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Understanding the mechanisms that maintain high species 
diversity in plant communities such as tropical forests has 
long challenged ecologists1 and has stimulated major efforts 

in field and theoretical ecology2–5. However, despite a multitude 
of coexistence mechanisms that have been proposed6 and recent 
advances in coexistence theories7–18, this fundamental question has 
not been fully resolved8,9,14. For example, theoretical models indicate 
that stable coexistence is difficult to reach in large communities11,13. 
We argue that consideration of spatial patterns of plant individuals, 
such as intraspecific clustering and interspecific segregation, may 
allow for a better understanding of mechanisms of coexistence in 
species-rich communities17.

Although many studies suggest that spatial patterns and neigh-
bourhood effects may play an important role in diversity mainte-
nance17–21, the integration of spatial patterns into coexistence theories 
of species-rich communities is difficult. A major difficulty is link-
ing spatial processes at the individual level to community dynam-
ics. One reason for this is a scale mismatch. The analytical models 
that form the basis of most coexistence theories7,8,11–16,22 have state 
variables that operate at the macroscale (that is, the population or 
community-level abundances), use parameters that describe average 
‘mesoscale’ properties of the individuals (such as population-level 
interaction coefficients and demographic rates) and often rely on 
‘mean-field’ approximations18,23 where spatial patterns are neglected. 

However, spatial patterns and population-level interaction coeffi-
cients emerge at the mesoscale from the microscale behaviour of 
individuals and their interactions with other individuals and the 
environment. Therefore, studying the impact of spatial patterns on 
species coexistence requires multiscale approaches such as spatial 
moment equations18,23,24 that incorporate pattern-forming processes 
operating at the level of individuals and translate these into popula-
tion and community dynamics.

We propose here such a multiscale approach. To this end, 
we first derive population-level interaction coefficients αfi from 
individual-level interaction coefficients βfi and neighbourhood 
crowding indices19,21 that are commonly used to describe interac-
tions among tree individuals at the microscale, and then incorporate 
the emerging coefficients αfi into analytical macroscale models. Our 
approach is based on separation of timescales (adiabatic approxima-
tion25), given that mesoscale spatial patterns usually build up quickly 
and approach a quasi-steady state whereas the macroscale state vari-
ables (for example, abundances) change slowly23. Therefore, we do 
not need to describe the dynamics of the quick mesoscale patterns 
explicitly (as, for example, is done in approaches based on moment 
equations18,23,24) but concentrate instead on spatial patterns that 
transport the critical information from the microscale into mac-
roscale models. This approach requires information on mesoscale 
spatial patterns that can be obtained from fully mapped forest plots 
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such as those of the Forest Global Earth Observatory (ForestGEO) 
network4.

More specifically, we (1) derive species-level interaction coeffi-
cients from individual-level interactions using empirical informa-
tion on spatial patterns in nine ForestGEO megaplots4, (2) integrate 
the resulting species-level interaction coefficients into analytical 
macroscale multispecies models and (3) study their consequences 
for multispecies dynamics and coexistence.

Results and discussion
Species-level interaction coefficients. We first derive species-level 
interaction coefficients from individual-level neighbourhood 
crowding indices19,21,26 that quantify how the performance of a focal 
individual depends on interactions with its neighbours. To this end, 
we describe the survival rate of a focal individual k of species f in 
dependence on the local number of neighbours as

skf = sf exp
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where sf is a density-independent background survival rate of spe-
cies f; the crowding indices nkff, nkfi and nkfh are the number of con-
specifics, neighbours of species i and heterospecific neighbours 
within distance R of a focal individual k, respectively; the subscript 
‘h’ indicates all heterospecifics together (that is, nkfh = ∑i≠f nkfi) and 
the crowding index nkfβ weights each heterospecific neighbour by 
its relative competition strength βfi/βff (equation (1a)), with βfi being 
the individual-level interaction coefficients between species f and 
i (Fig. 1a–c). The corresponding population-level survival rate is 
given by

survf = sf exp
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where Ni(t) is the abundance of species i at time step t and αfi is the 
population-level interaction coefficient between species f and i. To 
estimate survf we average the survival rates skf (equation (1a)) of all 
individuals k of species f:

survf =
1

Nf (t)

Nf(t)
∑

k=1
skf = sf

∫

x

∫

y

exp
(

−βff (x+ y)
)

pxpydxdy (2)

where px and py are the distributions of the crowding indices x = nkff 
and y = nkfβ for individuals of species f, respectively.

To determine the distributions px and py, we analysed forest inven-
tory data from nine 20–50 ha forest dynamics plots (Supplementary 
Table 1) in the ForestGEO network4. We used phylogenetic similar-
ity between tree species as a surrogate for the relative competition 
strength βfi/βff because it is available for the species in the nine plots 
(Methods). This is an established approach in species-rich commu-
nities19,26,27 to approximate niche differences in the absence of other 
data.

The number of con- and heterospecific neighbours and the het-
erospecific interaction index nkfβ vary widely among conspecifics 
and can be described by gamma distributions (Fig. 1 and Extended 
Data Figs. 1 and 2). Detailed analysis of the empirical crowding 
indices reveals additional relationships that are relevant for our sub-
sequent analysis. First, we find that the crowding indices nkff and nkfβ 
are not, or are only weakly, correlated for a given species f (Extended 
Data Fig. 3a). Second, we find for trees of a given species f high cor-
relations between the two crowding indices nkfh and nkfβ (Extended 

Data Fig. 3b) with a common factor Bf (that is, nkfβ ≈ Bfnkfh). This 
result suggests operation of diffuse neighbourhood competition, in 
which the competition strength of heterospecifics is on average a 
factor Bf lower than that of conspecifics.

The integral of equation (2) can be solved analytically for inde-
pendent gamma distributions px and py and yields

survf = sf exp
(

−βff

(

γffn̄ff + γfβn̄fβ
))

(3)

where n̄ff  and n̄fβ are the average values of the crowding indices nkff 
and nkfβ, respectively, and γff and γfβ contain the variance-to-mean 
ratios of the gamma distributions px and py, respectively, but in our 
case have values close to one (Methods).

The last step in deriving pairwise population-level interaction 
coefficients is to relate the averages of the different crowding indices 
to the macroscale population abundances Nf(t). We accomplish this 
by taking advantage of connections between crowding indices and 
the summary functions of spatial point process theory21. The mean 
of the crowding index nkff (that is, the mean number of further con-
specific neighbours within distance R) is proportional to Ripley’s K, 
a well-known quantity in point process theory28,29:

n̄ff = Kff (R)Nf(t)/A (4a)

where Kff(R) is the univariate K function for species f and A is the 
area of the observation window. The K function describes the spatial 
pattern of conspecifics within a neighbourhood distance R, indicat-
ing clustering if Kff(R) > πR2, a random pattern if Kff(R) = πR2 and 
regularity if Kff(R) < πR2. In the following, we use the normalized 
K function kff (R) = Kff (R) /πR2 to quantify the spatial neighbour-
hood patterns, and therefore n̄ff = kff (R) πR

2

A Nf(t).
Analogously, the mean number of heterospecific neighbours is 

given by

n̄fh = kfh (R)
πR2

A
∑

i ̸=f
Ni(t), (4b)

where the bivariate normalized K function kfh(R) indicates segrega-
tion to heterospecifics (subscript ‘h’) within distance R if kfh(R) < 1. 
Independent placement occurs if kfh(R) = 1, and attraction if 
kfh(R) > 1.

Motivated by the finding nkfß ≈ Bf nkfh (Extended Data Fig. 3b) we 
rewrite the mean crowding index n̄fβ as

n̄fβ = Bf
︸︷︷︸

n̄fβ
n̄fh

n̄fh, (5)

where the point process summary function Bf indicates how much 
the competition strength of one heterospecific neighbour differs on 
average from that of one conspecific neighbour. The values of Bf 
depend mainly on the individual-level interaction coefficients βfi 
but also on the spatial pattern of the different species and their rela-
tive abundances (equation (12)).

Inserting the expressions for n̄ff  and n̄fβ into equation (3) and 
comparing with equation (1b) leads to our first main result, the ana-
lytical expressions of the population-level interaction coefficients:

αff = c γff kffβff intraspecific interactions of species f (6a)

αfi = cγfβkfhβffBf interspecific interactionswith species i (6b)

with scaling constant c = πR2/A. Notably, equation (6b) indicates 
that the emerging population-level interaction coefficients αfi are 
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the same for all heterospecifics (that is, αfi = αfh for i ≠ f). Thus, even 
if the individual-level interactions coefficients βfi differ among spe-
cies pairs, the emerging population-level interaction coefficients 
αfi have a substantially simpler structure. This phenomenon is an 
example of simplicity emerging from complex species interactions30 
and is likely to occur only in species-rich communities9,12,31.

The population-level interaction coefficients αfi depend on 
several factors that can influence the macroscale balance between 
intra- and interspecific competition: (1) intraspecific clustering kff 
and interspecific segregation kfh (Fig. 2a,b), (2) the relative com-
petition strength Bf of one heterospecific neighbour (Fig. 2c) and 
(3) the shape of the response of survival to crowding (γff and γfβ, 
which contain the variance-to-mean ratios of the distribution of 
the crowding indices). Note that absence of spatial patterns (that is, 
kff = 1 and kfh = 1) and a linear approximation of equation (3) lead 
to γff = γfβ = 1 and direct proportionality αfi = cβfi of the individual- 
and population-level interaction coefficients, as assumed by Lotka–
Volterra models.

The information on spatial patterns extracted from the inven-
tory data of our nine forests allows us to estimate the relative 
population-level interaction coefficients αfi/αff for all pairs of spe-
cies i and f (Fig. 3 and Extended Data Fig. 4). For example, at 
BCI, the values of αfi/αff differ substantially from the correspond-
ing individual-level coefficients βfi/βff (Fig. 3a,c), and for 83% of 
all species pairs, we find αfi/αff < βfi/βff. Thus, the mesoscale spatial 
patterns can reduce, at the population level, the strength of hetero-
specific interactions relative to conspecific interactions by ‘diluting’ 
encounters with heterospecific neighbours relative to conspecific 

neighbours. Spatial patterns therefore have a strong potential to 
alter the outcome of deterministic individual-level interactions.

Conditions for coexistence in the multiscale model. To study 
the consequences of the emerging spatial patterns for community 
dynamics and coexistence we insert the population-level interaction 
coefficients αfi (equation (6)) into a simple macroscale model

Nf(t+Δt)−Nf(t)
Δt = Nf (t)

[

(

rf − 1
)

+ sf exp
(

−αffNf (t)− αfh
∑

i ̸=f
Ni(t)

)] (7)

In this model we assume that survival is governed by neighbour-
hood competition with αfi = αfh, and the number of recruits of spe-
cies f during a time step Δt is given by rfNf(t), where rf is the per 
capita reproduction rate of species f.

The carrying capacity of species f (that is, the equilib-
rium of equation (7) with Ni(t) = 0 for all i ≠ f) is given by 

Kf = − ln
(

1−rf
sf

)

αff
−1. Note that our theory also applies, after 

redefinition of the carrying capacity, to alternative macroscale 
models (Supplementary Table 3). From equation (7) we find 
Kf = N∗

f +
αfh
αff

∑

i̸=f
N∗

i = N∗
f

(

1− αfh
αff

)

+
αfh
αff
J∗, where N∗

f  is the 

abundance of species f in equilibrium and J* the equilibrium com-
munity size (that is, J∗ =

∑

i N
∗
i ; see also equation (14)). This leads, 

under the assumption that the population-level interaction coeffi-

nkff

F
re

qu
en

cy

0

50

100

150

200

250

300

nkfh

0

50

100

150

200

nkfβ

Conspecifics

0 5 10 15 20

Heterospecifics

0 10 20 30 40 50 60 70 0 10 20 30 40

Interactions

0

20

40

60

80

100

120

140

160

Conspecific neighbours Heterospecific neighbours
Heterospecific neighbours

weighted by βfi /βfi

a b c

d e f

k

Fig. 1 | Neighbourhood crowding indices describe individual-level interactions and their intraspecific variability. a, The conspecific crowding index nkff is 
the number of conspecific neighbours (filled red circles) within distance R (black circle) of the focal individual k (filled red square). b, The heterospecific 
crowding index nkfh is the number of heterospecific neighbours (filled grey circles) within distance R of the focal individual k. c, The heterospecific 
interaction crowding index nkfβ additionally weights heterospecifics by their relative competitive effect βfi/βff, symbolized by the arrows. Different colours 
indicate different species. d, Distribution of the number nkff of conspecific neighbours with diameter at breast height (dbh) ≥ 10 cm of the species 
Castanopsis cuspidata of the 25 ha Fushan plot. e, Corresponding distribution of heterospecific neighbours nkfh. f, Corresponding distribution of the crowding 
index nkfβ. In d–f, blue lines show gamma distributions with the same means and variance-to-mean ratios as the observed distributions, and the vertical 
black line indicates the mean value. See Supplementary Data Table 1 for additional examples.

Nature EcOlOgy & EvOlutiOn | VOL 5 | July 2021 | 965–973 | www.nature.com/natecolevol 967

http://www.nature.com/natecolevol


Articles NAturE EcoLogy & EvoLution

cients αfh are constant (Supplementary text), to a single equilibrium 
of the macroscale model for species f

N∗
f =

− ln
(

1−rf
sf

)

︷︸︸︷

αffKf −αfhJ∗

αff − αfh
(8)

that is positive if denominator and numerator are both positive 
or both negative. However, the invasion criterion (equation (18)) 
is only fulfilled if both are positive. In this case, equation (8) sug-
gests two different ways a species can go extinct. First, the denomi-
nator indicates that a species with strong clustering kff will show a 
small equilibrium abundance since in this case αff ≫ αfh (equation 
(6)). Large values of kff can be expected for species of low abun-
dance under dispersal limitation, where recruitment happens close 
to conspecific adults.

Second, the numerator of equation (8) indicates a positive abun-
dance of species f if αffKf > αfhJ* and αfh/αff < 1. Therefore, we intro-
duce a new feasibility index

μf =
αfhJ∗

αffKf
(9)

that indicates a positive abundance if µf < 1 given that heterospe-
cific interactions at the population level are weaker than conspecific 
interactions (that is, αfh/αff < 1). The invasion criterion7,8 that tests 
whether a species with low abundance can invade the equilibrium 
community of all other species turned out to be basically the same 
as the feasibility condition (equation (9)) if the invading species 
does not show strong clustering (Methods and equation (18)). Note 
that we did not assume Allee effects8.

Further analysis that considers the dependency of J* on the val-
ues of Kf and αfh/αff shows that the values of µf must be similar for 
all species f to fulfil the condition µf < 1, and that µf can show larger 
interspecific variability if the species richness S is smaller and/or if 

the mean of αfh
αff

(

1− αfh
αff

)−1
 is smaller (equations (14) and (15)). 

The feasibility index µf therefore governs species assembly by deter-
mining the subset of species of a larger species pool that can per-
sist13, but any addition of a new species changes µf and may lead to 
reassembly of the community.

Using the observed abundances in the forest plots (and assum-
ing equilibrium) allows us to test our theory. We can estimate from 
the observed abundances the carrying capacities Kf and therefore 
also the indices µf for all focal species of our nine plots (Fig. 4). For 

282 of our 289 focal species, we found µf < 1 and αfh/αff < 1, which 
means that the two conditions for stable coexistence are indeed sat-
isfied for nearly all species. However, this is not a given, as shown 
by the seven species from BCI with µf > 1 and αfh/αff > 1. Thus, our 
theory is compatible with the observed coexistence of most species 
at our nine forest plots if the assumption of approximately constant 
population-level interaction coefficients holds.

In addition, we get information on the typical values of µf and 
αfh/αff that allows for insight into the stability of the communities. In 
agreement with the predictions of our theory, we find that µf tends to 
be smaller if αfh/αff is smaller (Fig. 4c). Furthermore, the values of µf 
were, for most species, larger than the expectation of µf for the cor-
responding communities without interspecific variability in µf (equa-
tion (10a)) but with the same number of species and the same mean 
values of αfh/αff (Fig. 4c), but all of the values were relatively close to 
the critical value of 1 (the median of all 289 species was 0.938; Fig. 4a).

Consequences of spatial patterns for coexistence. Our theory 
predicts that coexistence requires, in the limit of high species rich-
ness, that species approach functional identity with respect to the 
feasibility index µf (Methods). This resembles neutral theory2,32, but 
our theory allows for trade-offs among demographic parameters 
and emerging spatial patterns to reach this equivalence (equation 
(9)). To study the consequences of spatial patterns for coexistence, 
we analysed a symmetric33 version of our model where all species 
have the same parameters and follow the same stochastic rules and 
where all individuals compete identically (leading to Bf = 1). Thus, 
we eliminate any potential coexistence mechanism other than that 
resulting from spatial patterns.

If the mesoscale patterns kff and kfh converge to a stochastic equi-
librium, we find that the feasibility and invasion criteria are always 
fulfilled if αfh/αff < 1 since

μf =
S αfh

αff

1+ αfh
αff

(S− 1)
< 1 (10a)

μi
f =

(S− 1) αfh
αff

1+ αfh
αff

(S− 2)
< 1 (10b)

Equations (10a) and (10b) follow from equations (16) and (18), 
respectively, if αfh/αff is the same for all species f. Thus, the spatial 
patterns that emerge at the mesoscale from the individual-level 
interactions can stabilize if αfh/αff < 1. The underlying mechanism is 
a positive fitness–density covariance34 (Methods).
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To reveal the conditions that can lead to coexistence in a spatially 
explicit context, we use a spatially explicit and individual-based35 
implementation of the symmetric version of the multiscale model 
(equation (7) and Methods). Models of this type are able to produce 
realistic spatial patterns consistent with mapped species distribu-
tions of large forest plots17,35. While our analytical approach in equa-
tion (7) only allows us to make simplified assumptions about the 
spatial component of the recruitment process, the simulation model 
allows us to explore the role of the spatial component of recruitment 
in more detail.

Indeed, the way recruits were placed was critical for coexistence. 
Randomly placed recruits produced unstable dynamics (Extended 
Data Fig. 5a) characterized by regularity (mean of kff = 0.92) and 
segregation (mean of kfh = 0.92), both caused by competition18, and 
the instability was caused by con- and heterospecifics competing 
equally at the population level (that is, αfh/αff ≈ 1) (Extended Data 
Fig. 5d,g). When we followed the common approach of placing 
recruits with a kernel around conspecific adults17,18,35–39 to mimic 
dispersal limitation, we again found unstable dynamics (Extended 
Data Fig. 5b), despite intraspecific clustering and interspecific seg-
regation (that is, αfh/αff < 1; Extended Data Fig. 5n). The reason for 

the instability was high clustering of rare species24,35 (Extended Data 
Fig. 6) that completely negated the potentially positive effects of 
αfh/αff < 1.

In contrast, community dynamics can be stabilized if recruits 
are placed in small clusters but independent of the location of con-
specific adults (Extended Data Fig. 5c). With this mechanism we 
mimic canopy gaps40, animal seed dispersal41 or other mechanisms 
that can generate clustering independent of parent locations, as 
found at BCI42. Decoupling clustering from the parent locations 
does not lead to the negative relationship between clustering and 
abundance, and all measures of spatial patterns converged quickly 
into quasi-equilibrium (Extended Data Fig. 5f,i,o).

The simulation data reveal the spatial coexistence mechanism 
underlying the positive fitness–density covariance34 (Extended Data 
Figs. 7 and 8). We find that the emerging spatial patterns lead to a 
situation where individuals of a common species are more likely to 
be near more neighbours and tend therefore to experience stronger 
competition (Extended Data Fig. 7). While the number of hetero-
specific neighbours remains approximately constant, the number of 
conspecific neighbours decreases with decreasing abundance if clus-
tering does not change with abundance (equation (4a)). However, 
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individuals. For forest plot names, see Supplementary Data Table 1.
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if clustering increases with decreasing abundance, the rare-species 
advantage is weakened and the dynamics become unstable24.

The data of several ForestGEO forest plots were compatible with 
a positive fitness–density covariance (Extended Data Fig. 8f–i) as 
they show that, when a species becomes rare, areas of higher con-
specific crowding tend to have fewer total competitors. Comparison 
of the results of the stable versus unstable simulation showed that 
even relatively weak tendencies in this relationship are sufficient to 
stabilize the dynamics (Extended Data Figs. 8a,b). However, this was 
not the case for three temperate forest plots where the power-law 
clustering–abundance relationship showed exponents of b < −0.5 
(that is, species tended to have high clustering at low abundances), 
but the other plots showed b > −0.5 (Extended Data Fig. 8n–p).

The apparent contradiction with previous theoretical stud-
ies18,24,35,37 where intraspecific clustering and interspecific segre-
gation could not stabilize community dynamics thus arises as a 
consequence of the assumption of placing recruits close to their par-
ents. This finding has important consequences for ecological theory 
because it shows, in contrast to the prevalent view36,43,44, that spatial 
patterns alone can lead to coexistence of multiple species. This is 
even more important since the specific spatial patterns required for 
this coexistence mechanism also exist in real forests.

Conclusions
Understanding the mechanisms that maintain high species diver-
sity in communities such as tropical forests is at the core of eco-
logical theory, but these mechanisms are not yet fully resolved. 
Here, we argue that spatial patterns may play an important role in 
species coexistence of high diversity plant communities17. To test 
this hypothesis, we introduced a multiscale framework that reveals 
how pattern-forming processes operating at the level of individu-
als translate into mesoscale spatial patterns and how those patterns 
influence macroscale community dynamics.

We showed that the population-level interaction coefficients αfi 
can have, for a broad range of common circumstances, a simpler 
structure than the underlying individual-level interaction coef-
ficients βfi. This simplicity, which emerged from spatially explicit 
species interactions30, allowed for an analytical treatment of equi-
librium, feasibility and invasion conditions of the corresponding 
macroscale models (equations (8–10)). Inserting the emerging αfi 
coefficients into macroscale community models (for example, equa-
tion (7); Supplementary Table 3) should, in principle, allow us to 
take advantage of macroscale theory9,11–13,45. However, our results 
also indicate that the population-level interaction coefficients may 
not be temporally constant as commonly assumed but depend on 
spatial patterns that may change with abundance. This is especially 
likely if recruitment is mainly located close to the parents.

It is also possible to expand our framework to take into account 
more detailed neighbourhood crowding indices that consider not only 
the number of neighboured trees of a given species but also their dis-
tance and size19,21,26. This requires redefinition of the quantities kff and 
kfh that describe intraspecific clustering and interspecific segregation, 
respectively, but does not change the overall structure of our equa-
tions. A special strength of our approach is that the population-level 
interaction coefficients contain measures of spatial neighbourhood 
patterns that can be directly estimated from fully mapped forest plots4. 
Together with additional information, this may allow for estimating 
network structures as well as stability of the whole community.

Our analysis revealed that communities of competing species 
can show a stable mode where the mesoscale patterns converge 
quickly into quasi-equilibrium and an unstable mode where nega-
tive relationships between species clustering and abundance emerge 
(Extended Data Figs. 5 and 6). The two modes are governed by 
the way species clustering is generated: the well-known unstable 
mode is related to clustering of recruits around their parents17,18,35–39 
whereas the stable mode is related to clustering in locations that are 

independent from the parent locations, due, for example, to ani-
mal seed dispersal41 or canopy gaps40. This result calls for a closer 
examination of the spatial relationship between the recruits and 
adults. Indeed, independent placement of recruits from conspecific 
large trees may not be unusual. For example, Getzin et al.42 found in 
detailed analyses of the BCI forest that recruits were for most spe-
cies spatially independent of large conspecific trees. For the stable 
mode we could identify conditions for coexistence, and forthcom-
ing work may extend to quantifying the ability of additional mecha-
nisms such as niche differences7,8, habitat associations46, spatial and 
temporal relative nonlinearity7,8 and storage effects7,8 to alleviate the 
destabilizing increase of clustering if species become rare.

This study explicitly incorporates spatial patterns in theoretical 
models of plant communities and combines analytical theory with 
spatial simulations and field data analysis. Our finding that species 
with similar attributes may show stable coexistence has profound 
implications for ecological theory. Furthermore, the multiscale 
framework we propose here opens exciting new avenues to explain 
species coexistence through a spatial lens.

Methods
Study areas. Nine large forest dynamics plots of areas between 20 and 50 ha were 
used in the present study (Supplementary Table 1). The forest plots are part of the 
ForestGEO network4 and are situated in Asia and the Americas at locations ranging 
in latitude from 9.15° N to 45.55° N. Tree species richness among the plots ranges 
from 36 to 468. All free-standing individuals with diameter at breast height (dbh) 
≥1 cm were mapped, size measured and identified. We focused our analysis here on 
individuals with dbh ≥ 10 cm (resulting in a sample size of 131,582 individuals) and 
focal species with more than 50 individuals (resulting in 289 species). The 10 cm 
size threshold excludes most of the saplings and enables comparisons with previous 
spatial analyses20,35,47,48. Shrub species were also excluded.

Some of our analyses require estimation of the ratio βfi/βff that describes 
the relative individual-level competitive effect18 of individuals of species i on an 
individual of the focal species f. We used for this purpose phylogenetic distances49 
based on molecular data, given in Myr, that assume that functional traits are 
phylogenetically conserved19,26,27. In this case, close relatives are predicted to 
compete more strongly or to share more pests than distant relatives26. To obtain 
consistent measures among forest plots, phylogenetic similarities were scaled 
between 0 and 1, with conspecifics set to 1, and a similarity of 0 was assumed for a 
phylogenetic distance of 1,200 Myr, which was somewhat larger than the maximal 
observed distance (1,059 Myr). This was necessary to avoid discounting crowding 
effects from the most distantly related neighbours26.

Observed spatial patterns at species-rich forests. Figure 1 and Supplementary 
Data Table 1 show the intraspecific variation in our three crowding indices nkff, nkfh 
and nkfβ that can be approximated by gamma distributions. To assess how well the 
gamma distribution described the observed distribution, we used an error index 
defined as the sum of the absolute differences of the two cumulative distributions 
divided by the number of bins (spanning the two distributions). The maximal 
value of the error index is one, and a smaller value indicates a better fit.

Equations (6, 8 and 9) relate the measures of the emerging spatial patterns (that 
is, kff, kfh and Bf) to macroscale properties and conditions for species coexistence. 
Even though our multiscale model (equation (7)) is simplified, it allows for a direct 
comparison with the emerging patterns in our nine fully stem-mapped forest plots. 
We estimate the key quantities of equations (8) and (9) directly from the forest 
plot data (Fig. 4), with the exception of the carrying capacities Kf, which were 
indirectly estimated from the observed species abundances (assuming approximate 
equilibrium; equation (8) and Supplementary Data Table 1). This allowed us to 
estimate the feasibility index µf (equation (9)). Because statistical analyses with 
individual-based neighbourhood models19,26 based on neighbourhood crowding 
indices have shown that the performance of trees depends on their neighbours 
for R between 10 and 15 m, we estimate all measures of spatial neighbourhood 
patterns with a neighbourhood radius of R = 10 m. Analyses with R = 15 or R = 20 
gave similar results.

The spatial multispecies model and equilibrium. We use a general macroscale 
model to describe the dynamics of a community of S species:

Nf (t + Δt) − Nf (t)
Δt = Nf (t)





(

rf − 1
)

+ sf exp





−αffNf (t) −
∑

i ̸=f
αfiNi(t)









(11)

where rf is the mean number of recruits per adult of species f within time step Δt, 
sf is a density-independent background survival rate of species f and the αfi are the 
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population-level interaction coefficients, yielding αff = c γff kff βff and αfi = c γfβ kfh βff Bf 
(equation (6)). The βfi are the assumed individual-level interaction coefficients 
between individuals of species i and f; kff = Kff(R) / π R2 and kfh = Kfh(R) / π R2 measure 
intraspecific clustering and interspecific segregation, respectively, with Kff(R) 
being the univariate K function for species f and Kfh(R) the bivariate K function 
describing the pattern of all heterospecifics ‘h’ around individuals of species f. A is 
the area of the observation window.

Following equation (5), Bf can be estimated as

Bf =
n̄fβ
n̄fh

=

∑

i ̸=f
[

ckfiNi (t)
] βfi

βff
∑

i ̸=f
[

ckfiNi (t)
] =

∑

i ̸=f kfiNi (t)
βfi
βff

kfh
∑

i ̸=f Ni (t)
, (12)

and is the weighted average of the relative individual-level interaction coefficients 
βfi/βff between species i and the focal species f, weighted by the mean number of 
individuals of species i in the neighbourhoods of the individuals of the focal species 
(that is, c kfi Ni(t)). For competitive interactions, Bf ranges between zero and one; 
Bf = 1 indicates that heterospecific and conspecific neighbours compete equally, and 
smaller values of Bf indicate reduced competition with heterospecific neighbours. 
The denominator can be rewritten in terms of segregation kfh to all heterospecifics 
and the total number of heterospecifics ∑i≠f Ni(t).

The analytical expression of the equilibrium (equation (8)) relies on the 
assumption that the values of Bf are approximately constant in time. This 
assumption may not apply in our model during the initial burn-in phase of the 
simulations if the βfi/βff show large intraspecific variability (Supplementary Text 
and Figs. 1–5). The underlying mechanism is the central niche effect introduced 
by Stump45 where a species has reduced average fitness if it has high niche overlap 
with competitors.

Finally, the factors γff = ln(1 + bff βff) (bff βff)−1 and γfβ = ln(1+ bfβ βff) (bfβ βff)−1 
describe the influence of the variance-to-mean ratios bff and bfβ of the gamma 
distribution of the crowding indices nkff and nkfβ, respectively. For high survival 
rates during one time step (for example, >85%), the values of γff and γfβ are close to 
one; in this case the exponential function in equation (1a) can be approximated by 
its linear expansion and γff = γfβ = 1.

In equilibrium we have (Nf(t + Δt) ‒ Nf(t))/Δt = 0, which leads, with equation 
(7), to:

N∗

f =

(

Kf −
αfh

αff
J∗
)(

1 −

αfh

αff

)

−1
(13)

with Kf = −ln
(

1−rf
sf

)

(

αff
)

−1 and the total number of individuals being 

J∗ =
∑

i N
∗

i . Rewriting equation (13) yields Kf
J∗ =

(

N∗f
J∗

)

(

1 −

αfh
αff

)

+
αfh
αff

. For 

αfh/αff < 1 we therefore find Kf < J*, which indicates that a multispecies forest would 
host more individuals than a monoculture. To estimate J* we sum equation (13) 
over all species i and find J∗ =

∑

i

Ki
1−αih/αii

− J∗
∑

i

αih/αii
1−αih/αii

. Therefore, we obtain

J∗ =

S
∑

i=1

Ki

1 − αih/αii

(

1 +

S
∑

i=1

αih/αii

1 − αih/αii

)

−1

=
SmK

1 + Smα
(14)

with mK = 1
S
∑

i

Ki
1−αih/αii

 and mα = 1
S
∑

i

αih/αii
1−αih/αii

 being averages over the S species 
of the community.

All species have positive abundances at equilibrium if the two conditions 
µf = αfhJ*/αffKf < 1 and αfh/αff < 1 are met (see equation (9)). We now show that the 
chance that these conditions are satisfied for all species is larger if the values of µf 
show little intraspecific variability. To understand this, we assume that the µf can be 
approximated by their mean μ̄. In this case J∗/μ̄ is also approximately constant and 
we can replace Ki in equation (14) by (J∗/μ̄)(αih/αii)

−1 and obtain

J∗ =

S
∑

i=1

(

J∗
μ̄

)

αih
αii

1 −

αih
αii

(

1 +

S
∑

i=1

αih
αii

1 −

αih
αii

)

−1

=
J∗

μ̄
Smα

1 + Smα
(15)

where S is the number of species in the community, and therefore

μ̄ =
Smα

1 + Smα
< 1 (16)

Thus, in the case of a perfect interspecific balance in µf we always have a 
feasible equilibrium if αfh/αfh < 1, and species can go extinct only if the intraspecific 
variability in µf becomes too large. The smaller the mean value of µf, the more 
variability in µf is allowed. Equation (16) shows that μ̄ is smaller if the number S of 
species in the community is smaller and/or if the mean value of mα is smaller.

Equation (16) also suggests that communities with more species need to show 
stronger species equivalence in µf because the term S mα(1 + S mα)−1 approaches 
a value of one for a large number of species S. This finding mirrors the results of 
analyses of Lotka–Volterra models with random interaction matrices11 that showed 
that the larger the number of species S, the more difficult it becomes to generate a 
feasible community.

Invasion criterion. Using the population-level interaction coefficients (equation 
(6)) in the macroscale model, we now derive conditions for coexistence based on 
the invasion criterion7,8 for a species m. The growth rate of an invading species m 
with low density M(t) into the equilibrium community of all other S – 1 species 
Ni(t) should be positive; thus, with equation (7), we have

(rm − 1) + sm exp
(

−αmmM (t) − αmh

S−1
∑

i=1
N∗

i

)

> 0. (17)

Considering that J∗m =
∑S−1

i=1 N∗

i  and αmmM(t) ≪ αfhJ∗m (that is, the invading 
species m is at low abundance and does not show strong clustering) we find 
− ln

(

1−rm
sm

)

> αmhJ∗m, and by dividing by αmm we obtain the invasion condition

μi
m =

αmhJ∗m
αmmKm

< 1 (18)

which is basically identical to the condition for feasibility (equation (9)), but 
here the community size J∗m of the reduced community appears instead of the 
equilibrium community size J* of all species, including species m. Thus, a new 
species m is more likely to invade if it has a high value of the carrying capacity Km 
and if it more strongly reduces heterospecific interactions relative to conspecific 
interaction (that is, αmh/αmm is smaller). However, if the species is too efficient (that 
is, has too large a capacity Km and/or too low an αmh/αmm) it may increase the value 
of J* too much (equation (14)), thereby causing the extinction of the weakest species 
with the highest values of µf (that is, a too-low value of Km and a too-high value of 
αfh/αff). Equation (18) also suggest that an equilibrium with µf > 1 and αmh/αmm > 1 
will be unstable.

Fitness–density covariance. To place our new spatial coexistence mechanism in 
the context of existing coexistence theory, we apply scale transition theory34 to our 
model version where spatial effects are the only potential coexistence mechanism 
(that is, all species have the same parameters and all individuals compete equally; 
βfi/βff = 1, Bf = 1).

Following equation (1a), the expected fitness of an individual k of a focal 
species f (that is, its expected contribution to the population after some defined 
interval of time Δt) in the macroscale model (equation (7)) is

λkf = rf + sff (Wk) = rf + sf exp





−βff



nkff +
∑

i ̸=f
nkfi







 (19)

where Wk = nkff + ∑i≠fnkfi is the fitness factor of individual k, f(Wk) = exp(−βff  Wk) 
is the fitness function and nkff and ∑i≠f nkfi are the number of conspecific and 
heterospecific neighbours, respectively, of individual k within distance R. The 
spatial average of the fitness factor over the entire plot is

W̄k = cNf (t) + c
∑

i̸=f
Ni(t) = cJ(t) (20)

where c = πR2 / A, and J(t) = ∑iNi(t) is the total number of individuals in the plot. 
Given that J(t) converges very quickly into equilibrium J* (Extended Data Fig. 5 and 
Supplementary Figs. 1 and 2), we find for the spatial average fitness λ̄f = 1.

The average individual fitness λ̃f(t) of a focal species f is the average of 
λk,f over all individuals k of species f and can be estimated for the macroscale 
model (equations (6 and 7)) as λ̃f (t) = Nf (t + Δt) /Nf (t). A key ingredient 
of scale transition theory34 is that the fitness–density covariance is given by 
cov = λ̃f (t) − λ̄f . With equation (3) and γff ≈ γfβ ≈ 1 and n̄fβ = n̄fh we find

λ̃f (t) − λ̄f = (rf − 1) + sf exp(−βff(n̄ff + n̄fh)) (21)

where the mean of the crowding indices is given by n̄ff(Nf) = ckff(Nf)Nf  and 
n̄fh(Nf) = ckfh(J∗ − Nf) (equation (4)). Therefore, if clustering kff and segregation 
kfh are independent from abundance Nf, more abundant species have more 
neighbours, since

n̄ff + n̄fh = c(kff − kfh)Nf + ckfhJ∗ (22)

Thus, a positive fitness–density covariance in our model means that individuals 
of a common species are more likely to be near more trees in total.

Extended Data Fig. 7 shows the quantities n̄ff + n̄fh, n̄ff , n̄fh and λ̃f − λ̄f  plotted 
over abundance Nt for data generated by our spatially explicit simulation model for 
the scenarios of stable and unstable dynamics (Extended Data Fig. 5b,c). Indeed, 
the stable simulations show a positive fitness–density covariance, however, there is 
no such trend for the dynamics of the unstable community (Extended Data  
Fig. 7g,h).

Spatial patterns will act as positive fitness–density covariance if, when a 
species becomes rare, areas of high conspecific crowding have fewer competitors. 
We tested this for the data generated by our simulation model and for the nine 
forest plots (Extended Data Fig. 8). We could estimate for each focal species f the 
covariance between the number of conspecific neighbours (that is, nkff) and the 
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total number of neighbours (that is, nkff + nkfh) and demand that the covariance 
should be mostly positive and larger for more abundant species. However, since 
the quantity nkff appears in this test on both sides, a positive covariance can be 
expected. To compensate for this artefact, we instead used the covariance between 
the local dominance of conspecifics in the neighbourhood of individuals k (that is, 
dkff = nkff (nkff + nkfh)−1) and total number of neighbours (that is, nkff + nkfh) (Extended 
Data Fig. 8).

Spatially explicit simulation model. The model is a spatially explicit and 
stochastic implementation of the spatial multispecies model (equation (7)), similar 
to that of May et al.35,37 and Detto and Muller-Landau17, and simulates the dynamics 
of a community of S tree species in a given plot of a homogeneous environment 
(for example, 50 ha) in 5 yr time steps adapted to the ForestGEO census interval 
(Extended Data Fig. 5 and Supplementary Figs. 1 and 2). Only reproductive (adult) 
trees are considered, but size differences between them are not considered. During 
a given time step the model first simulates stochastic recruitment of reproductive 
trees and placement of recruits, and second, stochastic survival of adults that 
depends on the neighbourhood crowding indices for conspecifics (nkff) and 
heterospecifics (nkfβ) (but excluding recruits). In the next time step, the recruits 
count as reproductive adults and are subject to mortality. No immigration from a 
metacommunity is considered. To avoid edge effects, torus geometry is assumed.

The survival probability of an adult k of species f is given by 
sf exp

(

−βff
(

nkff + nkfβ
)

)

 (equation (1a)). The two neighbourhood indices nkff 
and nkfβ describe the competitive neighbourhood of the focal individual k and sum 
up all conspecific and heterospecific neighbours, respectively, within distance R, 
but weight them with the relative individual-level interaction coefficients βfi/βff 
(refs. 19,21,26).

Each individual produces on average rf recruits, and their locations are 
determined by a type of Thomas process28 to obtain clustering. To this end, the 
spatial position of the recruits is determined by two independent mechanisms. 
First, a proportion 1 – pd of recruits is placed stochastically around randomly 
selected conspecific adults by using a two-dimensional kernel function (here a 
Gaussian with variance σ2). This is the most common way to generate species 
clustering in spatially explicit models17,18,35–39. Specifically, we first randomly 
select one parent for each of these recruits among the conspecific adults and 
then determine the position of the recruit by sampling from the kernel. Second, 
the remaining proportion pd of recruits is distributed in the same way around 
randomly placed cluster centres that are located independently of conspecific 
adults. This mode mimics spatial clustering of recruits independent of the parent 
locations42 in a simple way, such as contagious seed dispersal by animals50 or forest 
gaps that may imprint clumped distributions of recruits of pioneer species40. For 
each species we assume a density λfc of randomly distributed cluster centres, which 
have, at each time step, a probability pfp of changing location. For each of these 
recruits, we first randomly select one cluster centre among the cluster centres of the 
corresponding species and then determine the position of the recruit by sampling 
from the kernel. For the simulation shown in Extended Data Fig. 5a, the recruits 
were located at random positions within the plot.

Parameterization of the simulation model. Extended Data Fig. 5 shows 
simulations of the individual-based model conducted in a 200 ha area containing 
approximately 83,000 trees with, initially, 80 species. There was no immigration. 
The model parameters were the same for all species, and all species followed exactly 
the same model rules. We selected βfi = βff to obtain no differences in con- and 
heterospecific interactions and sf = 1 (no background mortality), and we adjusted the 
parameters βff = 0.0075 and rf = 0.1 to yield tree densities (415 ha−1) and an overall 5 
yr mortality rate (10%) similar to those of trees with dbh ≥ 10 cm in the BCI plot51.

The Gaussian kernel used to place recruits around conspecific adults or around 
random cluster centres had a parameter σ = 10 m. There were 40 random cluster 
centres in total for each species that had a probability of pfp = 0.3 of changing 
location within one census interval. The only difference between the simulation 
shown in Extended Data Fig. 5b and the one shown in Extended Data Fig. 5c is 
that in the former, we used a proportion pd = 0.05 of recruits to be placed around 
randomly distributed cluster centres (that is, 95% of the recruits were placed close 
to their parents), but in the latter, we selected pd = 0.95 (that is, 95% of the recruits 
were placed around randomly distributed cluster centres). In our simulations, on 
average, one of these cluster centres received four recruits per time step, which 
were scattered within a radius of approximately 30 m, and received approximately 
13 recruits during its lifetime (at each time step it had a probability of 0.3 of 
changing location). In contrast, in Extended Data Fig. 5a recruits were placed at 
random locations within the plot.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings in this manuscript (and the raw data for  
Figs. 2–4 and Extended Data Figs. 2–4 and 8) can be found in Supplementary 
Data Table 1. To generate this data, we used the raw census data of the ForestGEO 

network that can only be shared on request because most PIs have not made them 
publicly available. For data requests see https://forestgeo.si.edu/sites-all.

Code availability
The source code of the simulation model is provided in the Supplementary 
Information.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Examples for intraspecific variability in the crowding indices. a, b, c, Malus baccata, Baihua plot. d, e, f, Alseis blackiana, BCI plot. 
g, h, i, Tilia amurensis, CBS plot. j, k, l, Machilus chinensis, DHS plot. m, n, o, Toxicodendron succedaneum, GTS plot. p, q, r, Fraxinus americana WAB plot. 
s, t, u, Diospyros hasseltii XSBN Plot. v, w, x, Quercus prinus, SCBI plot. Left: number of conspecific neighbours (nkff), middle: number of heterospecific 
neighbours (nkfh), and right: heterospecifics neighbours weighted by their relative competitive effect βfi/βff (nkfβ). We used a 10 m plant neighbourhood19,26 
and phylogenetic similarity as surrogate for pairwise interaction strength19,26. Solid blue lines show gamma distributions with the same mean and 
variance-to-mean as the observed distributions, and the vertical red lines indicates the mean values. The 95% percentiles for the error indices quantifying 
the departures from a Gamma distribution for all 289 focal species were 0.051, 0.027, and 0.022 for nkff, nkfh, nkfβ, respectively, indicating a reasonable fit.
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Extended Data Fig. 2 | Characteristics of the neighbourhood crowding indices. Distribution of the mean and the variance-to-mean ratio of the crowding 
indices for the different species at each forest plot with boxplots indicating 10th, 25th, 50th, 75th, 90th percentiles and outliers. a. The mean n̄ff  of the 
conspecific neighbourhood crowding index nkff over species. b. The mean n̄fh of the heterospecific neighbourhood crowding index nkfh over species. c. The 
mean n̄fβ of the interaction neighbourhood crowding index nkfβ over species. d. The variance-to-mean ratio bkf of the conspecific neighbourhood crowding 
index nkff over species. e. The variance-to-mean ratio bkh of the heterospecific neighbourhood crowding index nkfh over species. f. The variance-to-mean 
ratio bkβ of the interaction neighbourhood crowding index nkfβ over species. The neighbourhood radius was R = 10 m. We used for the analysis all individuals 
with dbh ≥ 10 cm and included focal species with more than 50 individuals. For plot names see Supplementary Table 1.
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Extended Data Fig. 3 | Correlation between different crowding indices. We estimated for all individuals of a species f the correlation between their 
crowding indices nkff and nkfβ (a) and nkfh and nkfβ (b). The crowding index nkff counts the conspecific neighbours of individual k within distance R = 10 m, 
nkfh counts the corresponding number of heterospecific neighbours, and nkfβ weights each heterospecific neighbour by its relative competition strength 
βfi/βff. The boxplots show the distribution of the Pearson correlation coefficients for each focal species, separately for the nine forest plots, indicating 10th, 
25th, 50th, 75th, 90th percentiles and outliers. We used for the analysis all individuals with dbh ≥ 10 cm and included focal species with more than 50 
individuals. For plot names see Supplementary Table 1.
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Extended Data Fig. 4 | The distribution of the relative population-level interaction coefficients. a, The distribution of the relative population level 
interaction coefficients αfi/αff for the focal species of the tropical forests, resulting from equation 6. b, same as a, but for subtropical forests. c, same as a, 
but for temperate forests. Other conventions as in Fig. 3.
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Extended Data Fig. 5 | Spatial patterns can stabilize community dynamics of symmetric species. Individual-based simulations of a symmetric model 
with initially 80 identical species, simulated on an area of 200 ha without immigration for 5000 time steps (25,000 years). Different colours correspond 
to different species. left, Recruits were randomly distributed, the dynamics is unstable with 2 extinctions. middle, Recruit were mostly scattered around 
conspecific adults, the dynamics is unstable with 7 extinctions. right, recruits were mostly scattered around random cluster centre, the dynamics is stable 
without extinctions. a –c, Species abundances with the bold black line indicating the expected mean abundance J*/80. d–f, Intraspecific pattern kff. g–i, 
Interspecific pattern kfh of heterospecifics with respect to the foal species f. j–l, the mean relative interaction strength Bf of a heterospecific neighbour 
of an individual of species f. m–o, Stabilization, being the population-level heterospecific interaction strength relative to the corresponding conspecific 
interaction strength (that is, αfh/αff). Note the different scale of the y-axes. Spatial patterns were measured at a 10 m neighbourhood.
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Extended Data Fig. 6 | The relationship between clustering and abundance. Shown are detailed results of the simulation of Extended Data Fig. 5b for two 
species that went extinct. a, Dynamics of the relationship between abundance Nf(t) and clustering kff for species 1. b, same for species 3. The solid line 
indicates the power law kff = 10,000/Nf(t).
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Extended Data Fig. 7 | Mechanism underlying the fitness-density covariance in our simulation model. Quantities involved in the estimation of the 
fitness–density covariance (equation 21) for model simulations of the stable scenario (left) and the unstable scenario (right). The data were taken 
from time step 5000 of the simulations shown in Extended Data Fig. 5c (stable dynamics) and of Extended Data Fig. 5b (unstable dynamics). Panels 
show the mean number n̄ff + n̄fh of all neighbours (a, b), of conspecific neighbours n̄ff  (c, d), of heterospecific neighbours n̄fh (e, f), and the resulting 
fitness-density covariance λ̃f − λ̄f  (g, h), of all species plotted over their abundance. The red lines show the expected relationship based on equations (21) 
and (22). We fitted power law relationships kff(Nf) = a Nf

b to the data. For stable dynamics we find kff(Nf) = 8.2, kfh(Nf) = 0.905 and for unstable dynamics 
kff(Nf) = 3723/Nff

0.883 and kfh (Nf) = 0.890.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Rare species advantage and abundance −clustering relationships in model simulations and ForestGEO plots. The covariance 
between the local dominance dkff of species f (that is, dkff = nkff/(nkff + nkfh)) and the total number of neighbours (that is, nkff + nkfh). A positive relationship 
of the covariance with abundance indicates that, when a species becomes rare, areas of higher conspecific crowding have fewer competitors. Shown are 
results of model simulations (a, b) and the nine ForestGEO forest plots (c–k). The p-value is for the null hypothesis that the slope of the linear regression 
(red lines) is not positive. (l–v) The corresponding relationships between clustering kff and abundance Nf. The value of b is the slope of the power law 
kff(Nf) = a Nf

b (red line). We used for the analysis focal species f with more than 50 individual. For plot names see Supplementary Table 1, and for raw data 
and details of the linear regressions see Supplementary Data Table 1.
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