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Although acute and chronic vasoregulation is inherently driven by endothelial Ca2+, control
and targeting of Ca2+-dependent signals are poorly understood. Recent studies have
revealed localized and dynamic endothelial Ca2+ events comprising an intricate signaling
network along the vascular intima. Discrete Ca2+ transients emerging from both internal
stores and plasmalemmal cation channels couple to specific membrane K+ channels,
promoting endothelial hyperpolarization and vasodilation. The spatiotemporal tuning of
these signals, rather than global Ca2+ elevation, appear to direct endothelial functions
under physiologic conditions. In fact, altered patterns of dynamic Ca2+ signaling may
underlie essential endothelial dysfunction in a variety of cardiovascular diseases. Advances
in imaging approaches and analyses in recent years have allowed for detailed detection,
quantification, and evaluation of Ca2+ dynamics in intact endothelium. Here, we discuss
recent insights into these signals, including their sources of origination and their functional
encoding. We also address key aspects of data acquisition and interpretation, including
broad applications of automated high-content analysis.
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INTRODUCTION
The endothelium plays a pivotal role in vascular function and car-
diovascular homeostasis, including regulation of vascular tone,
permeability, inflammation, and angiogenesis (Furchgott and
Zawadzki, 1980; Vandenbroucke et al., 2008; Davis et al., 2011;
Xiao et al., 2013). Endothelial function is inherently linked to car-
diovascular health, and endothelial dysfunction is a hallmark of
cardiovascular disease (Quyyumi, 2003; Munaron and Pla, 2009).
Free intracellular Ca2+ concentration directs a wide range of
endothelial cell responses, but our understanding of dynamic tar-
geting and titration of Ca2+ signals within the intact endothelium
remains surprisingly rudimentary. New findings have exposed a
complex mosaic of physiologic endothelial Ca2+ signals (Duza
and Sarelius, 2004; Kansui et al., 2008; Ledoux et al., 2008). These
spatially and temporally discrete events comprise a highly struc-
tured language along the vascular intima, allowing for selectivity
and coordination of cellular responses. Here we discuss recent
insights into Ca2+ dynamics and implications for Ca2+-effector
coupling in the endothelium. We also address advances in sig-
nal tracking and quantification that will play a crucial role in
the elucidation of endothelial Ca2+ signaling patterns and the
development of new physiologic models.

Ca2+ DEPENDENT SIGNALING IN THE ENDOTHELIUM
Endothelial Ca2+ targets include a variety of cell effectors. Some
contain intrinsic Ca2+-binding motifs such as C2 domains.
However, most are dependent on calmodulin (CaM), a Ca2+-
binding protein containing a high-affinity EF-hands motif that
allows for cellular responses with nanomolar Ca2+ changes. Key

Ca2+-CaM dependent endothelial effectors include nitric oxide
synthase (eNOS) that produces the diffusible vasorelaxing fac-
tor nitric oxide (NO) (Ignarro et al., 1987; Busse and Mulsch,
1990), as well as small/intermediate conductance Ca2+-activated
K+ channels (KCa), KCa2.3, and KCa3.1 (Xia et al., 1998; Crane
et al., 2003; Dora et al., 2008) that elicit vasorelaxation through
endothelium derived hyperpolarization (EDH) of medial vascular
smooth muscle (Murphy and Brayden, 1995; Chaytor et al., 1998;
Emerson and Segal, 2000; Félétou and Vanhoutte, 2000; Burnham
et al., 2002; Bychkov et al., 2002; Taylor et al., 2003). Endothelial
Ca2+ rise also contributes to phospholipase A2-mediated produc-
tion of arachidonic acid metabolites, including the vasorelaxing
factors prostacyclin and epoxyeicosatrienoic acids (Jaffe et al.,
1987; Campbell and Fleming, 2010). The predominant factors
vary considerably among vascular beds. NO exerts a major influ-
ence in large vessels whereas hyperpolarizing mechanisms pre-
dominate in small vessels and the microcirculation (de Wit and
Wölfle, 2007). The primary functional consequence of endothelial
Ca2+-effector recruitment is vasodilation. However, vasocon-
stricting factors such as endothelin may also be released as a
result of Ca2+ elevation (Marsen et al., 1996), particularly under
conditions of injury or disease. So, how does a seemingly ubiqui-
tous signal, Ca2+, selectively recruit different endothelial effectors
with diverse functional roles? A closer look at the intact endothe-
lium has revealed a fundamental signaling paradigm involving
repetitive spatially restricted Ca2+ transients. As discussed below,
these signals are capable of exerting effector-specific influences
on vascular function and likely contribute to diverse profiles of
endothelial response.
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ENDOTHELIAL Ca2+ DYNAMICS
Over the past few decades, most Ca2+ measurements have
involved assessments of whole-field epifluorescence at rates
slower that 1 Hz, and often at supra-physiological levels of
cell/tissue stimulation. While this approach is useful for track-
ing global trends in Ca2+ over protracted time scales and evokes
acute fluorescence signals large enough to quantify unequivocally,
it does little to elucidate the spatial and temporal detail of Ca2+
dynamics. Insights into physiologic Ca2+ signaling have come
largely from the use of single-excitation fluorescent Ca2+ probes
in high-speed confocal imaging applications, particularly within
intact tissue preparations. Evaluations of isolated arterial seg-
ments have revealed a plethora of spatially and temporally discrete
Ca2+ signals. In arterial smooth muscle, spontaneous localized
Ca2+ transients (e.g., Ca2+ sparks and sparklets) as well as asyn-
chronous and synchronous Ca2+ waves control vascular tone
through coordination of cellular activation and feedback regula-
tion of constriction (Nelson et al., 1995; Santana et al., 2008; Mufti
et al., 2010). Hints of similar dynamic signals in the endothe-
lium were observed as Ca2+ waves coursing through isolated cells
(Neylon and Irvine, 1990; Isshiki et al., 2004). Unfortunately,
detailed imaging of endothelial Ca2+ activity in situ has been quite
challenging because of the general inaccessibility of the vascu-
lar intima (i.e., on the internal surface and only one-cell thick).
Various strategies have been employed for vascular endothelial
imaging including intravital microscopy (Bagher et al., 2011),
myograph-mounted arterial segments (Schuster et al., 2001),
exposed endothelial tubes (Socha et al., 2012), and pinned-open
artery segments (Marie and Bény, 2002). Open-artery prepara-
tions have proven quite useful. This involves cutting artery seg-
ments open longitudinally and pinning them to silicone blocks,
thereby making the endothelial layer accessible to rapid indicator
loading and en face confocal imaging (see Ledoux et al., 2008).
In such preparations, many cells (∼ 200 with 20X objective) can
be evaluated in a single plane while preserving the native envi-
ronment, including lamina attachments and cell–cell commu-
nication. Cell-permeant, single-excitation fluorescent dyes like
Fluo-4 AM have enabled rapid scanning. Implementation of the
transgenic GCaMP2 mouse model has also proven beneficial by
providing an endothelial-expressed Ca2+-dependent fluorophore
that avoids spill-over smooth muscle fluorescence and improves
signal detection and quantification (Kotlikoff, 2007; Ledoux et al.,
2008).

Basal endothelial Ca2+ events were first characterized in
mouse mesenteric arteries (Ledoux et al., 2008). Termed Ca2+
pulsars, these events resemble muscle cell Ca2+ sparks although
somewhat broader in spatial range and duration. Unlike Ca2+
sparks that emit from ryanodine receptors (RyR), Ca2+ pulsars
release intermittently from the endoplasmic reticulum through
clusters of inositol 1,4,5-trisphosphate receptors (IP3Rs). Pulsars
are similar to Ca2+ puffs, localized Ca2+ events previously
described in Xenopus oocytes (Parker et al., 1996). Liberated
from distinct IP3R clusters, Ca2+ puffs increase in frequency
with increasing IP3, ultimately expanding into cell-wide waves.
This transition to propagating waves occurs through IP3 sensiti-
zation of neighboring IP3R clusters, leading to a chain reaction

of Ca2+-induced Ca2+ release (Foskett et al., 2007). Ca2+ pul-
sars occur basally in mesenteric arteries under resting conditions
(at 37◦C and no flow), and these ongoing events are blocked
by inhibiting phospholipase C (Ledoux et al., 2008), the enzyme
that produces IP3. Stimulation of the mesenteric artery endothe-
lium with acetylcholine (ACh) increases the number of Ca2+-
emitting sites along the intima and augments the frequency of
events occurring at previously active sites. Thus, Ca2+ pulsars
can be tuned acutely by Gq protein-coupled receptor (GqPCR)
stimulation.

Ca2+ pulsar events occur predominantly around the nucleus
and at distinct myoendothelial junction (MEJ) sites where
endothelial cell projections form close contacts (and often hete-
rocellular gap junctions) with smooth muscle cells through holes
in the internal elastic lamina (Sandow et al., 2002, 2009; Ledoux
et al., 2008). These sites correspond with densities of IP3Rs. The
primary functional target of pulsars appears to be KCa channels,
particularly KCa3.1 channels that are highly concentrated in the
plasma membrane of myoendothelial projections. Importantly,
this ongoing Ca2+-effector coupling exerts a persistent EDH
influence (Ledoux et al., 2008) capable of relaxing underlying vas-
cular smooth muscle and modulating arterial tone. The vascular
smooth muscle may itself directly influence endothelial Ca2+ sig-
nals (Yashiro and Duling, 2000). In particular, smooth muscle IP3

generated by GqPCR stimulation (i.e., via sympathetic activity
and circulating hormones) may be communicated across MEJs,
augmenting endothelial Ca2+ dynamics (Lamboley et al., 2005).
Indeed, addition of the α1-adrenergic receptor agonist phenyle-
phrine increases endothelial Ca2+ events in mesenteric arteries
(Kansui et al., 2008) and recruits new axially propagating Ca2+
wavelets in previously inactive endothelial cells of skeletal muscle
feed arteries (Tran et al., 2012). This communication may allow
endothelial influences to be adjusted relative to vasoconstrictor
stimulation, providing real-time feedback regulation of vascular
tone.

Additional players have recently been implicated in intrinsic
endothelial Ca2+ signals, namely the transient receptor poten-
tial (TRP) non-selective cation channels (Di and Malik, 2010).
In particular, certain vanilloid family channels (TRPV4) have
been found to produce localized Ca2+ transients along the plasma
membranes of mouse mesenteric artery endothelium (Sonkusare
et al., 2012). Likely obscured by broader pulsar events, these
small, membrane-delimited Ca2+ sparklets can be unmasked
by depletion of internal stores and treatment with the TRPV4-
stimulating compound GSK1016790A. Like Ca2+ pulsars, the
TRPV4 sparklets couple to nearby KCa channels. Notably, when
ER Ca2+ stores are not depleted, TRPV4 stimulation causes
widespread whole-cell Ca2+ dynamics. Similarly, in the endothe-
lium of rat cerebral arteries, activation of ankyrin-associated
TRPA1 channels causes recruitment of discrete Ca2+ events that
spread as propagating waves (Qian et al., 2013). Together, these
findings suggest membrane-delimited TRP channel events may
solicit broader internal Ca2+ store release events. Indeed, the
interplay between external and internal Ca2+ sources may con-
tribute to a wide spectrum of conditional Ca2+ dynamics and
effector recruitment profiles.

Frontiers in Physiology | Vascular Physiology November 2014 | Volume 5 | Article 447 | 2

http://www.frontiersin.org/Vascular_Physiology
http://www.frontiersin.org/Vascular_Physiology
http://www.frontiersin.org/Vascular_Physiology/archive


Taylor and Francis Dynamic endothelial Ca2+ signaling

IDIOSYNCRATIC Ca2+-EFFECTOR COUPLING AND FUNCTIONAL
ENCODING OF Ca2+ DYNAMICS
Fundamental endothelial Ca2+ signals (pulsars and sparklets) pri-
marily target KCa3.1 channels concentrated in densities along the
endothelial basolateral membrane and myoendothelial junctions.
However, related KCa2.3 channels are distributed quite differently,
residing primarily along endothelial cell–cell borders, associated
with the plasma membrane protein caveolin (Sandow et al., 2006;
Absi et al., 2007). Notably, certain TRP channels (e.g., TRPV4 and
TRPA1) distribute preferentially with KCa3.1 or KCa2.3 channels
(Earley et al., 2009; Ma et al., 2013), perhaps due to condi-
tional TRP association with caveolin (Rath et al., 2009). Overall,
this suggests differential Ca2+ signal targeting of KCa isoforms.
Recent findings suggest that in addition to direct EDH signal-
ing, KCa/TRP coupling may directly influence the endothelial
Ca2+ signals themselves. Specifically, Ca2+-dependent hyperpo-
larization may increase the driving force for further Ca2+ influx
through TRP channels, allowing positive feedback augmentation
of the original Ca2+ signal. In support of this scenario, ACh-
induced endothelial Ca2+ dynamics are substantially higher in
normal mesenteric arteries compared to those from mice lacking
KCa3.1 and KCa2.3 channels, and this Ca2+-facilitating influence
of KCa channels is blocked by inhibition of TRPV4 activity (Qian
et al., 2014). Taken together, these findings imply that the spe-
cific arrangement of specific ion channels within endothelial cells
is a key determinant of the prevailing Ca2+ signals and effector
recruitment profiles.

Endothelial NOS resides in two functional pools, one asso-
ciated with caveolin in the cell periphery, and the other in the
membrane of the Golgi apparatus (Liu et al., 1997; Andries et al.,
1998; Rath et al., 2009). The provisional association of KCa2.3,
TRPV4, and eNOS with caveolin suggests their possible interac-
tion. Indeed, SK3 overexpression increases the NO contribution
to ACh-induced vasodilation (Brähler et al., 2009), and relaxation
of rat pulmonary arteries via TRPV4 activation is linked to both
NO and KCa channel activity (Sukumaran et al., 2013). Whether
such scenarios involve targeting of plasma membrane eNOS, by
KCa2.3-enhanced TRPV4 Ca2+ signals, remains to be determined.

Expansion or redirection of inherent Ca2+ signals is crucial to
endothelial function. Stimuli including GPCR agonists and TRP
channel activators increase the occurrence of endothelial events,
including recruitment of new active sites and increased firing fre-
quency (Ledoux et al., 2008; Qian et al., 2013), and both effects are
linked to proportional arterial dilation. The overarching implica-
tion is that endothelial vasoregulation is encoded by both binary
and analog Ca2+ signaling modes. That is to say, discrete sites are
either on or off (binary), and once on, the attributes of the events
are tunable over some range (analog). In addition to frequency,
analog signaling components include magnitude, duration, and
spatial spread of Ca2+ events, all of which could affect the type
and extent of effector recruitment. Ultimately, definitive track-
ing of discrete Ca2+ signaling patterns will be needed to reveal
the nature and capacity of parameter expansion and decipher the
idiosyncrasies of endothelial function and dysfunction.

QUANTIFYING AND PROFILING ENDOTHELIAL Ca2+ DYNAMICS
Given the inherent complexity of endothelial Ca2+ signals, a key
challenge moving forward will lie in our ability to adequately

and comprehensively characterize Ca2+ activity along the intact
intima. Disparate approaches have been employed to measure and
analyze Ca2+ data, often applying arbitrary, if any, selection crite-
ria and providing little explication of spatial and temporal param-
eters. Regardless of experimental preparation and approach, some
crucial criteria for acquisition and analysis should be consid-
ered. First, spatial or temporal under-sampling of Ca2+ fluo-
rescent signals washes out discrete dynamics or misses them
altogether. High-speed confocal imaging systems, particularly
spinning disk platforms with high-quantum efficiency cameras,
offer sub-micron spatial resolution with fast acquisition rates and
high signal to noise ratios. Analysis of dynamic Ca2+ activity typ-
ically involves hand selection of an event within an image time-
series and manual placement of a region of interest (ROI, often
a small box or circle) around each event site for measurement
of average fluorescence. Albeit straight-forward, this approach
is tedious, time-consuming and prone to user-bias and error.
Recent efforts have produced automated detection and analysis
algorithms to extract signals from continuous image sequences.
Evidence suggests that in addition to saving time and resources,
automated analyses can avoid inconsistencies of manual analy-
sis and identify signaling signatures within complex fluorescence
data. Multiple software applications, particularly in neurobiology,
have employed independent component analysis and watershed
image segmentation to define individual cells within dense fields
and to track region-specific deflections of Ca2+-dependent fluo-
rescence (Mukamel et al., 2009; Wong et al., 2010; Watters et al.,
2014). Separate automated analysis software has been applied
to discern Ca2+ spiking and oscillation patterns in various cell
types, including plant epidermal cells (Russo et al., 2013), car-
diac myocytes (Janicek et al., 2013), and T-cells (Salles et al.,
2013). The algorithm LC_Pro was recently developed to track the
diverse Ca2+ events in the vascular endothelium (Francis et al.,
2012, 2014). Incorporated as a plug-in with ImageJ freeware, this
statistically rigorous program distinguishes dynamic fluorescence
signals from background noise, and follows the spatial profile of
each Ca2+ event with time. It automatically assigns ROIs to event
spatial centers and returns output quantifying relevant field and
event parameters (e.g., sites, events, amplitude, duration, and spa-
tial spread). The algorithm also allows “batch” analysis of multiple
parallel data sets. Such analysis is particularly useful because it can
generate complete parameter distributions and provide practical
quantification of replicate data sets or complex signal changes fol-
lowing perturbation (i.e., endothelial stimulation). For instance,
relative changes in binary (i.e., sites) and analog signals (i.e.,
amplitude, duration, spread, single-site frequency) can be auto-
matically calculated, plotted, and statistically evaluated in a series
of experiments without intermediate data processing by the user.
Regardless of specific approach, stringent analysis of large data
sets will be a necessary step in decoding Ca2+ dynamics.

Overall, automated analysis approaches have become useful
for defining cell boarders, discerning cellular/subcellular fluores-
cence signals from statistical noise, and providing comprehensive
quantitation of component signal parameters. Current limita-
tions of such approaches primarily stem from narrowly targeted
applications and disparate processing algorithms that can con-
tribute to false-negatives or false-positives when data fall outside
an optimal range. As discussed below, extended initiatives should
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promote more widely applicable tools capable of reducing com-
plex and heterogeneous data sets to intuitive indices of functional
signaling.

FUTURE DIRECTIONS AND CHALLENGES
Looking forward, careful consideration should be given to the
limits and liabilities of experimental approaches. While high-
speed confocal imaging is valuable for signal resolution, it
imposes certain experimental restrictions, including thin-plane
sampling (∼ 1 μm) and low tolerance for tissue movement. Wire-
mounted or pressurized arteries can be studied as intact segments,
but endothelial exposure is very limited. On the other hand,
open vessel preparations expose vast endothelial fields in a single
plane but sacrifice tubular structure and functional assessment.
Imposing rigid acquisition criteria may be impractical. Rather,
strategies should be implemented and optimized to ensure ade-
quate spatial and temporal resolution and prevent image artifact.
Importantly, Nyquist sampling criteria should be satisfied (i.e.,
sampling time and spatial intervals ≤½ of smallest signal dura-
tion and size) to ensure reliable signal quantification without
signal aliasing or distortion. Automated detection software such
as LC_Pro may be useful for optimization by identifying which
spatial and temporal acquisition conditions achieve convergence
of parameter values while avoiding oversampling. Stack registra-
tion software can also be employed as a data processing step to
correct for spatial drift (x-y movement) (Thévenaz et al., 1998).
Fast piezo focus for rapid z-axis stacking is very useful not only
for acquiring depth information within the sample but also for
compensating for z-axis drift. It should be noted that inclusion
of z-stacks as well as increased exposure times and pixel-binning
can all improve certain aspects of image quality but may lead to a
loss of overall spatiotemporal resolution, and should be employed
with caution.

While ROIs are convenient for assessing spatially discrete
Ca2+ dynamics, these fixed sampling windows can be problem-
atic when tracking widely disparate signals. For instance, a focal
event occupying only a small fraction of an ROI will yield a
very small average fluorescence change (amplitude) compared
to a broad wave passing through the same ROI, even if both
have the same absolute signal intensity. Also, a single fixed ROI
may detect spill-over signal from nearby events over time, dis-
torting quantification of site-specific activity. In addition, fixed
ROI sampling can promote artifact due to x-y drift by allowing
hot spots or even regions of high or low background fluores-
cence to move into and out of the measured region (i.e., box)
over time. Such issues may be resolved by tracking each event
individually in space and time, allowing a signal to define its
own transient polygonal ROI without establishing a permanent
sampling window. Finally, dynamic Ca2+ events are often rep-
resented as ratios of relative fluorescence change within an ROI
(i.e., F/F0, where F0 is a user-defined base fluorescence value).
Defining appropriate base values can be challenging, particu-
larly when photobleaching causes signal drift or high dynamic
activity obscures the background. In addition to background
correction algorithms, linear regression of time-course data can
be applied for F0 designations (Francis et al., 2012). Caution
is warranted when expressing data as ratios since very low or

very high base values can dramatically inflate or deflate F/F0

values.

PERSPECTIVES
Because Ca2+ dynamics are complex, data are typically repre-
sented by a profile of parameters or parameter distributions
rather than a single scalar value. This multidimensional descrip-
tion has the capacity to distinguish Ca2+ signaling modalities,
such as responses to distinct stimuli or among different vas-
cular beds. Notably, because perturbations can increase some
parameters and decrease others, quantification, comparison, and
interpretation of data can be quite complex. Future analysis and
meta-analysis approaches will need to address this complexity,
perhaps by tracking trends in global distribution profiles or by
defining cumulative metrics that combine parameters into stan-
dard indices. Additional indices might also include site distribu-
tion, cell heterogeneity, and event synchrony. A growing number
of analysis algorithms are available as open source packages and
plug-ins, making them not only widely accessible but amenable
to customization. The hope is that eventually, a suite of analysis
modules could be employed universally for parameter compila-
tion, data mining, and pattern recognition. This would allow a
standard analysis scheme for comparison of data sets across labs
and preparations. Still, the onus ultimately falls on investigators
to extract data or composite parameters germane to their specific
experimental questions.

CONCLUSIONS
New insights suggest the endothelium functions as a continuum
of dynamically regulated influences that are always engaged and
are constantly adjusted. The prevailing Ca2+ signaling modalities
and effector distributions likely underlie the distinct functions
of different circulations. Further dissection of this diverse activ-
ity will allow for identification of sub-modalities, and potentially
distinct cell phenotypes within the intima. We submit that shifts
in prevailing Ca2+ dynamics necessarily impact blood pressure
and flow and may predict disease. Indeed, endothelial dysfunc-
tion is an overarching feature of cardiovascular pathology. It is
therefore particularly imperative that future studies shift away
from assumptions based on global Ca2+ changes and broad cellu-
lar protein concentrations and focus on spatially and temporally
relevant aspects of real-time signaling. Ultimately, the develop-
ment of a definitive and predictive model of endothelial func-
tion should allow for elucidation of specific control points and
therapeutic targets.
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