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A B S T R A C T   

With the COVID-19 pandemic and the growing influence of the Internet in critical sectors of industry and society, 
cyberattacks have not only not declined, but have risen sharply. In the meantime, ransomware is at the forefront 
of the most devastating threats that have launched the lucrative illegal business. Due to the proliferation and 
variety of ransomware forays, there is a need for a new theory of categories. The intricacy and multiplicity of 
components involved in digital extortions entails the construction of a knowledge representation system that is 
able to organize large volumes of information from heterogeneous sources in a formal structured format and infer 
new knowledge from it. This paper suggests and develops a dedicated ontology of digital blackmails, called 
Rantology, with a particular focus on ransomware assaults. The logic coded in this ontology allows to assess the 
maliciousness of programs based on various factors, including called API functions and their behaviors. The 
proposed framework can be used to facilitate interoperability between cybersecurity experts and knowledge- 
based systems, and identify sensitive points for surveillance. The evaluation results based on several criteria 
confirm the adequacy of the suggested ontology in terms of clarity, modularity, consistency, coverage and in-
heritance richness.   

1. Introduction 

Malware has always been a weapon in the hands of cybercriminals. 
Ransomware is one of the ghastliest malware, designed with the mindset 
of extorting from users by blocking their access to data or other 
computing resources. It is actually a data or resource hijacking in the 
cyber world analogous to kidnapping in the real-world. Since 2012, 
almost two decades after the emergence of AIDS Trojan as the first 
sample, ransomware variants have become more complex and destruc-
tive. At the end of 2016, the Justice Department reported an average of 
more than 4000 ransomware attacks per day since January 1, 2016, a 
300 percent increase over 2015 (U.S. Government, 2016). Although 
extortion-based threats in 2018 seemed lower on the identified cyber 
risk scale due to the rise of cryptocurrency mining malware, it was only a 
turning point for ransomware that led to the “Big Game Hunting”, a 
phenomenon aimed at generating higher revenue at lower attack vol-
ume (Frankoff & Hartley, 2018; Osena, 2018). Despite a slight slowdown 
in the growth trend of the number of ransomware assaults in late 2019, 
since the beginning of 2020, these cyber blackmails have once again 
made headlines by aggressing high-profile targets (Frankoff & Hartley, 

2018; Freed, 2021; Johnson, 2014; Logan et al., 2021; Osena, 2018). An 
example of this is the Energias de Portugal (EDP)- one of the largest 
European energy sector operators-being hit by the Ragnar Locker in 
April 2020, in which the attackers claimed to have stolen 10 TB of the 
company’s sensitive information and demanded an exorbitant payment 
of 1580 bitcoins (approximately more than $ 10 million) to free up re-
sources (Kaspersky, 2018). 

A report by Cybersecurity Ventures predicted that the damage 
caused by ransomware attacks would reach $ 20 billion by 2021, up 
from $ 325 million in 2015 (Morgan, 2020). In the same report, the costs 
imposed by this cyber threat in 2018 and 2019 were estimated at $ 8 
billion and $ 11.5 billion, respectively. These costs are not limited to the 
ransom, but also include other ancillary expenses such as data recovery, 
downtime, and so on. Fig. 1 shows the estimated financial loss from 
blackmail attacks along with the approximate number of ransomware 
onslaughts derived from (Johnson, 2014). However, the actual number 
of attacks and the costs incurred will certainly be higher, as many in-
dividuals and organizations may not report the offence for a variety of 
reasons. As can be seen from Fig. 1, despite the decline in the number of 
attacks from their peak in 2016, the damage rate has increased 
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dramatically. This uptrend indicates that ransomware forays have 
become more targeted and are seeking larger prey for higher extortion 
instead of trapping the general public. Over the past two years, the 
advent of extortionist malware families such as LockerGoga, Doppel-
Paymer, Sodinokibi, NetWalker, Maze, Ryuk, MegaCortex, Conti, 
Nephilim, ProLock, and CLOP is proof of this concept, reflecting the fact 
that ransomware invasions have not only not subsided, but have shifted 
to larger, more sophisticated attacks aimed at crippling giant corporate 
entities (Cimpanu, 2020; Frankoff & Hartley, 2018; O’Brien et al., 2019; 
Santos, 2021; Trend Micro Research, 2022; Walter, 2020). Moreover, 
recently released security reports show no indication that these extor-
tionate threats will disappear in 2022 (Trellix., 2022). 

Given the proliferation of digital extortion attacks in terms of di-
versity, volume and intricacy, having a defense strategy and countering 
this lucrative criminal business is of great importance. Despite efforts 
made to improve security solutions, ransomware remains a problem. 
Early antivirus and anti-malware software were signature-based and 
identified malware using a single metadata entity, such as a file hash. 
Such approaches were extremely weak against obfuscation and 
encryption techniques and could easily be bypassed by malware de-
velopers. Following this issue, behavioral solutions as well as heuristic 
methods and machine learning have been proposed. These systems 
operate by running malware instances in controlled environments and 
capturing their behavioral patterns. Current antiviruses utilize various 
detection methods and operate based on multiple engines that are 
activated according to the type of scan and the requested context (Bot-
acin et al., 2022). A comprehensive longitudinal analysis of these se-
curity solutions is presented in (Botacin et al., 2020), which evaluates 
them based on six metrics proposed by the authors from different as-
pects. The issue that arises in these recent approaches is how to display 
behaviors and also to select the best distinguishing behavioral features. 
This problem is exacerbated by ransomware species because of the na-
ture and similarity of their functionalities to benign software, which 
deals mainly with files. 

Several research studies have been conducted to detect, prevent and 
classify ransomware families based on static and dynamic analysis, each 
of which considers different aspects to circumvent such incursions 
(Ahmed et al., 2020; Akbanov et al., 2019; Al-rimy et al., 2019; 
Andronio et al., 2015; Chen & Bridges, 2017; Cimitile et al., 2018; 
Continella et al., 2016; Gómez-Hernández et al., 2018; Hampton et al., 
2018; Homayoun et al., 2017; Maiorca et al., 2017; Mehnaz et al., 2018; 
Morato et al., 2018; Scalas et al., 2019; Xiaofeng et al., 2019; Xu et al., 
2017; Zhang et al., 2019). However, despite the high importance of this 
cyber resource hijacking, no common knowledge base of extortionate 
malware, especially ransomware, is available. Selecting the most critical 

parts for monitoring necessitates a cognitive insight into the attack 
behavior and the interactions between the program and the system 
components. For this purpose, it is crucial to extract prominent terms in 
the domain and determine the relationships among them. The devel-
opment of an ontology for extortion attacks can provide a terminology 
for extortionist software, system components, and other elements in the 
chain of such cyber threats. In fact, it defines a common glossary for 
researchers who need to share information in a particular domain (Noy 
& McGuinness, 2001). Indeed, formally defined semantics will enable 
detailed searches and complex queries (Obrst et al., 2012). 

“A branch of metaphysics that deals with the nature of being” can be 
considered a primitive definition of an ontology. At present, ontology 
has many applications in scientific disciplines and multiple definitions of 
it are available. According to the several explanations of the ontology, 
this paper uses the following definitions. An ontology is a representation 
of the types of entities and concepts (also known as classes) within a 
given domain and the relationships (known as properties) between 
them. In other words, ontology is a hierarchy of taxonomic classes and 
the associations among them. The hierarchy is defined by a single root 
concept, referred to as Thing to which other classes are related. These 
concepts and sub-concepts are related to each other by the relation “is-a” 
or “kind-of”. Ontology has been successful in various sciences, especially 
biology, and has been attracting the attention of cybersecurity re-
searchers for several years. Although ontologies have been proposed in 
the field of cyber security and malware, none of them can be effective in 
the scope of extortion onsets and cover eminent terms in this area. 

Given the similar functionality of many extortionist malware, espe-
cially ransomware that blocks access to resources, with benign software 
used for encryption, compression, batch renaming, and data wiping, it is 
important to determine the distinguishing features. This can be achieved 
through a large knowledge base of such programs and their interactions 
with system components, which will lead to the inference of new 
knowledge about the similarities and differences between them. By 
using an ontology-based similarity measure and reasoning on the 
knowledge base, it is possible to discover ransomware samples that are 
semantically similar to the ones of interest. To the best of our knowl-
edge, none of the available ontologies present an exhaustive set of 
concepts in cyber extortion attacks. In this study, we develop an 
ontology of ransomware attacks and other components involved in the 
field of digital blackmail, and utilize its ability to take advantage of the 
relative stability of natural language to enhance interoperability across 
heterogeneous data systems. This ontology can then be used as a basis 
for some applications in defense systems and to gain cognitive insights 
from different species and families. As a matter of fact, this paper is part 
of a larger research project, and for the first time applies the concept of 

Fig. 1. Approximate statistics of the number of cyber extortion attacks and the financial costs imposed by them.  
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ontology in the context of digital extortion attacks to build a knowledge 
base of ransomware and provide a framework for conceptual modeling 
of such threats. The acquired knowledge must be machine-readable and 
reusable. Using this knowledge, not only can suspicious ransomware- 
related behaviors be inferred and distinguished from normal behav-
iors, but also ransomware threat intelligence can be achieved through 
relationships and dependencies between elements involved in an 
extortionate aggression. Overall, the contributions of the paper can be 
summarized as follows:  

• Design and implementation of a dedicated ontology for digital 
extortion attacks with a specific focus on Windows ransomware  

• Creation of ransomware knowledge base by populating the proposed 
ontology with individuals  

• Evaluation of the suggested ontology in terms of clarity, modularity, 
consistency, coverage and inheritance richness. 

The remainder of the paper is organized as follows. Section 2 reviews 
related work. Design and implementation of Rantology, the proposed 
ontology of ransomware attacks, is expounded in Section 3. This section 
begins by stating the assumptions. Subsections 3.1 and 3.2 deal with 
determining the building blocks of Rantology and how to determine the 
hierarchy of classes. Subsection 3.3 addresses design details. In sub-
section 3.4, the issue of keeping the ontology consistent as the domain 
evolves, as well as design considerations, are discussed. Subsection 3.5 
deals with the process of creating a knowledge base of digital extortion 
attacks. The details of the data set used are provided in this section. The 
proposed framework is evaluated based on several criteria in Section 4. 
Section 5 is dedicated to the discussion and expression of existing 
challenges and elaborate the impact of human behavior in cyber security 
and its application in ontology. Finally, the paper concludes in Section 6. 

2. Related work 

One of the areas that has begun to receive a lot of attention from 
academia and industry is the concept of establishing an ontology in the 
field of cybersecurity. Ontology is an increasingly predominant strategy 
for organizing scientific information about the world in a computer- 
interpretable form (Arp et al., 2015). In other words, the ontology is a 
window on reality and a representation of the types of entities in a 
domain of interest and the relationships between them. It is a comput-
able lexicon that is used in many fields including knowledge engineer-
ing, artificial intelligence, semantic web, information security and many 
more. This paper aims to conceptualize an ontological representation of 
digital extortion attacks, which is a specific domain of cybersecurity. 
Therefore, despite the efforts and studies conducted in the field of 
identifying and preventing ransomware threats, this section only re-
views research work related to cyber security ontologies, especially 
extortionate malware. 

Several ontologies have been proposed for conceptual modeling of 
attacks and providing knowledge of cyber security. An almost pre-
liminary research paper on the use of ontologies in cybersecurity was 
conducted by Undercoffer et al. (Undercoffer et al., 2003), in which they 
produced an ontology for modeling computer attacks and intrusion 
detection systems (IDSs) in a descriptive logic language. The researchers 
utilized DAML + OIL to implement their proposed ontology and applied 
DAMLJessKB as the reasoning system. Huang et al. (Huang et al., 2010) 
presented an ontology for malware behavioral analysis. Based on that, 
they designed a platform called TWMAN, which consisted of three 
layers: knowledge, communication and application. Their initial work 
was limited to the four main classes Malware_Type, Malwar-
e_Impact_Target, Malware_Behavioral and Malware_Sample. Although 
the authors later continued their research and in the next work their 
ontology was divided into three classes Malware_Type, File_Type and 
Malware_Behavioral (Huang et al., 2014), but there were still ambigu-
ities in the defined concepts, and on the other hand, due to the time of 

presentation, many of the current malware were not included. Another 
study was done by Obrst et al. (Obrst et al., 2012) in which an ontology 
of the cyber security domain based on the Diamond model was discussed 
to describe malicious activity. The authors divide the ontologies into 
three categories according to the level of abstraction: upper, mid-level 
and domain. They claim that cyber ontology encompasses some con-
cepts such as Time, Geospatial, or Person that go beyond cybersecurity 
and can be derived from mid-level ontologies called utility. Their ulti-
mate goal is to integrate data from a variety of resources and reuse 
existing ontologies. Gao et al. (Gao et al., 2013) developed an 
ontology-based attack model to evaluate system security and the effect 
of offenses. To do this, they first proposed a taxonomy of attacks con-
taining five dimensions: Attack impact, Attack vector, Attack target, 
Vulnerability, and Defense. Then they designed their own ontology 
based on the suggested taxonomy as well as some existing ontologies. 
CRATELO is a three-level ontology for cyberspace, designed to improve 
the situational awareness of cyber defenders (Oltramari et al., 2014). It 
consists of a domain ontology of cyber operations called OSCO, a 
security-related mid-level ontology called SECCO, and a foundational or 
top-level ontology called DOLCE. USpam was proposed by Shoaib and 
Farooq as a spam detection system that applied an ontology to model 
users’ interests based on their profile (Shoaib & Farooq, 2015). An 
ontology-based system for predicting and classifying web application 
attacks based on their severity was suggested in (Salini & Shenbagam, 
2015), in which the three classes Threat, Vulnerability, and Attack 
formed the building blocks of the proposed ontology. Another effort to 
integrate cybersecurity concepts and topics into an overall ontology 
belongs to Iannacone et al. (Iannacone et al., 2015). Their developed 
ontology, STUCCO, included data from 13 structured sources in a variety 
of formats. The purpose of designing this ontology was to facilitate the 
integration of data from structured and unstructured sources into a 
knowledge graph and to organize information. Unified cybersecurity 
ontology (UCO) was designed to support information integration and 
cyber situational awareness (Syed et al., 2016). It is mapped to a number 
of existing cybersecurity ontologies as well as concepts in the Linked 
Open Data cloud. UCO is an extension of Undercoffer et al.’s intrusion 
detection system ontology, and most definitions of classes and re-
lationships are based on Structured Threat Information eXpression 
(STIX). The goal of UCO developers is to provide a common under-
standing of the cyber security domain and to unify the most widely used 
security standards. 

Navarro et al. (Navarro et al., 2018) propose an ontology-based 
framework for modeling relationships between Android applications 
and system elements, and use a machine learning approach to analyze 
this complex network of relations and dependencies. The authors’ goal is 
to analyze which permissions and resources provided in the manifest 
files are related to malicious apps. Hence, they focus on the manifest files 
of apps as a source of information to extract the proposal ontology’s 
terms, and do not seek to find resources and relationships that are 
directly involved in an attack itself. Narayanan et al. (Narayanan et al., 
2018) describe the design of a framework called cognitive cybersecurity 
(CCS) to collect and ingest information derived from textual resources 
and host and network based sensors that use the power of semantically 
rich knowledge representation to assist security analysts. However, the 
authors do not present a new ontology, and their graph utilizes only 
terms from an extended version of the UCO, and therefore does not 
include all the components involved in extortion attacks. IoTSec, pro-
posed by Mozzaquatro et al. (Mozzaquatro et al., 2018), is an ontology 
consisting of 228 classes, 24 object properties and 7 data properties 
designed to address the security aspects of the Internet of Things (IoT) 
within industrial environments. Jia et al. (Jia et al., 2018) introduced a 
cybersecurity knowledge base and detection rules based on a quintuple 
model. Assets, Vulnerability and Attack are the three main entities of the 
ontology presented by them. The Assets class consists of two subclasses, 
Software and OS. The researchers applied the Stanford named entity 
recognizer (NER) to extract cybersecurity-related entities. Ding et al. 
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(Ding et al., 2019) also conducted a study on the use of ontologies for 
knowledge representation of malware and their families. However, the 
prototype model developed by them included only a limited number of 
malware-related classes. Rastogi et al. (Rastogi et al., 2020) introduced 
MALOnt, an ontology for malware threat intelligence, in order to extract 
structured information and generate knowledge graph. The authors 
stated that they instantiated the knowledge graph with hundreds of 
annotated threat reports. The CyberTwitter framework for analyzing 
tweets about cybersecurity vulnerabilities and issuing timely threat 
alerts was explained by Mittal et al. (Mittal et al., 2016). The designers 
link the entities extracted from the tweets to real-world concepts using 
UCO ontology and publicly available knowledge bases, including 
DBpedia and YAGO, and then store this data in the resource description 
framework (RDF) triples. In another similar research effort, a domain 
ontology called cybersecurity vulnerability ontology (CVO) was pre-
sented (Syed, 2020), which is a formal knowledge representation of the 
realm of vulnerability management. In addition to the concepts in NIST, 
CERT/CC and CVSS, CVO considers vulnerability information extracted 
from Twitter, and eventually uses it to design the cyber intelligence alert 
(CIA) system to issue cyber alerts about vulnerabilities and counter-
measures. The APTMalInsight framework is proposed using system call 
information and ontology knowledge to detect APT malware (Han et al., 
2021). The ontology model offered in APTMalInsight consists of three 
core classes: APT malware, System component and Behavior. The de-
velopers of APTMalInsight believe that this knowledge framework re-
alizes the systematic mapping of APT malware behaviors and ultimately 
enables the recognition of APT attacks. Finally, the attention to the 
MITRE ATT&CK1 also deserves to be considered, which is a 
globally-accessible knowledge base of adversary tactics and techniques 
based on real-world observations. Over the past two decades, MITRE has 
provided standard languages and formats to capture cyber security in-
formation, including Common Attack Pattern Enumeration and Classi-
fication (CAPEC), Malware Attribute Enumeration and Characterization 
(MAEC), the Common Vulnerabilities and Exposures (CVE), the Cyber 
Observable eXpression (CybOX) and many more. The D3FEND frame-
work (Kaloroumakis & Smith, 2021), which has received a positive 
feedback from MITRE experts, is in fact a precise semantic model of 
cyber security countermeasures. The authors show how this knowledge 
graph supports queries that can inferentially map cyber security coun-
termeasures to offensive tactics, techniques, and procedures (TTPs). 

The ontologies presented in the field of malware and computer sys-
tems security only cover the general concepts of cyber security and lack 
the context of digital extortion threats. To the best of our knowledge, 
there is currently no framework that models digital extortion onslaughts 
and displays them in the form of knowledge graphs. On the other hand, 
due to the irreversible nature of destructive ransomware attacks, the 
process of analyzing them is a tedious and costly task. Therefore, col-
lecting and integrating reports related to extortion offenses and the re-
sults of ransomware analysis from various heterogeneous sources can 
play a significant role in facilitating the study of this type of notorious 
cyber threat. In this study, we intend to fill this gap by designing a 
framework to conceptualize the scope of extortionist malware. For this 
purpose, we propose Rantology, which is an ontology in the field of fear- 
based attacks focusing on ransomware. The main purpose of this paper, 
which is actually part of a larger research work, is to develop an 
ontology of the digital extortion domain, expressed in the Web ontology 
language (OWL), which enables the integration of data from heteroge-
neous sources. As part of the W3C’s Semantic Web technology stack, 
OWL is a computational logic-based language that, thank to richer vo-
cabulary, enables and facilitates the processing of information contents 
and the assessment of knowledge compatibility by providing greater 
machine-interpretable capabilities than that supported by the extensible 
markup language (XML), RDF, and RDF Schema (RDFS) (Arp et al., 

2015; W3C, 2021). 

3. Design of digital extortion ontology 

A domain ontology is a structured controlled representation of en-
tities pertinent to a domain of discourse that organizes data to make it 
comprehensible, accessible, and computer-analyzable (Arp et al., 2015). 
While taxonomy is a representational artifact that is organized hierar-
chically with nodes representing classes and edges that delineate a “is-a” 
relation, an ontology goes beyond it and encompasses connections other 
than the simple “is-a” relation. In this sense, ontologies allow the 
inference of new knowledge and the extraction of more complex re-
lationships. As mentioned in the previous section, despite the rich 
literature on the use of ontologies in cybersecurity, there is no 
ransomware-specific ontology designed to build a knowledge base of 
this thriving criminal trade. This paper proposes a dedicated ontology, 
called Rantology, for nefarious extortionist malware, designed to 
explore the interactions of ransomware and benign software with the 
system and to perceive the relationships between system API calls and 
the behaviors resulting from the execution of these binaries. 

Before dealing with the design of Rantology, it is important to 
mention some assumptions used. As suggested by Botacin et al. (Botacin 
et al., 2021), it is appropriate that the design phase of a security solution 
consists of reasoning about its design aspects, such as the definition of a 
threat model, assumptions, target platform, and so on. A threat model 
specifies which, why and how resources will be protected (Botacin et al., 
2022). The ultimate goal of our research work is to design an ontology 
and then produce a knowledge base for digital extortion-based on-
slaughts. We separate these threats into three categories: Rogueware, 
Ransomware, and Leakware, and in this paper, we focus on the devel-
opment of this ontology for the second group, specifically Windows 
ransomware. Rantology is a domain ontology that incorporates concepts 
related to the scope of cyber extortion attacks. It contains all the entities 
associated with fear-based malware and digital blackmailers, various 
types of ransomware, system calls, ransom and payment methods, cyber 
threat actors, and other agents involved in this realm. Although Ran-
tology consists of several sections, in order to achieve the purpose of this 
study, we focus more on Windows ransomware and legal software with 
similar functionalities and their associations to the system API calls and 
behaviors. One of the important assumptions in our work is that the most 
characteristic feature of ransomware, which distinguishes it from other 
general malware, is to notify the victim of its presence. This behavior is 
usually accompanied by showing a ransom note to the user. In addition, 
ransomware has the behavior of denying access to resources, which can 
be data or non-data. The use of these constraints to define ransomware 
class is described in detail in subsection 3.3. Of course, it is important to 
note that not all ransomware are designed with monetary intents in 
mind, and many of them, such as RanRan (Falcone & Grunzweig, 2017), 
have non-monetary goals. However, in both cases, they demand a 
ransom from the victim, which in the second case will not necessarily be 
financial payment. Also, this type of cyber threat targets a wide range of 
home users, organizations and large businesses, so we put them in a 
main class of Rantology. Peoples, whether individual victims, organi-
zations and even software developers use different tools and software 
that can be deduced with the help of defined relationships to what extent 
these programs increase the attack surface or which industrial sectors 
are more vulnerable to these forays or which group of cybercriminals 
carry out more targeted attacks. In this research, we distinguish between 
software developers and attackers and place them in two disjoint classes. 
We assume that a software developer only develops a goodware, 
whereas an attacker produces a malware or uses specific threat com-
ponents in cyber attacks. Although one might think that a software 
developer might be an attacker, this assumption is necessary to organize 
some classes and relationships in Rantology. A summary of the adopted 
assumptions is given in Table 1. 

Various methodologies have been proposed for designing ontologies 1 https://attack.mitre.org/. 
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(Arp et al., 2015; Noy & McGuinness, 2001; Uschold & Gruninger, 
1996). In this paper, an iterative approach is applied to develop the 
Rantology. This seven-step approach includes determining the scope of 
the ontology, reviewing existing ontologies for reuse, enumerating 
important terms in the domain, defining classes and their hierarchy, 
identifying features and relationships between classes, setting re-
strictions on properties, and finally creating instances. After these steps, 
the initial ontology will need to be refined, and this repetitive process 
will continue throughout the lifecycle of the ontology design. Fig. 2 il-
lustrates the seven steps used in this study. 

Requirement analysis is one of the vital stages in any design process. 
Ontology engineering is no exception to this rule. Competency questions 
identify the knowledge that should be entailed in the ontology. Asking 
competency questions is part of the requirements analysis phase for 
developing an ontology. In fact, the scope of an ontology is outlined by 
these natural language questions. Although there is no specific standard 
for designing such questions, it is desirable that competency questions 
be posed in a stratified way. These informal questions should be 
designed so that they can be converted into formal queries, for example 
in the SPARQL form, and used for the initial evaluation of the ontology 
(Uschold & Gruninger, 1996; Wísniewski et al., 2019). The scope of the 
ontology presented in this study is digital extortion attacks. To demar-
cate the domain or the subject matter of the proffered ontology, some 
competency questions are asked so that the knowledge base built on this 
ontology is able to answer them. Competency questions are actually 
user-oriented inquiries that only determine the scope of the ontology, 

and considering that the audience of Rantology can be both ordinary 
users and security experts, we have included some prior knowledge to 
design them. These questions are just a sketch of the ontology and do not 
need to be comprehensive (Noy & McGuinness, 2001). Table 2 synop-
sizes the competency questions planned for Rantology. 

Table 1 
Assumptions adopted in the design of Rantology.  

Assumption Type 

Currently, there are three general categories of malware that 
include known extortion threats. 

general 
assumption 

In general, all ransomware, regardless of the family they belong 
to, must go through the same attack chain to achieve success 
and obtain the ransom from the victim. 

general 
assumption 

Ransomware, especially those that encrypt files or overwrite 
them with junk data, exhibit similar behaviors to legitimate 
software, especially in the categories of archivers, 
compressors, and the like. 

general 
assumption 

Two prominent features of ransomware are denying users legal 
access to resources and notifying them of the attack in order to 
demand a ransom. 

general 
assumption 

Ransomware victims are a wide range of users and organizations, 
but some ransomware campaigns tend to target specific sectors 
of industry and society. 

general 
assumption 

A software developer develops a goodware. special 
assumption 

A malware is produced by an attacker. special 
assumption  

Fig. 2. Ontology design methodology.  

Table 2 
Rantology’s competency questions (CQs).  

CQ 
number 

Competency Question 

CQ1 What is the set of behaviors that qualify a sample as a member of 
ransomware? 

CQ2 What is the set of descriptive behaviors for a ransomware category X? 
CQ3 What is the set of behaviors that make a sample eligible for membership 

in a ransomware family X? 
CQ4 Which ransomware samples have doxing capability? 
CQ5 Which crypto ransomware samples use symmetric cryptographic 

algorithms? 
CQ6 Which ransomware species manipulate the master boot record (MBR)? 
CQ7 Is there a decryptor for a ransomware family X and if so, from which 

URL can it be downloaded? 
CQ8 Is a ransomware X available as Ransomware-as-a-Service (RaaS)? 
CQ9 What is the difference between the versions of a ransomware family X? 
CQ10 Which ransomware families are cross-platform? 
CQ11 What software changes a key/value X in the registry? 
CQ12 Which ransomware samples delete the volume shadow copies? 
CQ13 What API functions are related to manipulating or deleting volume 

shadow copy service (VSS)? 
CQ14 What common actions do instances that have the ability to delete VSS 

perform in the registry? 
CQ15 What system calls characterize a behavior X? 
CQ16 Which system components get similar effects from ransomware and 

benign software? 
CQ17 Which system components are only influenced by ransomware? 
CQ18 What is the relationship between an encryption algorithm X and system 

calls? 
CQ19 What behavior in the system are suspicious and should be monitored? 
CQ20 Which crypto ransomware samples require a connection to a C&C 

server to perform encryption? 
CQ21 Vulnerability X in which ransomware families have been exploited? 
CQ22 Which ransomware instances use a threat tool X? 
CQ23 What is the relationship between the operating system version and the 

attack tools used? 
CQ24 What is the relationship between vulnerabilities and ransomware 

release year? 
CQ25 Which ransomware samples charge ransom in a payment system X? 
CQ26 Which ransomware instances are associated with a Bitcoin address X? 
CQ27 Which ransomware families only target organizations? 
CQ28 Which organizations are more vulnerable to extortion offenses? 
CQ29 What threat tools does an attacker X utilize? 
CQ30 Which person or group is responsible for an extortion attack X? 
CQ31 Is it possible to achieve a ransomware threat intelligence through 

conceptual modeling?  
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After delimiting the scope of the ontology, it is time to consider the 
related ontologies in this domain. For this purpose, it should be checked 
whether the competency questions presented in Table 2 have already 
been solved by the existing ontologies. We searched for ransomware 
ontologies to refine and expand them (if any). To the best of our 
knowledge, no related ontology has been provided for extortion assaults 
and their relationship to system behaviors and components that can 
answer the aforementioned competency queries. Given that our goal is 
different from the ontologies presented in software (Hilario et al., 2009; 
Keet et al., 2015; Malone et al., 2014; Oberle et al., 2009), cybersecurity 
(Gao et al., 2013; Huang et al., 2010, 2014; Iannacone et al., 2015; Jia 
et al., 2018; Mozzaquatro et al., 2018; Narayanan et al., 2018; Navarro 
et al., 2018; Oltramari et al., 2014; Rastogi et al., 2020; Salini & Shen-
bagam, 2015; Shoaib & Farooq, 2015; Syed et al., 2016; Undercoffer 
et al., 2003), and vulnerability management (Mittal et al., 2016; Syed, 
2020), we start developing the ontology from scratch. Although there 
were slight overlaps in some of the concepts and specifications between 
the proposed ontology and the research work mentioned, due to the 
small number, we manually merged them into the Rantology. 

3.1. Determining the constituent elements of Rantology 

The main building blocks of an OWL ontology are classes. As a matter 
of fact, classes are some of the most prominent terms in the domain of 
interest. Elicitation of notable terms requires that raw data be collected 
and analyzed in the target area. To understand and derive the terms of 
the domain, we studied a wide range of research papers related to ran-
somware attacks as well as existing threat reports in this regard (a 
number of them are cited throughout the paper, although there are 
many more security reports reviewed than those cited). After identifying 
the most salient concepts based on a comprehensive survey of the 
literature as well as competency questions posed in the previous phase, 
another important step in designing an ontology is determining the hi-
erarchy of classes and ascertaining the properties and relationships. 
During the process of modeling and designing the Rantology, we tried to 
define the main classes and their hierarchy in such a way that they are 
not too nested with a large number of subclasses and not too flat with 
very few subclasses with a lot of information encoded in the properties. 
To make the paper more readable, we write the names of the classes and 
properties defined in Rantology in italic type. 

According to the concepts extracted in the scope of cyber extortion 
attacks and the application of this ontology, the terms Software, 
Behavior, OperatingSystemAPI, PaymentSystem, CyberActor and Threat-
Component are defined as the main classes. Core classes are located at the 
root level of the hierarchy, which are defined as subclasses of the most 
general class, Thing, and do not necessarily have to be similar concepts. 
They actually depict the major parts of the scope of cyber extortion 
forays. All of these core classes are disjointed, except for the Software 
and ThreatComponent. Because many malware, such as droppers, are 
engaged in digital blackmail attacks. In addition, the attackers are 
abusing legitimate tools to facilitate their incursions. These strategies of 
exploiting legal programs, known as living off the land (LotL), are 
common in many ransomware families, including WastedLocker. 

The goal of Rantology is to identify and classify suspicious behaviors 
related to ransomware and to comprehend the dependencies between 
system API calls and those behaviors. Ransomware is a malicious soft-
ware that demands ransom in exchange for the emancipation of hostage 
resources by impeding users from accessing the computing device or 
data. The Software class is a general concept that can surround ran-
somware or any benign software with similar functionalities to this 
malware, including file encryption tools, compressors, file shredders, 
convertors, batch renaming programs, and so on. Given that this paper 
focuses on ransomware targeting Microsoft Windows platforms, we will 
omit the definition of a separate platform class and instead consider a 
slot called hasPlatform for the Software class. The cardinality of this 
feature is set to multiple, as some ransomware strains and even 

legitimate software may be cross-platform. On the other hand, a pro-
gram may run on different architectures and versions of Windows 
operating system. Ransom32, for example, is a multi-platform ransom-
ware written in JavaScript that affects Windows, Linux, and Mac OS X. 
Also, the Ryuk ransomware family targets both 32-bit and 64-bit Win-
dows operating systems. According to the mission of this research to 
investigate Windows ransomware, the primary programming environ-
ment for such software programs is the Windows application program-
ming interface (API), which provides an exhaustive set of functions for 
managing processes, threads, memory, and peripherals (Silberschatz 
et al., 2018). Windows NT is a modified microkernel architecture and 
instead of supporting one operating system API, it implements several 
operating environment subsystems in user mode that provide special 
APIs to the client applications. The most widely used API of NT is Win32, 
which most software written for the Windows platform utilize the 
functions provided in its client-side dynamic-link libraries (DLLs). We 
define the main OperatingSystemAPI class to extend Rantology so that it 
can later cover other ransomware families that target platforms other 
than Windows. Nevertheless, we need a more absolute concept in this 
work. Therefore, we define the WindowsAPI class (subclass of Oper-
atingSystemAPI), which includes several sub-concepts that cover the 
various functions of Windows API and pertaining system call services. 
Also, instead of assigning a class to system components, we define the 
Behavior class so that the suggested ontology can be easily expanded to 
support extortionist malware targeting non-Windows platforms, which 
may have fundamental structural differences. In this way, for example, 
any file modifying behavior can be defined regardless of the file system 
structure. Another example to justify such a design is registry behaviors. 
The registry is a hierarchical database in Microsoft Windows operating 
systems that maintains a set of configuration settings and critical data 
for Windows operations, applications, and services. Such a system 
component with this name does not exist in other platforms such as 
Linux, Mac OS and Android. 

There is a rational for designing the other three core classes. Digital 
extortion attacks similar to other good or evil cyber activities have actors 
such as developer, attacker, and victim (the last two are the two main 
vertices of the Diamond model (Obrst et al., 2012)). Accordingly, we 
define a new entity called CyberActor, which is a participant (person or 
group) in an action or process using computers, devices, systems, or 
networks. It includes the Person and Organization sub-concepts that can 
take on the roles of victim, attacker, software developer, and even 
Ransomware-as-a-Service (RaaS) operators and their affiliate. For this 
purpose, each of these roles is specified as defined subclasses of Cyber-
Actor through axioms. Also, a concept called ThreatGroup is defined as a 
subclass of Attacker that contains information about cybercriminal 
groups. On the other hand, extortionist malware must go through a 
six-step attack chain to succeed (Keshavarzi & Ghaffary, 2020). This 
chain consists of infection, installation, communication, execution, 
extortion and emancipation. Various components such as spam emails, 
botnets, droppers, vulnerabilities or exploit kits in the infection phase 
may be used by ransomware campaigns. Cybercriminals also use a va-
riety of tools and tactics to achieve their goals in other stages of the 
attack, including command and control (C&C or C2) servers, all of which 
can be incorporated into an entity called ThreatComponent. Unlike many 
types of malware, digital extortion threats inform victims and ask them 
to follow instructions to get rid of the attack. In fact, the extortion phase 
is one of the most important steps in the chain of ransomware offenses. 
Samples designed for monetary purposes utilize a variety of payment 
methods, mainly through cryptocurrencies such as Bitcoin, to collect 
ransom from the victims. This step is so important that several studies 
have been done on it (Hernandez-Castro et al., 2017, 2020; Laszka et al., 
2017; Paquet-Clouston et al., 2019; Sokolov, 2021). Therefore, allo-
cating a separate class for this purpose can lead to the production of 
knowledge of financial transactions related to extortionate attacks. An 
overview of Rantology is shown in Fig. 3. Since ransomware is one of the 
key concepts that Rantology focuses on, Fig. 3 is based on this object in 
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which the relationships of ransomware with other components are 
described in an aggressive extortion threat. Some classes are derived 
from other super-concepts, which will be elucidated in the following. 
However, many concepts, properties and relationships are not delin-
eated in the figure. 

3.2. Hierarchizing the classes 

Each of the designated main classes must be arranged in a hierarchy 
of more and less general ones. There are several approaches to define a 
class hierarchy (Noy & McGuinness, 2001; Obrst et al., 2012). Due to the 
fact that the ontology presented in this study, Rantology, consists of 
elements involved in digital extortion attacks, a middle-out (or com-
bined) methodology has been used to design it. We utilize a top-down 
approach for the Software and CyberActor class hierarchies. In the case 
of the Software class, we begin by creating the general concepts of 
software, namely Goodware and Malware. This may differ from the types 
provided in some of the literature in which the software embraces 
application software, system software and programming tools. But, 
many benign programs that behave similarly to ransomware are in the 
category of utility software or specialized applications. After all, this 
paper only looks at programs and malware that run on the Microsoft 
Windows platform. Therefore, according to the purpose of the presented 
ontology, we do not separate system software from application. The 
Goodware class can embody application software as well as subsets of 
system software, including utility programs. The data properties of the 
Software class are defined in such a way that this ontology is modular 
and can be easily expanded depending on the application, for example 
by adding the ProgrammingLanguage and OperatingSystem subclasses. 
Efforts have been made to apply this approach to all classes throughout 
the ontology design process. 

The Malware concept comprises subclasses depending on the hier-
archy specified for it. Each of these malicious programs, in turn, can 
contain subcategories that describe concepts that are more specific to 
their superclass. There are several taxonomies of malware and its types 
that classify these noxious software programs in different ways (Al-rimy 
et al., 2018; Bajpai et al., 2018; Grégio et al., 2015; Keshavarzi & 
Ghaffary, 2020; Luo & Liao, 2007; Qamar et al., 2019). Given that the 
main focus of this ontology is digital extortion attacks, we use the 

taxonomy offered in (Keshavarzi & Ghaffary, 2020) to cover all modern 
samples of ransomware and other extortion-based malware. Creating 
the Scareware class and its subclasses, Rogueware, Leakware (aka Dox-
ware) and Ransomware, instead of listing all of these malignant software 
as direct subclasses of the Malware, reflects different types of extor-
tionate and fear-based attacks in a more organized way. The most 
distinctive feature of ransomware from other kinds of scareware is the 
confiscation of valuable data and device owned by the user and the 
denial of access to them. This feature, along with the characteristic of 
having a ransom note, is defined by axioms and quantifier restrictions 
for the Ransomware class. Fig. 4 illustrates a part of the hierarchy and 
different levels of granularity for the Software concept. The Goodware 
and Malware classes include many more sub-concepts, which are not 
shown in the figure for brevity. 

All siblings in the hierarchy, except those at the root level, are at the 
same level of granularity. Here, Software, Goodware, and Malware are the 
most general concepts in the Software hierarchy, while CryptoRansom-
ware, WiperRansomware, and LockerRansomware are the most specific 
ones. Although these bottom-level concepts also contain subclasses that 
belong to different families of ransomware. Therefore, ransomware 
families in this hierarchy are defined at the lowest level as disjoint 
classes, where each sample with a unique hash is an individual of the 
respective class. 

Ransomware species, like any software program, require access to 
certain operating system services to perform their tasks. These extor-
tionist malware, especially those belonging to the Crypto and Wiper- 
Ransomware categories, need actions such as creating and managing 
new processes, creating and deleting files, listing directories, reading 
and writing to files, establishing network connections for communica-
tion, and much more. System calls provide a programmatic way in 
which a computer program can invoke such services from the operating 
system kernel. Computer programs mainly utilize APIs to access these 
services. The choice of API term for the class name is too general and 
may be confusing, as web APIs are now the most common meaning of 
the term API. In this research, API is actually an interface between an 
application and the operating system. So to clear up the ambiguity in 
Rantology, we use the term OperatingSystemAPI. This can be pursued by 
further specializing this concept to encompass POSIX APIs in future 
work, in addition to the Windows APIs. 

Fig. 3. A high-level view of Rantology.  

M. Keshavarzi and H.R. Ghaffary                                                                                                                                                                                                           



Computers in Human Behavior 139 (2023) 107520

8

In much literature, six major categories are considered for system 
calls (Silberschatz et al., 2018): process control, file management, device 
management, information maintenance, communication, and protec-
tion. Nevertheless, API calls are classified in several ways, including the 
version or services embedded in the respective DLLs. Due to the multi-
tude of API functions as well as the lack of a clear categorization, we 
utilize a hybrid approach to the WindowsAPI class hierarchy. In this way, 
the most salient concepts are first defined and then appropriately 
generalized or specialized (Noy & McGuinness, 2001). Because of the 
strong correlation between a function in the API and its dependent 
system call within the kernel, we apply the aforesaid classification. So 
the most general concepts are identified, but given the multiplicity of 
functions, we analyze 108 ransomware strains and 84 benign programs 
and then locate the extracted API calls in the corresponding classes. To 
better organize the functions, some of these subclasses are subdivided 
into more detailed categories according to Microsoft documentation. 
Table 3 presents part of the hierarchy specified for WindowsAPI, along 
with some functions that are instances of each class. These subclasses are 

not disjoint due to the overlap of different categories. For example, the 
GetProcessInformation function is in both the ProcessControl and Infor-
mationMaintenance classes. Also, many of the asserted subclasses are not 
listed in the table for succinctness. For instance, many functions that 
accept the string as a parameter may contain the suffix “A” or “W” in 
their name. An example of such a function can be seen in the first row of 
Table 3, in which the two functions CreateProcessA and CreateProcessW 
have a superclass called CreateProcessFunction. 

Since each of the suspicious behaviors has specific implications to 
their relationship to other objects in the ontology, we define them as 
separate classes (accommodated in the general Behavior concept) and 
not as properties. Because in fact, the purpose of Rantology, in addition 
to classifying and separating ransomware samples, is to create a 
knowledge representation system of their behavior and interactions 
with system components and a deeper understanding of the function-
alities of the APIs extracted from them to infer new knowledge. In the 
case of the Behavior class, we used a bottom-up approach. The two main 
sources for extracting behaviors are analyzing available samples and 
grabbing information and threat reports about extortionate assaults 
from reputable security websites. To relate the reports in practice, 108 
ransomware samples were analyzed and the results were compared with 
this technical literature. In this way, the individuals that are actually 
events or actions that occurred during the execution of ransomware 
samples are first identified. These behaviors then together form higher- 
level classes and eventually constitute the more general Behavior class. 

For example, the behavior of adding an entry to the registry Run key 
was observed in species belonging to many ransomware families, 
including Avaddon, BTCWare, Ryuk, and BitPaymer. However, some of 
the analyzed instances imported their own entry into the “HKLM 
\SOFTWARE\Microsoft\Windows\CurrentVersion\Run” path and some 
added it to the “HKCU\Software\Microsoft\Windows\CurrentVersion 
\Run”. These are the two individuals that make up the RegSettingValue 
class. The RegSettingValue concept, along with the RegSettingKey, form 
the larger CreatingReg class. Likewise, the CreatingReg class, together 
with the DeletingReg, ReadingReg, and QueryingReg classes, build the 
more general RegistryBehavior class, which will be a subclass of the 
Behavior. Other subclasses of Behavior are also defined by analyzing 
samples, and are generalized to more general concepts. In addition to 
the RegistryBehavior, FileSystemBehavior, NetworkBehavior, and Proc-
essBehavior classes obtained by observing ransomware behavior, there 
are other classes that are defined as direct subclasses of Behavior and 

Fig. 4. Part of the Software taxonomic class hierarchy in Rantology.  

Table 3 
Part of the WindowsAPI class hierarchy with some representative individuals.  

Class name Subclass name Some of individuals 

ProcessControl ProcessThreadFunction CreateProcessA, 
CreateProcessW, 
ExitProcess, ExitThread, 

ObjectFunction DuplicateHandle 
SynchronizationFunction WaitForSingleObject, 

WaitForMultipleObjectsEx 
FileManagement DataAccessFunction CreateFileA, DeleteFileA, 

FlushFileBuffers 
BackupFunction IsVolumeSnapshotted 

DeviceManagement PowerFunction GetSystemPowerStatus 
MemoryFunction GlobalLock, 

GlobalReAlloc, 
VirtualAllocEx 

ConsoleFunction ReadConsole 
InformationMaintenance RegistryFunction RegCreateKeyA, 

RegEnumValueA 
TimerFunction SetTimer 
SysInfoFunction GetTickCount 

Communication NetworkFunction NetApiBufferSize 
Protection SecurityFunction AdjustTokenGroups, 

DuplicateToken, 
SetUserObjectSecurity  
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include individuals of those classes and derived from them. The Persis-
tenceBehavior concept is an example of such a class. Ransomware fam-
ilies, like many malware, need to maintain persistence in the system to 
ensure execution after each reboot. They apply a variety of techniques 
for this purpose, such as adding the program to the startup folder or 
appending an entry to the Run Keys in registry. As a result, the Persis-
tenceBehavior class can contain instances of the RegistryBehavior and 
FileSystemBehavior. More details about the defined classes (or equivalent 
classes) for separating behaviors will be explained in Section 3.3. 

Given that the ultimate goal of most digital extortions is to make 
money, the payment system is an important aspect of such attacks, and a 
separate class in Rantology was defined for it. To identify the hierarchy 
of PaymentSystem, we collected ransom notes for 287 ransomware 
samples and extracted payment methods. These methods ranged from 
gift cards, vouchers and online payment services to cryptocurrencies. 
For example, the Yandex online payment service was used by Wanna-
Cash and TeleCrypt (Balaban, 2016; Cimpanu, 2016; TrendMicro, 
2016). In addition to this online payment service, TeleCrypt also 
accepted payments via Qiwi service. However, in 261 of the examined 
samples (approximately 91%), ransom payment was demanded in the 
cryptocurrencies. Many ransomware families also have several payment 
methods. CryptoLocker is a representative example that wants ransom to 
be paid in the form of Bitcoin, UKash, CashU, Paysafecard, MoneyPak or 
prepaid cash vouchers. A bottom-up approach has been used to deter-
mine the ThreatComponent class hierarchy, as in the Behavior and Pay-
mentSystem classes. The elements engaged in the extortion attack chain, 
such as droppers, loaders, spammers, botnets, exploited vulnerabilities, 
C2 servers, and the elicited domain generation algorithm (DGA) from 
binaries (Almashhadani et al., 2020) compose subclasses of Threat-
Component. Many of these sub-concepts are derived from the results of 
static and dynamic analysis of ransomware executables. 

After defining the classes and their hierarchy, the characteristics of 
each class and relationships between them should be extracted from the 
identified key terms. For each property elicited in the Rantology, there is 
a class that is described by this feature. Each class can be associated with 
other classes, which are denoted by object properties. On the other hand, 
individuals belonging to each class can have characteristics that are 
specified by data properties. Data properties can be set with built-in 
datatypes. Datatypes are a collection of literals, such as strings, in-
tegers, and so on (W3C, 2021). We define these relationships and 
properties from other conspicuous terms extracted in the third phase of 
the seven-step approach adopted for the ontology design process. 
Table 4 shows a summary of statistical information related to the Ran-
tology. However, this is an ongoing research and the numbers displayed 
in the table will increase over time. 

3.3. Design details 

We utilized Protégé2 as a development environment to implement 
the ransomware ontology. Protégé is a free, open-source ontology editor 
that maintains a single namespace for all its frames and is case-sensitive. 

Logical reasoning is also done on the knowledge base using FaCT++

reasoner. We used the following general rules for naming classes and 
relationships. This naming system is followed throughout the ontology.  

• Using PascalCase naming convention for class names  
• Using camelCase naming convention for property names  
• Using singular form for all concepts 

We also used Process Monitor3 and IDA Pro4 tools to observe the 
behavior of ransomware and benign software, and extract API functions 
from them. Process Monitor is a tool from Windows Sysinternals that has 
the ability to monitor and display real-time file system, registry and 
process/thread activities, and many other features. It connects to a filter 
driver to capture system events. IDA Pro is also a powerful disassembler 
and debugger used in static and dynamic analysis of a variety of 
executable formats. In addition, the research utilizes Python program-
ming language to scrap web pages to gather threat information and 
extract terms of interest. 

As seen in the previous section, the classes defined in Rantology are 
connected to each other by the relationships called object properties. 
Indeed, these properties are the binary relationships between two in-
dividuals that link them together. Table 5 exhibits these relations along 
with the domain and range specified for them. If several classes are 
specified as the range of a property, the range will be interpreted as the 
intersection of these classes. Many of the classes in the domain and range 
columns are subclasses of the main concepts in Rantology. Also, some of 
the defined relationships are inverse to each other, which are listed in a 
separate column to avoid enlarging the table. The domain and range of 
such properties are the opposite. The considerations for determining the 
domain and range of object properties will be further elaborated in 
Section 3.4. 

In contrast to object properties, data properties link an instance to an 
XML schema or literal. We have defined multiple data properties for 
each class of Rantology. In general, all specified properties for each class 
are inherited to its subclasses. As can be seen from Fig. 4, CryptoR-
ansomware, LockerRansomware and WiperRansomware are subsumed by 
the Ransomware class. Therefore, the relationships and data properties 
defined for the Ransomware class are inherited to all its subclasses. This 
applies to all classes defined in Rantology. In fact, a new class is defined 
in the ontology when it either has a property or participates in a rela-
tionship that its superclass does not have or dose not participate in. 
Therefore, some features such as hasFileName, hasVersion, hasSize, 
hasMD5Hash, hasSHA256Hash and so on, are assigned to the more 
general Software class. For the CryptoRansomware class, in addition to 
data properties such as hasMD5Hash, hasReleaseDate and many others 
that are inherited from the parent classes, slots describing the encryption 
algorithm and key generation and management are also defined. This 
will further aid to classify ransomware based on the type of algorithm or 
key generation strategies (online or offline). By knowing the details of 
the cryptographic system, memory forensics tools can be used for 
memory dumping and gaining the key. 

Leakware, also known as Doxware, is a new evolution of digital 
hijacking and cyber extortion (Keshavarzi & Ghaffary, 2020). Unlike 
ransomware, leakware does not prevent users from accessing their legal 
resources, but instead threatens to make public the personal and sensi-
tive data of the victims if they do not pay a ransom. Since only some 
types of ransomware have the ability to doxing, or are likely to utilize 
such a behavior in the future, to distinguish them from the Leakware 
category, we define a data property called hasStealingInfoCapability for 
the Ransomware class that has a Boolean value. Depending on the 
version of Windows API, its functions can be deployed in.exe or.dll files. 
For instance, Win32 functions reside primarily in the core system DLLs 

Table 4 
Rantology metrics.  

Metrics Number 

Class count 473 
Object property count 24 
Data property count 77 
Axiom 1495 
Logical axiom count 813 
Declaration axioms count 641  

2 https://protege.stanford.edu/. 

3 https://docs.microsoft.com/en-us/sysinternals/downloads/procmon/.  
4 https://hex-rays.com/ida-pro/. 
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of Windows such as kernel32.dll, advapi32.dll, user32.dll, netapi32.dll, 
and gdi32.dll. This is defined as a data property named hasDLL for in-
dividuals belonging to the WindowsAPI class. Likewise, other classes of 
Rantology have data properties with values specified for them. In order 
to achieve clarity, it has been tried that the names selected for the 
properties correspond to the terms extracted from the threat reports in 
the scraped pages. 

After going through the fifth step of the methodology used to design 
the ontology, at this stage the axioms and constraints must be defined 
(see Fig. 2). In reality, there may be instances that participate in certain 
relationships defined in the ontology but the class to which they belong 
is unclear. In OWL, such classes can be defined through restrictions. As 
mentioned earlier, two types of classes can be distinguished in OWL: 
primitive and defined. Primitive classes have only the necessary condi-
tions, while defined classes are specified with the necessary and suffi-
cient conditions. In Rantology, some classes are designed to be primitive 
and others to be defined. The principal classes located at the root level, 
as well as some of their subcategories, including Person, Organization, 
subclasses of WindowsAPI, and many others, are primitive concepts, 
which allow inference in only one direction. Such classes are introduced 
with subclass axioms. Other classes in Rantology, which are mostly in 
the middle or bottom levels, such as Attacker, Victim, NormalBehavior, 
SuspiciousBehavior, Ransomware and its categories, are defined concepts 
that are determined by various restrictions using equivalent classes 
axioms. 

The distinguishing feature of ransomware from other fear-based 
malware is the obstruction of the user’s legal access to resources. On 
the other hand, unlike other legitimate software that encrypts, erases 
and locks data, this denial of access will be accompanied by a threat in 
the form of a ransom note. For this purpose, we apply constraints to 
define the Ransomware class. We add an existential restriction along the 
property hasBehavior with a filler of DenyingAccessBehavior (a subclass of 
Behavior). This class contains instances of the primitive classes specified 
in the Behavior. The challenge in defining the second characteristic of 
ransomware is how to add the condition of having a ransom note. The 
ransom note, which comprises information about the attack on the 
victim and instructions for releasing the hostage resources, can be in the 
form of background image,.txt,.html files and the like. These files either 
come with the ransomware itself or are downloaded from C2 servers in 
the attack lifecycle. They mostly contain threatening phrases. Moreover, 
extortionist malware exhibits similar behaviors to display ransom note 
and inform the victim. For example, several files with the same name 
and different extensions may be left in each directory containing files 
tampered by ransomware. These files may also be dropped in the 
Desktop and Startup directories. In many instances, registry keys are 
edited to show the ransom note on each system reboot. We define these 
behaviors in a class called ShowingRansomNoteBehavior, which includes 

individuals of several subclasses of Behavior, including Fil-
eSystemBehavior, NetworkBehavior, and RegistryBehavior. Fig. 5 repre-
sents the definition of Ransomware class in the Manchester syntax. 
According to this definition, the conditions are not only necessary for 
membership in Ransomware, but also sufficient to determine if some-
thing satisfies these conditions is a member of the Ransomware class. 

The main categories of ransomware are defined in a similar way by 
axioms. Many types of crypto-ransomware delete the original files when 
they perform the encryption operation. In addition, in many extortion 
onslaughts, the malware binary itself and some log files may be removed 
from the system by the attacker. Therefore, in the case of the Wiper-
Ransomware class, since not every ransomware that has the behavior of 
deleting files is a wiper-ransomware, we specify this category only with 
the necessary conditions. As can be seen from Fig. 6, if something is a 
member of the WiperRansomware class, it is necessary for it to be a 
member of the Ransomware and it is necessary for it to be a member of 
the anonymous class of things that are linked to at least one individual of 
the class DeletingFileBehavior via the hasBehavior relationship. Thus, if a 
ransomware has a file deletion behavior, it is not a sufficient condition 
for this instance to be a member of the WiperRansomware class. 

Classes related to ransomware families are disjoint and have more 
restrictive membership requirements. These constrains range from 
affected file extensions, threat group behind the attack, type of ransom 
demanded, and the tools used by the ransomware to other distinguishing 
behaviors. Given that reasoning in OWL ontology is based on the open 
world assumption (OWA), we used closure axioms on the properties to 
define classes associated with ransomware families. Also for the two 
defined classes SuspiciousBehavior and NormalBehavior, we utilized 
quantifier and cardinality restrictions by considering behaviors that 
participate in the isBehaviorOf relationship with instances of Malware 
and Goodware classes. Consequently, behaviors that satisfy the specified 
restrictions will become members of one of these two classes, leading to 
the separation of suspicious behaviors from normal ones. With cardi-
nality constraints, even if really destructive behavior is observed in a 
small number of ransomware instances but exists in none or at most in a 
certain number of legal programs, it will be correctly classified in the 
SuspiciousBehavior class. This is also true for common behaviors between 
extortionist malware (especially Crypto and Wiper-Ransomware) and 
benign software, and prevents normal behaviors from being categorized 
in the wrong class. The greater the number of analyzed samples fed to 
the ontology, the higher the accuracy of behavior separation. Such re-
strictions will help classify the individuals that will later be added to the 
ontology. 

In addition, other behavioral classes were asserted based on the re-
lations they had with some of the Windows APIs, which assist in dis-
tinguishing malicious samples from harmless ones through the 
hasBehavior property. API calls are not malicious in themselves and can 

Table 5 
Object properties in Rantology.  

Object Property Inverse of Domain Range 

hasTargeted isTargetedBy Malware Victim 
hasDeveloper isDeveloperOf Goodware SoftwareDeveloper 
hasProducer isProducerOf Malware Attacker 
hasBehavior isBehaviorOf Software Behavior 
hasCalled isCalledBy Software WindowsAPI 
hasExploited isExploitedBy Malware Vulnerability 
hasVulnerability – Software Vulnerability 
isDisclosedBy – Vulnerability CyberActor 
hasUsed isUsedBy ThreatGroup ThreatComponent 
hasDemandedPaymentIn isPaymentMethodOf Ransomware, Leakware PaymentSystem 
hasRansomNote – Ransomware, Leakware RansomNoteFile 
isInvolvedIn – ThreatComponent Malware 
isRelatedTo – WindowsAPI Behavior 
hasConnectedTo – Malware C2Server 
hasString – Ransomware, Leakware ThreateningMessage 
isDistributedBy – Malware ExploitKit, SpamEmailCampaign, Malware  
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be found in both legitimate and destructive software. What distinguishes 
malware from benign software based on these functions and provides 
insight into how they work is to gather a large volume of these API calls 
and understand their relationships to system components and the cor-
relations between them. This will be achieved with Rantology. Ran-
somware, like many skillfully designed malware, uses a variety of 
camouflage techniques such as process injection, DLL injection and 
process hollowing. These behaviors are malevolent in nature and 
consequently software related to these classes is considered malicious. 
For such behaviors, several APIs may be exerted by extortionist malware 
authors. For example, a sequence of Windows API calls Crea-
teToolhelp32Snapshot, Process32First, Process32Next, OpenProcess, 
CreateRemoteThread, VirtuallAllocEx and WriteProcessMemory are 
commonly seen in a DLL injection behavior (Sikorski & Honig, 2012). 
The corresponding classes of these behaviors are defined by the axioms 
and constraints on the isRelatedTo property in Rantology. 

3.4. Design considerations 

The challenge that any ontology may encounter is maintaining a 
consistent class hierarchy as the domain evolves (Noy & McGuinness, 
2001). This section summarizes the design considerations used in the 
development of Rantology. Also, errors that may occur when defining 
classes are investigated. As mentioned earlier, classes and properties are 
the most prominent terms in a domain. In designing the Rantology, a lot 
of effort was made to differentiate these segments in such a way that in 
addition to covering the goals of the proposed ontology and competency 
questions, the most stability is achieved. For example, in the case of 
threat components, the IP should not be a class because it may change 
continuously and its individuals will have to be moved and superseded. 
So we define C2 server as a class and specify IP as a data property for it. 
The same is true for spam distribution servers as well as exploit kit 
hosting sites. Classes are organized in a hierarchy so that the relation 
among superclass and subclass is transitive. To specify the domain and 
range of the properties, some of the general rules should be taken into 

account. When defining the range or domain of a property, if there are 
several classes and they have a hierarchical relationship, we leave out 
the subclasses. For example, since the range of hasDemandedPaymentIn 
property can include cryptocurrencies (such as Bitcoin, Monero, Dash, 
and etc.), vouchers, and so on, we omit these sub-concepts and define 
only the superclass PaymentSystem as a range. Because these classes do 
not add any new information, and the parent class specified in the range 
will implicitly encompass these subclasses. Also, since all ransomware 
categories have ransom note (in the forms of html, text or image files), 
instead of adding the hasRansomNote property to these subclasses, we 
append this slot to the more general Ransomware class. Further gener-
alization of the domain of this property would not be correct, as there is 
no ransom note in all malware or other types of scareware such as 
Rogueware. Rogueware mostly contains annoying popups and does not 
comprise threatening message. However, leakware also has such a 
feature, and hence this class has been added as a domain of the has-
RansomNote property. In addition to running ransomware, such mes-
sages can also be obtained by analyzing the strings in the binary file 
itself. This knowledge can help determine the harmfulness of statically 
analyzed samples. All properties specified for Ransomware will be 
inherited to its subclasses. Similar considerations apply to other re-
lationships defined in Rantology. 

The name of a class can be changed according to the selected ter-
minology, but this concept will still display the same objective reality in 
the domain. This issue can occur in naming classes related to ransom-
ware families. To accelerate the process of malware detection, the 
vendors of antivirus tools are mainly using signature-based or heuristic 
approaches, which will lead to malware naming issues (Laszka et al., 
2017). This is evident by submitting a sample to VirusTotal. Concepts 
related to ransomware families in Rantology, regardless of the name 
assigned to them, are identified by the certain properties that describe 
them. To prevent misinterpretation, we enter other names devoted to it 
by various antivirus engines in the documentation of each class of ran-
somware family (in the form of annotation properties). This issue has 
also been addressed for the aliases of some criminal gangs in the 

Fig. 5. Definition of Ransomware class in the Manchester syntax.  

Fig. 6. Definition of WiperRansomware class in the Manchester syntax.  
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ThreatGroup class. Many of these issues can be resolved by using the owl: 
sameAs property for different names that refer to the same entity. 

3.5. Creation of ransomware knowledge base 

The three main parts of an ontology building are generation, popu-
lation and maintenance (or refinement). After defining the classes, 
properties, and the corresponding restrictions, a knowledge base is 
created at this stage by populating the ontology with individuals. In 
order to determine individuals, the most specific concepts must be 
identified, depending on the application of the ontology and compe-
tency questions. In our work, the most specific objects that we intend to 
display in the knowledge base and are at the lowest level of granularity 
include ransomware samples, instances of benign programs with similar 
behaviors to ransomware, diverse API functions, and suspicious events 
and activities in various parts related to the system components. For this 
purpose, we gathered 84 legal programs in 5 subclasses of Goodware 
along with 108 ransomware belonging to 79 different families from 
various repositories available on the Internet (https://virusshare.com/; 
https://sourceforge.net/; https://software.informer.com/). At this 
stage, the goal is to instantiate the ontology with individuals so that by 
creating different queries, the ontology can be evaluated in advance and 
refined if necessary. On the other hand, in order to reach a knowledge 
base that has the least amount of missing information, we chose this 
number of samples so that later, if incomplete data is added, we will 
have the ability to predict relationships and discover new knowledge 
well. However, the more instances are fed into the ontology, the more 
comprehensive the knowledge base and consequently the knowledge 
graph will be. Therefore, although we downloaded a total of more than 
38,000 crypto-ransomware and more than 1000 locker samples from the 
VirusShare repository, we selected only 108 samples that almost we had 
scraped reports about them from web pages. To complete many of the 
sub-concepts of classes such as Behavior and CyberActor, we needed to 
fully analyze the samples and also have reports about them, including 
responsible threat groups or victims, published by security agencies and 
companies. In order to get the correct labels for each malicious instance, 
we submitted all samples with their MD5 hash to the VirusTotal web-
site.5 Since various antivirus engines assigned different names to each 
instance, we put the name that most closely matched the security reports 
inside the hasFileName data property and documented the other names 
in the annotation properties. Although we tried to select individuals in 
all three ransomware categories balanced, wiper-ransomware only 
accounted for less than 19% of the total malicious samples, which were 
downloaded in the crypto-ransomware collection. 

We also collected 84 benign programs, which were mainly in the 
category of software that behaves similar to ransomware, such as 
archiver, cryptographic, backup software, and the like (https://source-
forge.net/; https://software.informer.com/). A significant part of these 
downloaded instances were compression and file archiver programs that 
placed in the ArchiverSoftware subclass, such as 7-Zip, ALZip, PeaZip, 
B1FreeArchiver, FreeArc, etc. However, we also submitted these sam-
ples to the VirusTotal to ensure they are safe. These instances were 
utilized only for analyzing and extracting API functions and finally 
deducing normal behaviors. Given that the two classes NormalBehavior 
and SuspiciousBehavior are specified through quantifiers and cardinality 
restrictions by considering the behaviors that participate in the isBeha-
viorOf relation with Goodware and Malware classes respectively, we 
needed these programs. 

After analyzing the collected samples and extracting the desired 
features from them, the proposed and designed ontology was populated 
with these individuals. The properties defined in Rantology were filled 
with the corresponding values obtained from the analysis of the samples. 
Table 6 presents a number of crypto-ransomware instances imported 

into the Rantology along with some of their data properties. Not all 
properties are listed in the table. We use the MD5 hash of each ran-
somware as its unique name in the respective family class. 

4. Evaluation 

As with many research technologies, the development of ontologies 
will not be error-free, and the possibility of inconsistencies and re-
dundancies during the design process is inevitable. Ontology assessment 
is the process of determining quality or accuracy according to a set of 
evaluation criteria that depends on the purpose for which the ontology is 
designed. Ontology evaluation is an indispensable part of ontology 
development. In the literature, ontology evaluation has been considered 
from different perspectives. In a taxonomy presented in (Brank et al., 
2005), there are four categorical schemes of ontology assessment 
methods: Approach based on comparison with a golden standard; 
Approach based on comparison with a source of data about the domain 
to determine amount of coverage by the ontology; Approach based on 
using the ontology in an application and evaluating the results; And 
finally, manual evaluation by human experts based on a set of specific 
standards and criteria. In addition to aforementioned approaches, due to 
the relatively complex structure of the ontologies, Brank et al. (Brank 
et al., 2005) also considered different levels of evaluation. Therefore, 
each evaluation approach can verify different levels of ontology. Such 
level-based approaches will be more practical than those that evaluate 
ontologies as a whole. In other sources, the ontology assessment process 
is explored in two separate sections (Gómez-Pérez, 2004; Vrandečić, 
2009): ontology verification and ontology validation. Amith et al. 
(Amith et al., 2018), who conducted a comprehensive review of 
ontology evaluation methods, also considered two interrelated steps for 
assessing biomedical ontologies: Ontology evaluation, which includes 
measurements for quality assessment, deals with the issue of goodness; 
Quality assurance (or auditing), which seeks to improve the quality of 
ontologies by focusing on the detection of modeling errors and in-
consistencies, and is mainly done after the public release of ontologies 
by third parties. 

The choice of an appropriate approach to assessment depends on the 
application in which the ontology is to be used as well as the aspects of 
the ontology we are trying to evaluate. To the best of our knowledge, no 
dedicated ontology has been designed for cyber extortion attacks and no 
golden standard has been defined for it. Due to the lack of previous work 
in the field of ransomware (or any extortion-based attacks) ontology, it 
is not possible to compare the performance of the proposed framework 
in this paper. Hence, we evaluate the suggested ontology in terms of 
clarity, coverage, modularity, semantic relations and consistency. 
Table 7 outlines these criteria along with a description of them. 

In addition to the abovementioned evaluation criteria, the assess-
ment of the quality of ontologies has also been studied in various aspects 
(Beydoun et al., 2011; Duque-Ramos et al., 2014; Mc Gurk et al., 2017; 
Roldán-Molina et al., 2021; Tartir et al., 2005, 2010; Zhu et al., 2017). 
For this purpose, several frameworks have been published in the liter-
ature, including OntoQA (Tartir et al., 2005), OQuaRE (Duque-Ramos 
et al., 2011) and OntoQualitas (Rico et al., 2014). Tartir et al. (Tartir 
et al., 2005, 2010) believe that the quality of ontology can be evaluated 
in different dimensions. They categorize the quality of ontologies into 
three groups: schema, knowledge base and class. Therefore, in addition 
to the criteria stated in Table 7, we also measure the quality of Rantology 
based on merely the schema metrics provided in OntoQA. These metrics 
can highlight key characteristics of Rantology schema. 

Assuming that an ontology schema is a 6-tuple O := {C,P,A,H, Prop,
att} , where C, P and A are respectively the set of concepts, object 
properties (relationships) and data properties (attributes) defined in the 
ontology; H ⊆ C × C is a directed transitive relation to represent the 
concept taxonomy; And the functions Prop : P⟶C × C and att : A⟶C 
relate concepts non-taxonomically and concepts to literal values, 
respectively. According to these assumptions, Eq. (1), Eq. (2), and Eq. 5 https://www.virustotal.com/. 
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(3) measure Relationship Richness (RR), Attribute Richness (AR), and 
Inheritance Richness (IR), respectively. 

RR=
|P|

|H| + |P|
(1)  

AR=
|att|
|C|

(2)  

IR=
|H|

|C|
(3) 

RR has a value between 0 and 1; The closer this value is to zero, the 
more relations in the ontology are class-subclass relationships, and vice 
versa. A high value for AR points out that each class has a large number 
of attributes on average, while a lower value may indicate that less in-
formation is provided about each class. Finally, the IR metric specifies 
the distribution of information among different levels of the ontology. 
This measure can be used to distinguish a horizontal ontology (where 
classes have a large number of direct subclasses) from a vertical one 
(where classes have a small number of direct subclasses) (Tartir et al., 
2005, 2010). An ontology with low inheritance richness will be a ver-
tical ontology, indicating that it covers a specific domain in a precise 
way, while an ontology with high IR is a horizontal ontology, repre-
senting that it covers a wide range of knowledge with a low level of 
detail. According to the statistical information depicted in Table 4, the 
values of RR, AR and IR were measured for Rantology and are shown in 
Table 8. 

Rantology passes the criterion of clarity since the definitions of 
selected terms have been tried to be objective and extracted from a large 
number of relevant scraped threat reports. Also, as mentioned before, 
annotation properties were specified to remove the ambiguity in the 

names of ransomware families and other concepts, and this information 
was documented in natural language. In addition, the modular design of 
Rantology allows it to be utilized in other applications or to add new 
concepts to it with minimal modifications. For example, the definition of 
the PaymentSystem class allows the use of this knowledge representation 
system in applications aimed at analyzing the economics of ransomware. 
On the other hand, applying the taxonomic hierarchy presented in our 
previous work (Keshavarzi & Ghaffary, 2020) makes this ontology 
extensible to other modern extortion-based malware. 

Evaluating semantic relationships other than “is-a” between con-
cepts is another important aspect of ontology assessment. We describe 
ransomware families by their relationships to other classes, and then 
utilize reasoner to deduce and classify the individuals we fed into the 
Rantology (instances in the Uncategorized class) to see which category of 
ransomware they belong to. The individuals added in the Uncategorized 
class were selected from the same dataset described in subsection 3.5, 
and some of them were downloaded samples that had not previously 
been imported into the Rantology. Reasoning capability is utilized for 
subsumption testing and consistency checking. To do this, we ran 
FaCT++ reasoner on the knowledge base. The inferred class hierarchy 
was free of any inconsistency and the individuals asserted in the Unca-
tegorized category were correctly classified. For better evaluation and 
validation of Rantology, classes corresponding to ransomware families 
are defined as disjoint. By doing so, there is no sample that belongs to 
different families, and if such a thing is inferred, there is a modeling 
error that the system is able to show. But this is not the case for in-
dividuals of Goodware subclasses. Because there may be a program with 
the ability to encrypt and archive data (e.g., PowerArchiver) that is a 
subclass of the two classes CryptographicSoftware and ArchiverSoftware, 
and therefore inherits from both. Finally, the completeness of an 
ontology is determined by the competency questions raised at the 
beginning of the design process, which will show the extent of its 
coverage. To verify the capability of Rantology in answering compe-
tency questions, we used the description logic (DL) query interface 
available in Protégé. For example, query “hasStealingInfoCapability 
value true” is designed to answer competency question 4 (CQ4) and 
returns all ransomware individuals that have doxing capability. Simi-
larly, other queries tailored to other competency questions were 
designed to assess ontology coverage. This study is part of a larger 
research work, and certainly with its dissemination and widespread use 
in various applications, some missing or redundant concepts and re-
lationships may be discovered. 

5. Discussion 

Despite the many efforts made by the security sector, ransomware 
continues to claim victims around the world. All humans with any role 
(attacker, defender, user, etc.) are an integral part of computer networks 
and all of them, not only attackers, can be considered a threat to the 
system. User awareness training should be the priority of any organi-
zation’s security practice because many researchers believe that the 

Table 6 
Some of CryptoRansomware individuals.  

Individual (MD5) hasFileName hasSize hasEncryptionAlgorithm 

21a563f958b73d453ad91e251b11855c “Maze”^^string 754176 “RSA-2048”^^string 
b7ad5f7ec71dc812b4771950671b192a “Sekhmet”^^string 709632 “ChaCha”^^string 

“RSA-2048”^^string 
e9454a2ff16897e177d8a11083850ec7 “Pysa”^^string 516608 “AES-256”^^string 

“RSA”^^string 
d32ff14c37b0b7e6c554ce3de5a85454 “VCrypt”^^string 794801 “7Zip”^^string 
8f90539c405672016c0dec7ac3574eea “Nefilim”^^string 72672 “AES-128”^^string 

“RSA-2048”^^string 
53dddbb304c79ae293f98e0b151c6b28 “MegaCortex”^^string 745408 “AES-256”^^string 

“RSA-4096”^^string 
9d418ecc0f3bf45029263b0944236884 “DarkSide”^^string 60416 “Salsa20”^^string 

“RSA-1024”^^string  

Table 7 
Rantology evaluation criteria.  

Criterion Description 

Clarity It refers to the absence of undefined or ambiguous concepts in the 
ontology. 

Modularity This criterion determines the extensibility and reuse of the ontology. 
Consistency It points to the correct classification of objects and the absence of 

contradictions in the ontology. 
Coverage Coverage (or more comprehensively, completeness) indicates the 

appropriateness of an ontology for modeling and representing the 
domain of discourse.  

Table 8 
Evaluation of the quality of Rantology schema.  

Quality Schema Metrics Value 

Relationship Richness (RR) 0.08 
Attribute Richness (AR) 0.16 
Inheritance Richness (IR) 0.55  
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weakest link in the cyber security chain is the human user. Describing 
human behaviors that have a higher probability of attracting digital 
extortion attacks provides new opportunities to identify and defend 
sectors and hosts that are more exposed to these threats. Accordingly, 
research on the importance of human behavior in the development of 
security products has grown increasingly. Ovelgönne et al. (Ovelgönne 
et al., 2017) conducted a study on 1.6 million hosts of Symantec’s WINE 
dataset belonging to an 8-month period to reveal the relationship be-
tween user behavior and cyber-attacks against their machines. The 
surprising result of their research showed that software developers are 
more prone to malware attacks than other user categories defined in 
their work. Also, the development of a comprehensive and predictive 
risk assessment model requires the characterization of human factors to 
understand how the actions of users, defenders and attackers affect 
cyber security risk (Oltramari et al., 2015). Therefore, the integration of 
ontologies into cyber security science helps decision makers build the 
foundations needed for quantitative and predictive risk assessments. In 
essence, cyber defense is highly dependent on human analysts involved 
in the process of data fusion and situational awareness (Oltramari et al., 
2014, 2015). 

Ransomware attacks continue to progress and by preventing legal 
access to resources and setting a deadline for ransom payment, they 
have created a space in cyber security that requires dynamic decision 
making. Situational awareness is one of the main pillars and key skills 
for making correct decisions. Basically, the lack of situational awareness 
is one of the main causes of accidents with the root of human error. 
Endsley defines situational awareness as follows (Endsley, 2017): Per-
cepting the environmental elements within a volume of time and space, 
comprehending their meaning and projecting their status in the near 
future. Although the main mission of Rantology is to discover the re-
lationships between APIs and system behaviors and consequently to 
identify and categorize ransomware and build a knowledge base of 
them, but due to the importance of human role in risk management and 
cyber security chain, a separate class was considered for this concept. 
This will help expand Rantology to encompass more goals, including 
extracting TTPs of attackers, ranking victims and vulnerable sectors 
based on the probability of being infected with this type of malware, 
increasing situational awareness, and ultimately generating ransom-
ware threat intelligence. 

In addition to considering the human factor as a core class, Rantology 
also addresses payment systems. This can inspire the development of 
another ontology to display knowledge pertaining to illegal financial 
transactions related to Internet crimes, especially ransomware in the 
domain of cryptocurrencies and other payment systems. Such a knowl-
edge base will be of great help in tracking down cybercriminals based on 
ransom payments. 

One of the important challenges in security solutions is generating 
false alarms. False Positive is one of the common problems in compu-
tational approaches including machine learning techniques in detecting 
malware, especially ransomware, which have a lot of functional simi-
larities with legitimate programs. Many research works exploit API calls 
to identify and distinguish malicious samples from harmless ones. 
However, only the presence or absence or the sequence of API functions 
is considered and its meaning is neglected. Mapping API functions to 
normal and suspicious behaviors can help to better understand their 
semantics and more optimal selection of distinguishing features and 
subsequently reduce the false positive rate. However, we encountered 
this problem in our work, especially in the definition of NormalBehavior 
and SuspiciousBehavior classes. The false positive rate was inversely 
related to the quantifiers and cardinality restrictions used in these 
equivalent classes. This issue will be resolved by filling the ontology 
with more examples and creating richer knowledge of cyber extortion 
threats. Also, extracting more object and data properties will help in 
inferring new knowledge from existing complex relationships and 
optimizing queries, thereby reducing the false positive rate. 

It is important to note that Rantology is not a real-time monitoring 

solution. It is simply a semantic model of the elements involved in digital 
extortion attacks, which by providing a knowledge base, is able to 
reason on the classes and relationships defined in it. Finally, ontologies 
usually suffer from assessment issues. Therefore, we do not claim to have 
done a comprehensive evaluation of Rantology. Definitely, applying it in 
different applications can reveal more fine-grained details. 

6. Conclusion and open issues 

Cybercrime has become a growing, thriving and highly profitable 
industry. Meanwhile, digital extortion threats are one of the most 
lucrative attacks, which not only have not diminished, but with the 
COVID-19 pandemic, they have accounted for a larger share of these 
illicit revenues. Researchers and security experts have been constantly 
fighting these extortionate offenses, especially ransomware, and dis-
secting and analyzing them in order to understand how they work and 
provide appropriate countermeasures against these threats. Given the 
vast amount of data from ransomware analysis as well as numerous 
threat reports about the ecosystem of cyber extortion attacks on the web, 
we need a model to organize structured and unstructured information 
through entities, features, and how they relate to each other. Under-
standing the behavior of ransomware and recognizing critical points for 
monitoring is essential for a successful defense. To this end, having an 
explicit formal specification of the components involved in cyber 
extortion attacks and the relations between them seems crucial. In this 
paper, an ontology for ransomware attacks, called Rantology, is pro-
posed that can be used by researchers and security experts to share and 
annotate information in the context of digital extortion onslaughts. In 
addition to sharing a common understanding of information as well as 
inferring domain knowledge to generate ransomware threat intelli-
gence, this research will pursue another goal. The current study focuses 
on digital extortion attacks. By expanding this ontology and knowledge 
base to other malicious programs and integrating them, a reference 
malware ontology can be achieved that covers a wider domain. 

This research was conducted with the aim of gaining insight into the 
behavior of ransomware and legal software. For this purpose, the re-
lationships between these programs, system calls and behaviors were 
scrutinized. In fact, Rantology is a formalized vocabulary of terms in the 
field of digital extortion attacks that focuses on the relations between 
ransomware, API functions and behaviors. It is a deductive and incre-
mental framework, not just a passive repository of asserted instances, 
and can accept imperfect descriptions of ransomware strains and then 
complete and refine them. In this research work, a combined method-
ology has been used to design the ransomware ontology. First, the most 
prominent concepts in the scope of cyber extortion attacks are identi-
fied, and then each of them is appropriately generalized or specialized. 
The stages of the development process of this ontology and how to 
determine the hierarchy of classes, specifications, relationships and in-
dividuals belonging to each of them were described in detail. Since this 
is a research work in progress and the information of many collected 
samples has not been entered into the Rantology, this knowledge base is 
not yet publicly available. As soon as the population phase is completed 
with more gathered individuals, the resulting knowledge base will be 
made public so that other researchers can help evaluate, improve and 
eliminate the possible shortcomings of this ontology by using it in 
different scenarios. 

However, the proposed conceptual modeling is extensible, and this 
ontology can also be used to understand the economic structure of 
ransomware and track financial transactions related to such extortions. 
This can be considered as an open issue for future work, despite the fact 
that a separate class was provided for payment systems in Rantology. 
Furthermore, identifying attacker groups or comprehending their TTPs 
is not the main focus of this paper, although pertained classes have been 
incorporated into the ontology, but have not been further explored. The 
next task we are doing is to infer knowledge from this ontology-based 
framework to build recommender systems using machine learning 
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techniques and artificial intelligence (AI) to monitor events and various 
parts of the operating system for the sake of ransomware detection. 
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