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Multifaceted events regulate initial interactions between HIV-1 and
target cells

The entry of enveloped viruses involves virus adsorption followed by close
apposition of the viral and plasma membranes. This multistep process is initi-
ated by specific binding interactions between glycoproteins in the viral enve-
lope and appropriate receptors on the cell surface. In the case of HIV-1, attach-
ment of virions to the cell surface is attributed to a high affinity interaction
between envelope spike glycoproteins (Env, composed of the surface protein
gp120 and the transmembrane protein gp41) and a complex made of the pri-
mary CD4 receptor and a seven-transmembrane co-receptor (e.g., CXCR4 or
CCRS5) (reviewed in [1]). Then a chain of dynamic events take place that enable
the viral nucleocapsid to penetrate within the target cell following the destabi-
lization of membrane microenvironment and the formation of a fusion pore.
Although it is generally accepted that HIV-1 attachment to its major cellu-
lar reservoirs (i.e., T helper cells and macrophages) occurs through the two-
stage receptor-interaction pathway, there is accumulating evidence indicating
that the initial attachment step is a more complex phenomenon than initially
thought. Indeed it seems that adsorption of HIV-1 to the cell surface is modu-
lated by a large variety of interactions between the viral entity and the target
cell surface (reviewed in [2]). This retrovirus may also attach to some cell
types by CD4-independent interactions involving highly glycosylated groups
or basic residues found on gp120 and polyanionic sulfated chains or lectin-like
domains on some specific cell surface receptors (reviewed in [1]). For exam-
ple, heparan sulfate proteoglycans, which are expressed at high levels on dif-
ferent cell types, such as epithelial and endothelial cells, can interact with the
envelope spike glycoprotein and serve as docking structures for HIV-1 [3].
Heparan sulfate proteoglycans such as syndecans serve as the main class of
attachment receptors for HIV-1 on different cell types, e.g., macrophages and
endothelial cells, and are thought to play a cardinal role in virus transmission
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[4, 5]. GP120 can bind also to galactosyl ceramide and its sulfated derivative
(i.e., sulfatide) [6, 7] that are found on macrophages and neural, glial and colon
epithelial cells [6-8]. It can also associate with the mannose-specific
macrophage endocytosis receptor (MR) [9] and other cellular lectins. In fact,
the determinant role played by dendritic cells (DCs) in HIV-1 transmission
might rely on specific interactions between gp120 and C-type lectins, of which
the DC-specific intercellular adhesion molecule-3 (ICAM-3) grabbing nonin-
tegrin (DC-SIGN) and DC-SIGNR (for DC-SIGN-related) are the best studied
[10, 11]. These two lectins are expressed on certain DC populations and
endothelial cells, respectively, and are described in more detail in this article.

HIV-1 attachment mediated by host cell proteins incorporated into the
viral envelope

Incorporation of host cell surface molecules within nascent HIV-1

HIV-1, as an enveloped virus, is released by budding through the plasma mem-
brane of the productively infected cell. In addition to its own virus-encoded
envelope glycoproteins, the virus incorporates many different cellular proteins
normally found on the cell surface (reviewed in [12—15]). These include major
histocompatibility complex (MHC) class I and II determinants [16—19], adhe-
sion molecules [20—-23], complement regulatory proteins [24] and costimula-
tory molecules [25, 26], which have been found inserted in the viral envelope.
The process of incorporation of host cell membrane proteins was found to be
conserved among all tested HIV-1 subtypes and strains that were expanded in
natural cellular reservoirs, such as mitogen-activated peripheral blood lym-
phocytes and human lymphoid tissue cultured ex vivo [27-32]. The physio-
logical significance of this phenomenon is provided by two previous reports
showing that host-encoded cell surface constituents were incorporated in plas-
ma-derived clinical HIV-1 isolates [33, 34]. Although different host cell con-
stituents can be found embedded within HIV-1, the incorporation process
seems to be selective. For example, CD45 is the most abundant leukocyte cell
surface glycoprotein [35], but is not acquired by HIV-1 [18, 36]. The CXCR4,
CCRS, and CCR3 co-receptors are also excluded from HIV-1 [37]. This abili-
ty to incorporate discriminatory host antigens into mature virions has allowed
two groups to demonstrate that cell-type-specific antigens can serve as mark-
ers of the cellular origin of HIV-1 replication [33, 38]. It has been estimated
that between 375 and 600 HLA-DR molecules are found associated with
HIV-1y5 emerging from H9 cells [39]. This observation suggests that virally
embedded host HLA-DR outnumbered virus envelope (Env) glycoprotein
gp120 by a factor of 8.9 to 28.6 considering that HIV-1 possesses an average
of between 21 and 42 gp120 molecules per virion [40].

The molecular basis governing the selective incorporation of cell surface
proteins within emerging HIV-1 particles is only beginning to be exposed. It
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was established that the virus envelope spike glycoproteins (i.e., gp120 and
gp41) are not essential to achieve insertion of ICAM-1 into HIV-1 [41].
Interestingly, ICAM-1 incorporation is governed by an intimate association
between the cytoplasmic domain of ICAM-1 and the viral Gag precursor
polyprotein Pr55%¢ [42].

Involvement of virus-anchored host proteins and their ligands in the
attachment process

It can be proposed that besides interactions between gpl20 and multiple
attachment receptors, interactions can also occur between host-derived cell
surface components incorporated within emerging virions and their natural
counter-ligands. This scenario has been confirmed in numerous studies where
such host cell membrane molecules were found to retain their biological
activity when located on the virus. For example, HLA-DR can increase HIV-1
infectivity for CD4-expressing T cells by about twofold [43], whereas
ICAM-1 alone augments virus infectivity for LFA-1"* target cells by up to
100-fold depending of the LFA-1 conformational state [22, 44, 45].
Activation of primary human CD4* T lymphocytes was found to result in
LFA-1 clustering, an event that promotes the early events of HIV-1 replica-
tion cycle through an interaction between virus-embedded host ICAM-1 and
LFA-1 clusters [46]. Confocal analyses showed that HIV-1 is concentrated in
microdomains rich in LFA-1 clusters [46]. Virus entry studies including sub-
cellular fractionation experiments with primary human CD4" T cells illustrat-
ed that the acquisition of ICAM-1 by nascent HIV-1 modified the entry route
of the virus within such target cells [47]. It was established that the ICAM-1-
mediated increase in virus infectivity was linked with a more productive entry
process into primary CD4" T lymphocytes (i.e., cytosolic delivery of viral
material) [47]. It has been reported that the higher susceptibility of memory
CD4* T cells (CD45RO" subset) to HIV-1 infection is due to secondary inter-
actions between virus-associated ICAM-1 and cell surface LFA-1 [48]. The
presence of host-encoded CD28 in newly formed HIV-1 particles resulted in
a close to 20-fold augmentation in virus infectivity when using target cells
that express high levels of CD80 and CD86, two natural ligands of CD28
[49]. In addition, an increase in virus infectivity was also seen following
insertion of host-encoded costimulatory molecules CD80 and CD86 within
progeny viruses [50].

Strategies to reduce viral load by blocking interactions between virus-
associated host molecules and their physiological counter-receptors

Given that attachment of HIV-1 to host cells can be modulated by the addi-
tional interactions provided by virus-anchored host cell membrane proteins, it
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is thus not surprising to discover that virus susceptibility to blocking agents is
affected. For example, ICAM-1-bearing virions are more resistant to antibody-
mediated neutralization and this decreased sensitivity is even more dramatic
when target cells expressed on their surface the activated form of LFA-1 [51,
52]. Additionally, it was reported that virions carrying host ICAM-1 on their
surface are more resistant to the fusion inhibitor T-20 than are isogenic virus-
es lacking host ICAM-1 [53].

Although the physical presence of such host constituents on the exterior of
virions might be detrimental for the infected individual, the propensity of
HIV-1 to acquire numerous host cell surface components could be exploited to
control viral load. Indeed, it has been shown in numerous reports that HIV-1
infectivity can be efficiently neutralized, both in vitro and in vivo, with anti-
bodies specific for such host membrane proteins [22, 23, 26, 39, 44, 45, 54,
55]. Interestingly, it was demonstrated that HIV-1 replication is diminished
upon treatment with statin compounds (e.g., lovastatin) [56], the primary drugs
used in the treatment of hypercholesterolemia. The antiviral potency of lovas-
tatin seems to be linked with its capacity to inhibit interactions between virus-
associated host ICAM-1 and cell surface LFA-1. This in vitro work was con-
firmed by a proof-of-concept small-scale clinical study [57]. In this provoca-
tive study, six Al stage HIV-1 patients not receiving combined therapy were
given lovastatin for a month as their only medication. This short-term statin
treatment clearly reduced serum viral RNA loads in all patients and in gener-
al increased their CD4" T cell counts. Discontinuation of treatment was fol-
lowed by a rebound in viral load.

HIV-1 attachment mediated by cellular lectins
HIV-1 capture by cellular lectins: Targets for microbicides

The prevention of HIV-1 infection by microbicides, topically applied
inhibitors that block access of sexually transmitted HIV-1 to the host system,
is an attractive strategy [58]. Understanding which cell types are first targeted
by sexually transmitted HIV-1 and how these cells interact with HIV-1 is key
to the generation of effective microbicides. Several studies suggest that DCs,
professional antigen-presenting cells, might be intimately involved in the early
local and subsequent systemic spread of sexually transmitted HIV-1 [59].
Langerhans DCs in the top layer of the anogenital mucosa are probably the
first cells exposed to sexually transmitted HIV-1. Mucosal macrophages and
submucosal DCs might subsequently get into contact with virus crossing the
mucosal barrier via local breaches or with progeny virions generated by infect-
ed Langerhans cells. DCs and macrophages express CD4 and chemokine
receptors, and are thus permissive to HIV-1 infection, albeit infection of DCs
is often relatively inefficient and depends on the subpopulation analyzed [59].
It has been proposed, however, that mere attachment of HIV-1 to mucosa asso-
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ciated DCs might be sufficient to promote HIV-1 spread, since these motile
cells might ferry bound virus into lymphoid tissue, the major compartment of
HIV-1 replication, as part of their migratory and antigen-presenting functions
within the immune system [10]. Several cellular lectins have been implicated
in virus attachment to DCs, macrophages and other cell types relevant to
HIV-1 spread. Here, we discuss the role of the lectins DC-SIGN, DC-SIGNR,
MR and langerin in HIV-1 infection and introduce strategies to inhibit HIV-1
interactions with these molecules.

DC-SIGN and HIV-1: Uptake, processing and MHC presentation versus
transmission

DC-SIGN has initially been identified as a gp120-binding calcium-dependent
lectin expressed in placental tissue [60]. The lectin has been “rediscovered” in
2000 when Geijtenbeek and colleagues [10] showed that DC-SIGN is
expressed on DCs and is involved in HIV-1 binding and subsequent transfer of
the virus to T cells, the latter process presumably involving DC-SIGN-depend-
ent endocytosis and conservation of infectious HIV-1 in a low pH compart-
ment [61]. DC-SIGN seemed to mainly account for the ability of DCs to pro-
mote HIV-1 infection of cocultured T cells, and it was proposed that DCs
might function as Trojan horses, which take up HIV-1 via DC-SIGN and trans-
port the virus into lymphoid tissue [10, 62]. Geijtenbeek and coworkers also
provided evidence that DC-SIGN interacts with ICAM-2 on endothelial cells
[63] and ICAM-3 on T cells [64], and proposed that these interactions con-
tribute to extravasation of DCs from blood vessels into tissues and to the close
contact between DCs and T cells required for efficient antigen presentation,
respectively. Thus, a scenario emerged in which DC-SIGN was involved in DC
functions critical for the establishment of an effective immune response and
simultaneously allowed HIV-1 to misuse DCs to ensure its spread in the host.

A critical contribution of DC-SIGN to DC interactions with
T cells/endothelial cells or HIV-1 has subsequently been challenged. It was
reported that DC-SIGN or the related protein DC-SIGNR bind to ICAMs with
submicromolar affinities similar to that observed for nonspecific cellular pro-
teins [65], suggesting that ICAM recognition might not account for a potential
role of DC-SIGN in cell-cell interactions. It was also documented that HIV-1
capture by DCs does either not dependent on DC-SIGN [66, 67] or that the
contribution of DC-SIGN is relatively modest with other factors playing an
important role [68—71]. In fact, Truville and colleagues [72] provided evidence
that different DCs bind to HIV-1 gp120 via different lectins or via CD4, as dis-
cussed below. Moreover, it has been demonstrated that transformed cells fre-
quently used to assess DC-SIGN function were not THP-1 monocytes, as
reported [10], but most likely Raji B-cells [73], and that these cells as well as
monocyte-derived DCs were permissive to infection by HIV-1 [74-76]. The
latter observation suggests that the ability of DC-SIGN-expressing cells to
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maintain HIV-1 infectious over prolonged time is most likely due to produc-
tive infection of these cells [74-76]. Indeed, DC-SIGN-dependent HIV-1
transmission is probably a short-lived process (Fig. 1), which is only observed
a few hours after the DC-SIGN-positive, HIV-1-exposed cells make contact
with target cells. Mainly, HIV-1 might be endocytosed and processed for MHC
presentation ([77, 78], Fig. 1). Finally, two reports indicate that DC-SIGN
might not be a good marker for DCs in vivo [68, 79], with DC-SIGN-positive
cells in lymphoid tissue being of macrophage origin [68]. How these results
relate to a series of previous studies demonstrating DC-SIGN expression on
tissue DCs [10, 80, 81] is currently unclear.

Short term "
CD4 DC-SIGN transfer
Progeny
CCR5 virus
i | R

Infection Processing
Long term transfer | | MHC presentation

Figure 1. HIV-1 interactions with DC-SIGN on dendritic cells (DCs). DC-SIGN is expressed at high
levels on DCs and binds to carbohydrates present on the surface of the heavily glycosylated HIV-1
envelope protein. Binding of HIV-1 to DC-SIGN-positive DCs can have multiple consequences.
During a relatively short time window (hours) bound virus can be transferred to adjacent susceptible
cells (“short-term transfer”). Certain HIV-1 isolates can also productively infect DCs via CD4 and a
chemokine coreceptor. Prior engagement of DC-SIGN might augment infectious entry. Progeny viri-
ons produced from infected DCs can then be efficiently transmitted to cocultured T cells over a pro-
longed time period (days, “long-term transfer”). Finally, HIV-1 captured by DC-SIGN can be endo-
cytosed and processed for MHC presentation.
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Can a significant contribution of DC-SIGN to DC interactions with HIV-1,
and thus to sexual transmission of HIV-1, be disregarded in the light of these
results? Probably not, since several studies also provide evidence for a role of
DC-SIGN in HIV-1 capture and transmission by DCs. For example, Arrighi
and colleagues [82] demonstrated that siRNA-mediated down-modulation of
DC-SIGN diminishes HIV-1 capture by DCs. The contribution of DC-SIGN to
this process might be due to an involvement of this lectin in the formation of
an infectious synapse [83], a microenvironment established between HIV-1-
bearing cells and target cells, which promotes efficient transfer of infectious
virions [84]. Interestingly, DC-SIGN did not contribute to HIV-1 infection of
target cells in cervical explants but, together with CD4, was mainly responsi-
ble for HIV-1 uptake by migratory cells present in these explants [85], sug-
gesting that in HIV-1-infected individuals DC-SIGN might indeed contribute
to HIV-1 dissemination by motile cells expressing this lectin. In this regard, it
is noteworthy that platelets have been shown to express DC-SIGN and to cap-
ture HIV-1 in a largely DC-SIGN-dependent manner [86, 87]. These cells
might bind HIV-1 via DC-SIGN once the virus has reached the blood stream
and might promote its dissemination in the host system. Similarly, a recent
report suggests that a subset of B cells expresses DC-SIGN and facilitates
HIV-1 transmission to T cells in a DC-SIGN-dependent manner [88]. Finally,
two groups found that certain polymorphisms in the DC-SIGN gene are asso-
ciated with decreased risk of HIV-1 infection [89, 90], highlighting that DC-
SIGN might modulate important events leading to the establishment of HIV-1
infection. Thus, further research is needed to clarify the role of DC-SIGN in
HIV-1 infection and to evaluate whether this protein is a potential target for
microbicides.

DC-SIGNR polymorphisms and susceptibility to HIV-1 infection

DC-SIGNR [11], also termed L-SIGN (for liver SIGN) [91], shares 77%
sequence identity with DC-SIGN and is expressed by sinusoidal endothelial
cells in liver (LSECs) and in lymph nodes, alveolar macrophages [92] and
enterocytes of the small intestine [93]. Moreover, DC-SIGNR transcripts have
been detected at sites of mucosal HIV-1 transmission [94]. DC-SIGNR, like
DC-SIGN, binds to high-mannose carbohydrates and captures HIV-1, HIV-2
and simian immunodeficiency virus [11, 91]. Binding to ICAM proteins has
also been demonstrated [91]. However, the natural function of DC-SIGNR is
currently unclear. Expression of DC-SIGNR in lymph node sinusoids might
concentrate HIV-1 in this compartment, while DC-SIGNR on LSECs might
promote infection of this cell type, which was shown to be permissive in vitro
[95] and in vivo [96, 97]. LSECs might therefore constantly release progeny
virus into the blood stream, thereby promoting HIV-1 spread.

DC-SIGN and DC-SIGNR are both organized into a N-terminal intracellu-
lar domain, a transmembrane domain, a neck region containing 7.5 repeats of
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a 23-amino acid-comprising sequence and a C-terminal lectin domain. In con-
trast to the neck domain of DC-SIGN, which is highly conserved among indi-
viduals, the neck domain of DC-SIGNR is polymorphic. While 7.5 repeats are
most often found and are considered wild type (wt), alleles with 5.5 and 6.5
repeats are also frequent (28.9% and 12.2%, respectively, in the Caucasian
population [91]). The impact of polymorphisms in the DC-SIGNR neck
region on susceptibility to HIV-1 infection has been analyzed by two studies.
Lichterfeld and colleagues [98] found no significant differences in DC-
SIGNR allele distribution between HIV-1-infected individuals and healthy
controls. Also, no correlation between DC-SIGNR allele frequency and
course of HIV-1 disease was observed [98]. In contrast, Liu and colleagues
[99] found that the 7/7 genotype was significantly less frequent in high-risk
HIV-1-seronegative individuals compared to HIV-1-seropositive individuals,
while the 5/7 genotype was associated with some protection against HIV-1
infection. It is currently unclear, however, how such a protective effect can be
explained on the molecular level. Thus, DC-SIGNR variants with 5 and 6
repeats were found to form stable homo-oligomers [100] and to augment
HIV-1 infection [101] with similar efficiency as the wt protein. Also, coex-
pression of DC-SIGNR alleles with 5 and 7 repeats allowed formation of sta-
ble hetero-oligomers and did not result in decreased HIV-1 interactions when
compared to controls expressing the 7/7 allele combination [101]. A linkage
between DC-SIGNR polymorphisms and alterations in unrelated genes deter-
mining susceptibility to HIV-1 infection can therefore at present not be
excluded.

MR and langerin mediate HIV-1 gp120 binding to DC subsets

The observation that DCs can bind to HIV-1 independently of DC-SIGN raised
the question whether related lectins might be involved. A detailed analysis of
gp120 interactions with different DC subsets revealed that MR on dermal DCs
might contribute to gp120 capture by these cells [72]. MR is an endocytic
receptor that harbors multiple lectin domains and recognizes ligands bearing
mannose, fucose or N-acetylglucosamine (GlcNac) [102]. The lectin is
expressed on DCs, macrophages and some endothelial cells [102] and might
contribute to capture of HIV-1 virions by these cells. In fact, it has been
demonstrated that an MR-specific antibody can reduce HIV-1 attachment to
macrophages [103]. Langerin contains a single carbohydrate recognition
domain specific for mannose, fucose and GlcNac and is expressed exclusively
by Langerhans cells [104, 105]. Expression of langerin triggers formation of
Birbeck granules, which are part of the endosomal recycling machinery of
Langerhans cells [106, 107]. The lectin might function as an antigen uptake
receptor that releases ligands upon exposure to low pH in endosomal com-
partments [105]. While Langerin recognizes HIV-1 gp120, it needs to be deter-
mined whether it contributes to infection of Langerhans cells, which are sus-
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ceptible to HIV-1 in culture and in patients [108, 109], or to transmission of
HIV-1 from Langerhans cells to adjacent target cells.

Approaches to inhibit HIV-1 interactions with cellular lectins

Lectin-dependent HIV-1 attachment to cells can be prevented by interfering
with lectin expression or by targeting domains in the lectin required for effi-
cient ligand recognition. Alternatively, carbohydrate structures in HIV-1-
gp120, which are recognized by relevant lectins, are targets for intervention.
Down-modulation of lectin expression can be achieved by specific siRNA [82,
110] and by sanglifehrin A [111], an immunosuppressant that diminishes C-
type lectin expression on DCs. However, issues with delivery (siRNA) and
possible unwanted side effects (sanglifehrin A) need to be addressed. Several
inhibitors that impede the interaction of DC-SIGN with HIV-1 or other virus-
es have been described. A synthetic, branched molecule that presents 32 man-
nose residues on its surface has been shown to inhibit HIV-1-gp120 binding to
DC-SIGN [112] and to block DC-SIGN interactions with reporter viruses
bearing the Ebola virus glycoprotein [113], a well-established DC-SIGN lig-
and [114, 115]. The antiviral activity of comparable molecules bearing sialic
acid, the structure recognized by influenza hemagglutinin, has also been
demonstrated in a mouse model for influenza infection [116], underlining the
feasibility of this approach. The inhibitory substances used to target lectin-
mediated HIV-1 attachment must not necessarily be of synthetic origin, since
bovine lactoferrin [117] and a substance in human milk which harbors Lewis
X carbohydrates [118] were shown to bind to DC-SIGN and to inhibit HIV-1
transmission by DCs. Similarly, a DC-SIGN inhibitory activity was identified
in human cervicovaginal lavage fluid [119]. These natural substances might
modulate the risk of HIV-1 transmission and merit further investigation.
Finally, inhibition of ligand binding to lectins can be achieved by monoclonal
antibodies, and a variety of DC-SIGN- or DC-SIGNR-specific monoclonal
antibodies that inhibit pathogen interactions with these lectins have been gen-
erated [68, 69, 71, 120].

While several lectins expressed at the cell surface can mediate HIV-1 attach-
ment, soluble human-, plant- and bacteria-derived lectins can be employed to
inhibit this process. Thus, mannose-binding lectin (MBL), a soluble lectin that
is involved in innate immunity and is known to bind to HIV-1-gp120 [121],
inhibits DC-SIGN-dependent HIV-1 transmission to target cells, probably by
competing with DC-SIGN for binding sites in HIV-1-gp120 [122]. A similar
observation was reported for Ebola virus [123], validating that lectins with
overlapping carbohydrate specificity can compete for binding sites in gp120,
which can result in reduction of viral attachment. In fact, soluble lectins were
shown to be effective against HIV-1 transfer by DCs and direct infection of
DCs [124], highlighting that lectins applied within a microbicide formulation
might help to block HIV-1 infection upon sexual transmission. A promising
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candidate microbicide is Cyanovirin N, a mannose-specific lectin obtained
from the Cyanobacterium Nostoc ellipsosporum [125]. CV-N binds to the
HIV-1-gp120 protein and inhibits HIV-1 interactions with DCs in vitro [124]
and, when applied topically, infection of macaques with a simian/human
immunodeficiency hybrid virus upon vaginal and rectal challenge [126, 127].

Concluding remarks

A more complete understanding of the possible contribution of virus-associat-
ed host proteins to the HIV-1 life cycle is crucial because it might lead to the
development of alternative approaches for the treatment of HIV-1 infection
and/or the design of an efficient vaccine strategy. Interestingly, a therapeutic or
vaccine strategy targeted at virus-associated host cell surface proteins might
circumvent problems due to the great genetic variability displayed by HIV-1.
Elucidation of the molecular mechanisms underlying HIV-1 capture by cellu-
lar lectins and assessment of the contribution of this process to HIV-1 dissem-
ination in and between individuals might help to define novel strategies for pre-
ventive or therapeutic intervention. Moreover, lectins on DCs can be used as
tools to target HIV-1 antigens to these important antigen-presenting cells
[128—131], which might facilitate the generation of an effective HIV-1 vaccine.
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