-the-art method for calculating the ASA

based on the instantaneous approach currently reported in the literature [11–13, 32]. The sen-

sitivity to noise of the state-of-the-art method was then compared to our method. The sensitiv-

ity analysis was repeated on each dataset included in this study. Two noise levels were tested:

• 3 deg and 2 mm

• 6 deg and 4 mm

The results are reported in Fig 7:

Dispersion analysis

The dispersion analysis was conducted on all three datasets for orientation and position of the

ASA according to the methods outlined in sections 3.3.1 and 3.3.2, respectively. This analysis

included the calculation of: (i) the magnitude of the axes of the confidence ellipsoids associated

with the covariance matrices, Cω and Cs, of the angular velocity and ASA position; (ii) the

non-dimensional ratios between the eigenvalues of these covariance matrices; (iii) the disper-

sion in terms of the RMSE of the orientation and of the position, according to the current liter-

ature (SoA) [12]. The results are presented in Table 2 and Fig 8.

Discussion

In this paper we presented a novel method for determining an ASA based on the instantaneous

measurements of the motion of joints. The ASA was calculated in terms of its position and
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direction vector. The main contributions, with respect to the previous literature, were: (i) the

implementation of a weighting factor corresponding to the norm of the angular velocity in

order to improve the estimation of the ASA; (ii) the introduction of a regularization term to

improve the estimation of the ASA position in the cases where the ISAs tend to be parallel to

each other; (iii) the definition of a local coordinate system entirely based on functional mea-

surements; (iv) the statistical quantification of the dispersion of the ISAs with respect to the

ASA in terms of its variance.

A known issue in calculating the ISA and then the ASA is that the ISA is ill-defined for low

angular velocities. For this reason, the previous literature recommended thresholding the

angular velocity or angular displacements and to calculate the ISA and the ASA based only on

the samples above the threshold [11, 12]. The choice of a threshold may significantly affect the

results [33]. The method presented in this paper is meant to serve as an improvement to the

methods currently proposed in the literature when the rotation axis and the center of rotation

of a joint have to be estimated from functional measurements. Examples are the analysis of

human joints, such as the knee or the hip; or robotics applications, such as the analysis or con-

trol of the rotation of joints. In our approach we aimed to eliminate the need for a threshold

and introduced instead a weighting using the norm of the angular velocity. This was motivated

by the fact that the influence on the direction of the angular velocity caused by additive isotro-

pic noise is inversely proportional to the norm of this angular velocity. This approach leads to

a more accurate estimation of the ASA that is not affected by the arbitrary choice of a

threshold.

Furthermore, weighting with the norm of the angular velocity can be shown to be equiva-

lent with calculating the average screw axis using measurements which are equidistant in the

progress of the motion rather than measurements which are equidistant in time. The progress

of motion should then be defined as the integral of the absolute value of the angular velocity

about the ISAs, which is appropriate for hinge-like joints. Hence, such weighting makes the

calculated average screw axis independent of the magnitude of the angular velocity at every

time instant during the motion.

The introduction of the regularization term is aimed to improve the calculation of the ASA

position in the limit cases where the ISAs tend to be parallel to each other or the cases where

the position of the ASA is ill-defined. In such cases, regularization helps to keep the position of

Fig 7. Sensitivity analysis, as calculated for � = 0.01. Standard deviation (SD) of (a) the angle between the ASA with

noise and without noise; (b) the common-normal distance between the two axes; (c) the SASA distance.

https://doi.org/10.1371/journal.pone.0275218.g007

Table 2. Results of the dispersion analysis.

Parameter Gait Hinge Ideal cylindrical motion

Direction Position Direction Position Direction Position
Confidence ellipsoid [rad/s] [mm] [rad/s] [mm] [rad/s] [mm]

Mag. 1st axis 7.510 9.080 8.325 11.977 9.797 4.9e5

Mag. 2nd axis 1.863 2.680 0.313 0.534 0.000 0.000

Mag. 3rd axis 1.256 2.637 0.199 0.534 0.000 0.000

Eigenvalues’ ratios [] [] [] [] [] []

ρ1 0.299 0.586 0.045 0.089 0.000 0.000

ρ2 0.674 0.984 0.636 1.000 0.906 1.000

SoA [deg] [mm] [deg] [mm] [deg] [mm]

RMSE 30.629 22.824 2.664 25.551 0.000 3.8e4

https://doi.org/10.1371/journal.pone.0275218.t002
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the ASA (SASA) in the neighborhood of a reasonable point. Where possible, this point should

be assumed as the geometrical center of the joint. However, the knowledge of this point repre-

sents only an improvement for the estimation of the SASA, but it is not strictly necessary for its

calculation. The weight of the regularization term, � in Eq (15), is an arbitrary parameter that

should be kept small. Ideally, it should be experimentally tuned for each application it is

intended for.

The effects of regularization were tested on three datasets. The regularization did not affect

the calculation of the ASA direction, while it affected only the position. This was in accordance

with the mathematical definition of the regularization term. From the experimental data, we

observed that the regularization was more effective for larger �, producing an ASA more dis-

tant from the non-regularized one, and closer to the reference point. The effect of regulariza-

tion was more obvious in the case of the hinge dataset that represented a real joint with

physical characteristics close to the limit case of purely rotational cylindrical motion. In this

case, the regularization did not affect significantly the common-normal distance, while it had a

strong impact on the position of the ASA. To further investigate the effect of regularization, we

considered a simulated ideal cylindrical joint (artificial data of a purely rotational motion)

where the position of the ASA is known to be ill-defined. In this case, the regularization was

very effective in providing a valid SASA close to the geometric center. In this limit case, the

choice of the � had no effect on the overall result. The very large distance observed for the SASA
and the almost null common-normal distance suggested that in the non-regularized case, the

ASA position was undefined along the direction of the rotation axis.

The regularization improves the estimation of the center of rotation in the cases of hinge-

like joints. The regularization needs to be tuned in terms of the expected position of the center

of rotation, and the weight of the regularization. The expected position of the center of rotation

can be determined from geometric information, where available. For example, the knee center

can be determined as the midpoint between epicondyles. When no geometric information is

available, the barycenter of the marker cluster or the origin of the coordinate system attached

to the marker cluster can be used.

In the sensitivity analysis, we compared our method to the SoA. With reference to Fig 7A,

we observed that our approach was less sensitive to noise for estimating the direction of the

ASA in the case of gait. Improved sensitivity to noise was also observed for the estimation of

the SASA in the cases of the hinge and of the ideal rotational joint (Fig 7C). For the common-

normal distance (Fig 7B), our method performed worse than SoA for the hinge and ideal joint

but slightly better than SoA for the gait.

Previous literature suggested to quantify the uncertainty in the calculation of the ASA, i.e.

the dispersion of the ISA with respect to the ASA, by means of the RMSE of the angle and dis-

tance [12]. In our approach, we further improved such a measurement by calculating the con-

fidence ellipsoid that provided additional information about the magnitude and the direction

of the dispersion. Such dispersion was quantified both for the orientation and the position of

the ISAs, with respect to the ASA. The ratios of the eigenvalues helped in quantifying the rate

of deviation of the motion of a hinge-like joint from a perfect hinge case. With reference to

Table 2, as expected we observed higher RMSE dispersion in ISA orientation in the case of

gait, due to the expected physiological variations in the knee ISA across the gait cycle. A coher-

ent result was observed in the confidence ellipsoid and in the ratios: for a perfect hinge we

would expect ρ1 = 0, that was the case for the ideal cylindrical motion, while this value was

Fig 8. Ellipsoid of the dispersion analysis in the case of: (a) gait; (b) hinge; (c) ideal hinge, each time represented in the CS

attached to the ASA. In the last case, the ellipsoid degenerated to the ASA axis itself.

https://doi.org/10.1371/journal.pone.0275218.g008
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larger for gait, meaning that the human knee behaviour deviated from a perfect hinge case. In

all cases, the confidence ellipsoid suggested that the motion occurred about a dominant direc-

tion. The variation on the secondary axes suggested a uniform dispersion of the ISAs with

respect to the rotation axis. The dispersion was larger in the case of gait, reduced in the case of

the hinge and null in the case of the ideal cylindrical motion, where the ellipsoid degenerated

to the rotation axis itself (Fig 8). In fact, in the case of ideal motion, the motion was entirely

along the first axis of the ellipsoid. The null first ratio correctly detected the motion occurring

only along the main axis. In such a case, the second ratio is not significant. In general, the

lower the ratios, the more accurate is the estimation of the ASA while the ISAs have a smaller

dispersion with respect to the ASA. The largest variation in ISA position was along the rotation

axis, i.e. the 1st axis of the ellipsoid, for all the cases considered. The positional error in the case

of the ideal motion was very high due to the fact that the instantaneous position of the ISA was

ill-defined, as expected for a purely rotational motion. As expected, the variations in the posi-

tion of the ISA were larger in the case of gait compared to the hinge.

The main limitation of this study is in the limited cases that were tested. For a better appli-

cation and interpretation of the results in a biomechanical context, further cases should be

investigated, with special reference to other anatomical joints such as the ankle or the elbow.

In this context, the methods here proposed may be exploited to characterize healthy and path-

ological joints. The performance of this new method should be evaluated in each case.

Conclusion

In this paper, we presented a novel method for calculating: (i) an average screw axis, (ii) the

position of the center of rotation of a joint and (iii) a method to quantify the accuracy of the

ASA and the dispersion of the ISAs with respect to the ASA. The introduction of a regulariza-

tion factor allowed to provide working results even in the limit cases where the ASA is ill-

defined, such as purely rotational motion. The tests showed that our method was able to suc-

cessfully estimate the rotation axes and had an improved robustness to additive noise when

compared to the current SoA method, especially in the limit-case of the cylindrical joint. The

method we proposed is recommended for estimating the ASA of hinge-like joints, such as the

human knee especially in presence of noisy data.
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