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Bartonellosis is an infectious disease caused by Bartonella species that are distributed

worldwide with animal and public health impact varying according to Bartonella species,

infection phase, immunological characteristics, and geographical region. Bartonella is

widely present in various mammals including cats, rodents, ruminants, and humans.

At least 13 Bartonella species or subspecies are zoonotic. Each species has few

reservoir animals in which it is often asymptomatic. Bartonella infection may lead to

various clinical symptoms in humans. As described in the B.tribocorum-rat model, when

Bartonella was seeded into the blood stream, they could escape immunity, adhered

to and invaded host erythrocytes. They then replicated and persisted in the infected

erythrocytes for several weeks. This review summarizes the current knowledge of how

Bartonella prevent phagocytosis and complement activation, what pathogenesis factors

are involved in erythrocyte adhesion and invasion, and how Bartonella could replicate and

persist in mammalian erythrocytes. Current advances in research will help us to decipher

molecular mechanisms of interactions between Bartonella and mammalian erythrocytes

and may help in the development of biological strategies for the prevention and control

of bartonellosis.

Keywords: bartonellosis, erythrocyte interactions, adhesion and invasion, replicate and persist, pathogenesis

factors

INTRODUCTION

Bartonella species are fastidious, Gram-negative hemotropic organisms. Bartonella have been
isolated from a range of species; from diverse animals, such as canids, rodents, ruminants, and
felids. They are mainly transmitted via direct contact (animal scratches and bites) or by numerous
arthropods such as sand flies, fleas, lice, biting flies, and ticks (Deng et al., 2012).

Until now, at least 40 species or subspecies of Bartonella have been found (Mullins et al., 2017).
Each species can establish a lasting intraerythrocytic bacteraemia in its reservoir host, but typically
not with obvious detriments (Vayssier-Taussat et al., 2009; Deng et al., 2012). In contrast, when
Bartonella accidentally infects the incidental hosts, which means that absolutely no erythrocytes
are involved during the acute phase of a zoonotic infection, the acute clinical manifestations can be
provoked (Raoult, 2007; Mosepele et al., 2012).

B. henselae is the most prevalent zoonotic Bartonella species (Yuan et al., 2011). B.henselae
infection is typically asymptomatic in the reservoir cats, in spite of up to 108 CFU/ml blood.
However, various clinical symptoms can be caused in humans, such as cat scratch disease
and bacillary peliosis in immunocompetent and immunocompromised individuals, respectively
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(Dehio, 1999, 2001; Chomel et al., 2009; Pulliainen and Dehio,
2012; Deng et al., 2016). The distribution of Bartonella in animal
and public health varies with Bartonella species, infection phase,
immunological characteristics, and geographical region.

Bartonella spp., Plasmodium spp., Babesia spp., Theileria
spp., Mycoplasma suis, and Anaplasma marginale are
important intracellular pathogens which can infect mammalian
erythrocytes (Barbour and Restrepo, 2000; Schülein et al.,
2001; Groebel et al., 2009). In contrast to other pathogens, all
Bartonella species could survive within the infected erythrocytes
for several weeks with only subtle changes of the erythrocyte
membrane, except the deadly B. bacilliformis (Dehio, 2005;
Harms and Dehio, 2012).

The infection course of Bartonella has been described in
natural and experimental animal models, such as the B. birtlesii-
mouse, B.tribocorum-rat, and B. henselae-cat models (Guptill
et al., 1997; Boulouis et al., 2001; Seubert et al., 2002; Birtles,
2005; Marignac et al., 2010). All of them show similar results,
which suggest a universal infection course of the different species
in their respective mammalian reservoir hosts. Following initial
inoculation, Bartonella could be rapidly cleared from the blood,
which was considered due to Bartonella infection of the so
called primary niche outside of circulating blood, potentially
endothelial cells, erythrocytic precursors, liver, and possibly
other cell types or organs (Dehio et al., 1997; Dehio, 1999,
2001; Mändle et al., 2005; Deng et al., 2012b). Bartonella was
released into the blood stream between 2 and 5 days post-
infection. Followed by erythrocyte adhesion and invasion. They
then replicated in the infected erythrocytes until eight daughter
cells were reproduced. The infected erythrocytes could persist
for many weeks (Schülein et al., 2001; Guptill, 2010; Harms and
Dehio, 2012). This review will discuss the current understanding
of Bartonella and erythrocyte interactions, especially focusing on
the required factors involved in virulence of Bartonella in their
reservoir hosts (Figure 1).

STEP 1: PRIOR TO ERYTHROCYTE
INFECTION

As mentioned above, prior to mammalian erythrocytes infection,
Bartonella could infect the primary niche and reappear in the
bloodstream. Bartonellamust escape the host immune responses
to facilitate their extracellular survival to approach and infect
erythrocytes efficiently in this step (Arvand et al., 2001; Kabeya
et al., 2003; Resto-Ruiz et al., 2003; Ben-Tekaya et al., 2013; Dehio
and Tsolis, 2017; Scherler et al., 2017).

The First Strategy Is Replication of Large
Numbers of Bartonella
Following intravenous inoculation, the bacteria were unable
to infect the erythrocytes. Instead, they were disappeared
from circulation and maintained undetectable during ∼4
days (Schülein et al., 2001). During this time, the primary
niche may support Bartonella replication and allow them
to gain competency for erythrocyte interactions (Dehio,
2005; Harms and Dehio, 2012). On day 5 post-inoculation,

numerous Bartonella are seeded into the bloodstream and cause
autoagglutination (Kaiser et al., 2008; Schmidgen et al., 2014).
This is one of the first steps of biofilm formation (Okaro et al.,
2017; Tu et al., 2017). The bacterial factors that are responsible
for replication are presently unknown.

The Second Strategy Is Against
Phagocytes
On day 5 post-inoculation, Bartonella are extracellular, thus
they are completely exposed to the immune system. Phagocytes
such as macrophages are the first line of immune defense
against the infection (Dornand et al., 2002; Weiss and Schaible,
2015). Pattern recognition receptors (PRRs) such as Toll-
like receptors (TLRs) on the phagocytes are considered to
recognize Bartonella spp. (Kloch et al., 2018). Generally, LPS and
particularly its lipid A part is mainly recognized by TLR4 and
causes pro-inflammatory cytokines secretion to induce various
inflammatory cells to move to the infection site (Malgorzata-
Miller et al., 2016). It was reported that LPS of B.henselae and
B. bacilliformis has a deep-rough structure, and B.henselae LPS
contains an unusual lipid A with a long chain fatty acid and
without an O-chain polysaccharide (Gorczynski et al., 2004;
Focà et al., 2012). The unusual features of Bartonella LPS were
weakly recognized by TLR4 and did not evoke TLR4 activation
(Minnick, 1994; Raetz and Whitfield, 2002; Focà et al., 2012). As
B. henselae LPS was 1,000-10,000-fold less active than Salmonella
LPS in activating TLR4 signaling, B. quintana LPS could not
induce pro-inflammatory cytokines production (Zähringer et al.,
2004; Popa et al., 2007). And B. quintana LPS could be a TLR4
activation antagonist to inhibit release of cytokines mediated
by Escherichia coli LPS, such as interleukin-1β, interleukin-6
and tumor necrosis factor α (Boonjakuakul et al., 2007; Popa
et al., 2007; Matera et al., 2008). Moreover, it could also block
TLR4 signaling transduction in rheumatoid arthritis (Abdollahi-
Roodsaz et al., 2007). Compared with Salmonella flagellin, the
flagellin of Bartonella species which possess flagella such as B.
bacilliformis, B. bovis, B. capreoli, B. chomelii, B. clarridgeiae, and
B. schoenbuchensis contains amino acid differences in the site
of TLR5 recognition. Which does not cause flagellin-mediated
TLR5-dependent NF-κB activation and might escape TLR5
recognition (Andersen-Nissen et al., 2005; Deng et al., 2012;
Kloch et al., 2018). The unusual structures of LPS and flagellin
are important for Bartonella spp. to escape the TLR4 and TLR5
recognition by phagocytes, respectively.

Bartonella adhesion A (BadA) is an outer membrane protein
which is homologous to Yersinia adhesin A (YadA),Haemophilus
surface fibrils (Hsf), Moraxella surface protein A (UspA), and
Haemophilus adhesin (Hia) (Lafontaine et al., 2000; St Geme
and Cutter, 2000; Biedzka-Sarek et al., 2008). BadA belongs
to the trimeric autotransporter adhesion (TAA) family, which
all share similar modular architectures, consisting of a head,
neck/stalk repeats, and C-membrane anchor domains (Hoiczyk
et al., 2000; Wollmann et al., 2006). The number of neck/stalk
repeats are variable in different Bartonella species (Kaiser
et al., 2012). BadA could cause bacterial autoaggregation and
encode antigenic variation of repetitive tandem stalk domains
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FIGURE 1 | Holistic view of Bartonella interactions with erythrocytes. Prior to erythrocyte infection, Bartonella must escape the host immune responses to facilitate

their extracellular longevity to approach and infect erythrocytes efficiently. Bartonella use LPS, flagella, and BadA orthologs against phagocytes and complement

activation (Step 1). Erythrocyte adhesion is mediated by multiple copies of TrwL and TrwJ variants of pilus components or flagella (Step 2). IalB, deformin, and

hemolysin cause some subtle changes of erythrocyte membrane and erythrocyte invasion by Bartonella species (Step 3). Once inside, the bacterium replicates in a

membrane-bound compartment, until the number of intracellular bacteria reaches static levels for the remaining lifespan of the infected erythrocytes, the

distinguishable changes will disappear (Step 4). Within erythrocytes, Bartonella uses Hbps, Hut, LivF, and LivG to get nutrients, and IalA, CtpA, and BatR/BatS to

cope with stressors (Step 5).

to prevent phagocytosis (Riess et al., 2004). Bartonella could
also temporarily enter macrophages in a unique Bartonella-
containing vacuole (BCV) and delay lysosomal targeting and
destruction (Kyme et al., 2005).

The Third Strategy Is Preventing
Complement Activation
The complement system has the function of microbial infection
control, either directly by membrane-attack complex (MAC)
formation or via phagocyte opsonization. It was considered
that the absence of O-side chain of Bartonella LPS could
decrease complement fixation and increase serum resistance
(Zähringer et al., 2004). Recent observations suggested that
BadA was involved in preventing complement activation, since
mouse serum could kill B. birtlesii badA-knockout (1badA)
mutants, while not the wild type B. birtlesii.Moreover, anti-BadA
antibodies could neutralized this killing activity and 1badA was
resistant to heat-inactivated serum (Deng et al., 2012).

Since Bartonella LPS, flagellin, and BadA could inhibit the
function of the immune system, such as the complement and
phagocytic cells, the inflammatory response decreased resulting
in reduced phagocytes migration, antigen presenting, and B cells
activation.

STEP 2: ERYTHROCYTE ADHESION

Intracellular pathogens must bind to host cells to successfully
initiate infection (Barnett et al., 2015). Bacteria use various

components to adhere to host cells, ranging from complex
substances, such as fimbriae or pili, to proteins, such as Brucella
suis BmaC, BtaE, and BatF adhesins (Ruiz-Ranwez et al., 2013;
Wu et al., 2014). Recognition of host molecules by adhesins is the
first step of bacterial infection (Coutte et al., 2003; Caswell et al.,
2010; Ruiz-Ranwez et al., 2013). Exploitation of erythrocytes by
Bartonella spp. is a complex progression through a series of
different infection stages, beginning with erythrocyte adhesion.
Although some factors have been shown to be essential for
this step, the knowledge about erythrocyte adhesion factors of
Bartonella is nominal. It is difficult to perform genetic studies,
since no liquid medium can support rapid growth of Bartonella
spp. and suitable animal models for study on pathogenicity of this
bacteria are limited.

The First Factor Is the Trw System
The Trw system is the third type 4 secretion system (T4SS)
found in certain Bartonella spp. and has a short-path of
evolution (Frank et al., 2005). It shares high homology with
plasmid R388 which is a broad-host-range conjugation system
of the IncW group that confers resistance to sulfonamide and
trimethoprim and produces constitutively rigid conjugative pili
called W pili (Bolland et al., 1990). Both encode an identical
and interchangeable transcription regulatory circuit KorA/KorB
repressor which could negatively regulate T4SS expression by
binding to kor box sequences (Figure 2).

Although the Trw system shares homology with plasmid
R388, this system lacks a TrwB which is the key protein
required for transfering effectors. This suggests that the Trw
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FIGURE 2 | Hypothetical model of the architecture of the Trw system of

Bartonella species. The Trw system is a multi-component protein complex

spanning the inner and outer membranes of Bartonella species. The multiple

copies of TrwL and TrwJ represent the major and minor pilus components,

while the other duplicated proteins, TrwI and TrwH are involved in pilus

elongation and for pilus anchorage to the outer membrane respectively. EX,

extracellular matrix; OM, outer membrane; PP, periplasm; IM, inner membrane;

CY, cytoplasm. Letters denote individual Trw subunits.

system is not a secretion system (Seubert et al., 2003; Dehio,
2004; Vayssier-Taussat et al., 2010; Larrea et al., 2013). In fact,
to date no substrates translocated by this system have been
characterized. Upregulation of the Trw system during endothelial
cell infection would decrease the time in the hostile environment
of the bloodstream. Bartonella could then adhere to and invade
erythrocytes quickly (Dehio, 2004; Pulliainen and Dehio, 2012).
The Trw system required for intraerythrocytic infection was
identified by large-scale signature tagged mutagenesis (STM)
screens in the B. birtlesii-mouse and B. tribocorum-rat models in
vivo (Saenz et al., 2007; Vayssier-Taussat et al., 2010).

Recently, the function of Trw in erythrocyte infection was
identified by an in vitro model for erythrocyte adhesion and
invasion (Vayssier-Taussat et al., 2010). In the study, we
identified nine mutants that could not invade erythrocytes in
vitro. The nine mutants included an invasion-associated locus
(ialA/B) mutant, a leucine-isoleucine-valine (livG) mutant, and
seven mutants for genes encoding Trw components. When we
horizontally transferred the trw locus of rat-specificB. tribocorum
into human-specific B. quintana and cat-specific B. henselae, they
were able to interact with rat erythrocytes, suggesting that the
Trw sytstem is a key factor of erythrocyte infection and host
specificity.

The trw genes of Bartonella species are collinear with
their homologous genes of plasmid R388, except for the gene
duplications of trwJ-I-H (the virB5, virB6, and virB7 homologs)
and trwL (the virB2 homolog) (Figure 3). There are variable copy
numbers of the duplicated genes in the different species, which
is evidence of gene conversion and rapid evolution (Schröder
and Dehio, 2005; Schulein et al., 2005; O’Rourke et al., 2011).
For example, the trans and inner membrane regions of TrwL are
almost identical, but the outer membrane regions are different
across Bartonella species (Figure 4). The duplicated copies of

trwJ and trwL encode variant forms of pilus components, while
trwH and trwI are involved in pilus elongation and anchorage,
respectively (Dehio, 2004; Deng et al., 2012).

However, the direct function of Trw system has only recently
been obtained by using different technologies (Deng et al.,
2012,a). In the study, both TrwJ1 and TrwJ2 were found at B.
birtlesii surface and could bind to band 3 of mouse erythrocytes.
It was considered that TrwL might also bind to the surface of
erythrocytes, and the outer membrane parts of TrwL proteins
might be responsible for this ability. Further studies are required
to identify the erythrocytic receptors of TrwL. Bacteria usually
use some virulence factors to bind to host cells more intimately
after initial adherence. We considered that the specific and
stable interactions between Bartonella and host erythrocytes were
mediated by both TrwJ and TrwL. Moreover, TrwJ might have
the capability to interact with TrwL, which represents the major
and minor pilus (Figure 5). TrwJ and TrwL might be involved
in initial or intimate adhesion during infection of erythrocytes.
The interactions of TrwJ and TrwL with host erythrocytes were
associated with Bartonella invasion, although direct evidence is
lacking to confirm this theory.

The multiple gene copies have many advantages. First, they
can increase expression of the dosage of pilus proteins and the
length or the number of pili for rapid adhesion to erythrocytes in
the bloodstream of the mammalian host (Gillespie et al., 2015).
Second, multiple Trw pilus variants encoded by those gene copies
might bind to various surface components of different blood
groups in different reservoir populations (Dehio, 2008). Third,
they provide variability within the genome for antigenic variation
(Lindroos et al., 2006). Fourth, they might increase potential for
new functions.

The Second Factor Is Flagella
The role of Trw evolved to replace the flagella, since the
expression of Trw and flagella is mutually exclusive among the
Bartonella species (Dehio, 2008; Harms and Dehio, 2012). The
multiple flagella which let B.bacilliformis with highly motile
could be important for the high rate of erythrocyte infection
in Oroya fever (Scherer et al., 1993; Dehio, 2001). It has been
reported that B. bacilliformis flagellin site-directed mutants bind
poorly to erythrocytes, and this phenomenon can be partially
rescued by trans-complementation with nature flagellin (Battisti
and Minnick, 1999; Sander et al., 2000). The flagellin subunit
antibodies could partially inhibit the adhesion between B.
bacilliformis and erythrocytes (Scherer et al., 1993; Sander et al.,
2000). Early work indicated that B. bacilliformis could interact
with many human erythrocyte membrane proteins, including
glycophorins A and B (Buckles and McGinnis Hill, 2000). Those
observations correspond with the former views that the flagella of
Bartonellamay serve as an adhesin, although it remains unknown
whether flagella can directly bind to host erythrocytes (Walker
and Winkler, 1981; Benson et al., 1986).

STEP 3: ERYTHROCYTE INVASION

After erythrocyte adhesion, Bartonella invaded mature
erythrocytes within 2 days, which has been demonstrated
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FIGURE 3 | Gene order structure of the trw locus of Bartonella species. The trw genes of Bartonella species are collinear with the respective genes of plasmid R388,

except for the multiple tandem gene duplications of trwL and trwJ-I-H, which are present in variable copy numbers in the different species. The copy number of

amplified genes or segments of the trw locus of five Bartonella species is indicated within the boxes. The copy number trwJ and trwL displays a large degree of

sequence variation.

FIGURE 4 | Multiple amino acid sequence alignments of TrwL of Bartonella species. Multiple amino acid sequences of TrwL from different Bartonella species of B.
birtlesii (BbL1 to BbL5), B. grahamii (BgL1 to BbL7), B. henselae (BhL1 to BhL8), B. quintana (BqL1 to BhL8), B. tribocorum (BqL1 to BhL7), and R388 TrwL (R388L)
were aligned by Clustal Omega. Conserved amino acids are shaded and each shade represented a degree of conservation (Blue, 100%). The major outer membrane

proteins were calculated by TMHMM 2.0. All the sequences were taken from the NCBI GenBank. OM, Outer membrane proteins.

in the B. tribocorum-rat infection model (Seubert et al., 2002).
The unusual structure and physiology of erythrocytes could
allow Bartonella to escape antigen presentation and immune
surveillance. We have little knowledge about how Bartonella
enter host erythrocytes, but some factors have been shown to be
essential for this step.

The First Factor Is IalB
As described above, IalA/B was identified by STM screens in the
B.birtlesii-mouse and B. tribocorum-rat models in vivo and by an
in vitromodel for erythrocyte adhesion and invasion.

IalB which is a 19.9 kDa protein with putative signal peptides
(Figure 6), shares high homology with the Yersinia enterocolitica
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FIGURE 5 | Molecular docking between B. birtlesii TrwJ1, TrwJ2, and TrwL. Three-dimensional models of B. birtlesii TrwJ1, TrwJ2, and the outer membrane parts of

TrwL were modeled by the I-TASSER server based on the amino acid sequences (Yang et al., 2015). The best identified structural analogs of both TrwJ1 (C-score of

−1.27 and TM-score of 0.74) and TrwJ2 (C-score of −1.45 and TM-score of 0.69) in protein data bank (PDB) are 1R8I, and the outer membrane parts of TrwL

(C-score of −3.17 and TM-score of 0.70) in PDB is 4TQL. Molecular docking between B. birtlesii TrwJ1, TrwJ2 and the outer membrane parts of TrwL was analyzed

using the ClusPro 2.0 server and visualized by the PyMOL program (Kozakov et al., 2017). The front and vertical view of the docked conformations were shown as B.
birtlesii TrwJ1 (green cartoon with semitransparent surface), TrwJ2 (blue cartoon with semitransparent surface), and the outer membrane parts of TrwL (yellow cartoon

with semitransparent surface).

protein Ail, that plays a major role in cell invasion (Kirjavainen
et al., 2008; Deng et al., 2016). Early work demonstrated that
E. coli could invade erythrocytes when it was transformed
with B. bacilliformis ialB, and deletion of ialB decreased the
erythrocyte infection of B.birtlesii and B.tribocorum in vivo
(Mitchell and Minnick, 1995; Saenz et al., 2007; Vayssier-Taussat
et al., 2010). Moreover, the B. birtlesii IalB mutant caused a 10-
fold decrease in erythrocyte invasion, but it has no significant
effect on erythrocyte adhesion in vitro (Vayssier-Taussat et al.,
2010). The B. bacilliformismutant can be restored to erythrocyte
invasiveness when trans-complemented with wild-type IalB locus
(Coleman andMinnick, 2001). Our recent study showed that IalB
was immunogenic and anti-IalB antibodies could inhibit mouse
erythrocyte invasion by B. birtlesii (Deng et al., 2016).

There was confusion about the location of IalB in Bartonella.
B. bacilliformis IalB was an inner membrane protein, while B.
henselae IalB was an outer membrane protein (Mitchell and
Minnick, 1995; Coleman and Minnick, 2001; Chenoweth et al.,
2004). In our recent study, a small quantity of IalB was detected
on B. birtlesii surface, while most of IalB was expressed in
Bartonella lysate supernatants of different species (Deng et al.,

2016). So, we hypothesized that most of the B. birtlesii IalB

might be secreted proteins that mediated erythrocyte invasion by

unknown mechanisms.

The Second Factor Is Deformin
B. bacilliformis could cause production of trenches, pits,
conical invaginations, and internal vacuoles in the erythrocyte

membrane (Benson et al., 1986; Xu et al., 1995). This
phenomenon is mediated by deformin, which has been found
in the culture supernatants of B. henselae and B. bacilliformis,
suggesting that this mechanism might be present in several
Bartonella species (Iwaki-Egawa and Ihler, 1997).

There was confusion about the identity of deformin in
Bartonella. Early work demonstrated that deformin was a
protease- and heat- resistant, water-soluble, and albumin
binding molecule with a molecular weight of ∼1.4 kDa
(Derrick and Ihler, 2001). More recent work has indicated
that deformin is several proteins present in the supernatant
of B. bacilliformis with a molecular weight of ∼36 kDa
(Hendrix and Kiss, 2003). The 36 kDa proteins appear to
either necessary for deformin secretion or directly deforming
human erythrocytes. The nature of deformin and the molecular
mechanisms of erythrocyte deformation require further
studies.

The Third Factor Is Hemolysin
Two types of Bartonellla hemolytic factors have been found
including a contact-dependent hemolysin of B. bacilliformis and
an autotransporter cohemolysin of B. henselae (Hendrix, 2000;
Litwin and Johnson, 2005). B. bacilliformis contact-dependent
hemolysin is maximally expressed during exponential growth
phase, and might be used to escape from the vacuoles or
erythrocytes during intracellular parasitism (Hendrix, 2000;
Litwin and Johnson, 2005). B. henselae cohemolysin which is a
180 kDa autotransporter protein, has homologs in B. quintana
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FIGURE 6 | Three-dimensional structure model of B. birtlesii IalB. Three-dimensional structure model of B. birtlesii IalB was built using the I-TASSER server based on

the amino acid sequence (Yang et al., 2015). The front and vertical view of the crystal structure of IalB (C-score of −1.15 and TM-score of 0.77) was shown as the

cartoon model with semitransparent surface. The best identified structural analogs in PDB is 3DTD. The structure that contained 1 signal peptide domain (blue bands),

2 α-helices (green bands), 11 β-strands (yellow bands), and 14 coils (red bands) in the secondary structure constituted a stable region.

and causes lysis of erythrocytes (Litwin and Johnson, 2005;
Minnick and Battisti, 2009).

STEP 4: ERYTHROCYTE REPLICATION
AND PERSISTENCE

Bartonella spp. attach, invade and replicate within a vacuole
of erythrocytes in the B. tribocorum-rat infection model. After
several days, bacterial replication stops until an approximately
eight daughter cells are reproduced. There are some subtle
changes in the physiology of erythrocytes during erythrocyte
invasion and replication. B. tribocorum-infected erythrocytes
are removed more rapidly than uninfected erythrocytes from
circulation. However, once the number of intraerythrocytic
Bartonella reaches static levels, the distinguishable changes and
the rapid clearance rates will disappear (Schülein et al., 2001).
Within an erythrocyte, Bartonella must not only get nutrients,
but also cope with stressors.

The First Strategy Is Nutrient Uptake
Bartonella species use two gene families of heme binding proteins
(Hbps) and the heme utilization locus (Hut) to sequester heme
(Carroll et al., 2000; Minnick et al., 2003; Zimmermann et al.,
2003; Parrow et al., 2009). Hbps are required for intraerythrocytic
bacteraemia and have been identified by STM screens in the
B. birtlesii-mouse and B. tribocorum-rat models in vivo (Saenz
et al., 2007; Vayssier-Taussat et al., 2010). B. quintana HbpA is
a 29.3 kDa protein and part of a hbpA-E gene family (Carroll
et al., 2000). Compared with parental strains, an HbpA mutant
of B. quintana showed an enhanced heme binding phenotype
(Minnick et al., 2003). It was also reported that anti-HbpA
antibodies could inhibit the hemin binding in a dose-dependent
manner (Carroll et al., 2000).

LivF and LivG, which are highly conserved among the
Bartonella species, are required for intraerythrocytic bacteraemia
and have been identified by STM screens in the B. birtlesii-
mouse and B. tribocorum-rat models in vivo. Moreover, the
B. birtlesii LivG mutant provoked a dramatic decrease in
bacterial entry into erythrocytes in vitro (Vayssier-Taussat
et al., 2010). LivF and LivG which are ATPase components
of ABC transporters are required for amino acid nutrient
uptake during Bartonella inside erythrocytes (Saenz et al.,
2007).

The Second Strategy Is Against Stressors
In order to adapt to the intraerythrocytic environment,
Bartonella must cope with a variety of stressors, including
reactive oxygen species, fluctuations in osmolarity, changes in
pH, and misfolded proteins.

IalA which is a 20.1 kDa protein, has homologs in other
invasive bacteria and has been demonstrated as a (de)nucleoside
polyphosphate hydrolase of the MutT motif family (Mitchell
and Minnick, 1995, 1997; Cartwright et al., 1999; Conyers
and Bessman, 1999). IalA hydrolysates including ATP and
inorganic phosphate could he recycled. IalA and its homologs
are believed to regulate the level of stress-induced nucleotides
and their derivatives during invasion. The carboxy-terminal
protease (CtpA), which is encoded upstream of the ialA gene,
could degrade misfolded or aberrant proteins from stress or
anomalous processing (Mitchell and Minnick, 1997; Cartwright
et al., 1999).

It has been reported that BatR/BatS which is an important
two-component regulator/sensor is probably used by Bartonella
to regulate the expression of some pathogenic genes such as the
T4SS, BadA, and Hbps, and respond to environmental cues in the
mammalian circulatory system (Quebatte et al., 2010; Harms and
Dehio, 2012).
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None of the molecular factors of mechanisms allowing
for Bartonella spp. replication and persistence in the infected
erythrocytes have been identified to date.

CONCLUSION

Bartonella species are intraerythrocytic pathogens. They are
mainly transmitted by animal contact and arthropods. For
example, B. henselae is transmitted between cats by cat fleas
(Ctenocephalides felis) and transmitted from cats to humans by
cat scratches or bites (Chomel et al., 1996). In order to prevent
the spread of the disease, it is important for scientists to explore
the mechanisms of Bartonella infection.

Despite significant amounts of effort and advances to
understand the molecular mechanisms of how Bartonella infects
host erythrocytes, many uncertain aspects need further studies.
The functions of the above-mentioned strategies and virulence
determinants are still not fully elucidated and many other
virulence factors have yet to be found. Moreover, the gene
expression, regulation, and signal transduction pathways of those
factors are still elusive.We also know little about the physiological
changes and recognition receptors of erythrocytes during their
infection.

In summary, with so many exciting and important questions
yet to be answered, future studies would not only better clarify the

functions of the factors, but also increase our understanding of

the network between the factors and erythrocytes at a molecular
level.
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