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Abstract. We have developed a large scale enrichment 
procedure to prepare yeast nuclear envelopes (NEs). 
These NEs can be stripped of peripheral proteins to 
produce a heparin-extracted NE (H-NE) fraction 
highly enriched in integral membrane proteins. Extrac- 
tion of H-NEs with detergents revealed previously un- 
characterized ring structures associated with the NE 
that apparently stabilize the grommets of the nuclear 
pore complexes (NPCs). The high yields obtained 
throughout  the fractionation procedure allowed bal- 
ance-sheet tabulation of the subcellular distribution of 
various NE and non-NE proteins. Thus we found that 
20% of endoplasmic reticulum (ER) marker  proteins 

are localized at the NE. Using a novel monospecific 
mAb made against proteins in the H-NE fraction and 
found to be directed against the pore membrane  pro- 
tein POM152, we showed that while the majority of 
POM152 is localized in the NE at the NPC, a propor- 
tion of this protein is also present in the ER. This ER  
pool of POM152 is likely to be involved in the duplica- 
tion of nuclear pores and NPCs during S-phase. Both 
the NEs and H-NEs were found to be competent  for 
the in vitro posttranslational translocation of prepro-  
c~-factor. They may also be suitable to investigate other 
ER- and NE-associated functions in cell-free systems. 

T 
HE nuclear envelope (NE) 1 defines the boundary of 
the nucleus in eukaryotic cells and is composed of 
two distinct membranes enclosing a lumenal (peri- 

nuclear) space. Facing the nucleoplasm is the inner nu- 
clear membrane, which in higher eukaryotes is often lined 
by a filamentous network called the nuclear lamina. To- 
wards the cytoplasm is the outer nuclear membrane which 
is continuous with the ER membranes and is thought to 
perform rough ER functions. The inner and the outer nu- 
clear membranes join to form specialized circular aper- 
tures containing the nuclear pore complexes (NPCs), 
which regulate the exchange of material between the nu- 
cleus and cytoplasm. It is widely assumed that the NE 
plays a role in the control of nuclear architecture both dur- 
ing interphase and at mitosis. More specifically, it has been 
proposed that the NE could contribute in defining the spa- 
tial distribution of specific segments of the genome such as 
the telomeres inside the nucleus, thereby facilitating the 
regulation of DNA transcription and replication. Some en- 
zymatic activities may also be restricted to the NE; for ex- 
ample it is likely that proteins involved in the nucleus-spe- 
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cific phosphoinositide metabolism are localized to the 
inner nuclear membrane. Despite considerable progress in 
the past few years, the molecular details of many impor- 
tant functions of the NE still remain poorly defined (for 
reviews see Hurt et al., 1992; Gilson et al., 1993; Rout and 
Wente, 1994; Moore and Blobel, 1994; Kilmartin, 1994). 

In the yeast Saccharomyces, morphometric studies indi- 
cate that the NE represents roughly 30% of the functional 
rough ER (Preuss et al., 1991). Thus, the isolation of NE 
from yeast would be useful for the study of both NE and 
rough ER functions. Furthermore, yeast present numer- 
ous advantages over higher eukaryotes as a system to 
study these functions. They have neither the complications 
of developmental regulation of nuclear processes, nor of 
nuclear disassembly, having a closed mitosis; in addition, 
the genetics and molecular biology of yeast are better un- 
derstood than in any other eukaryote, and a large program 
is under way to complete the entire yeast genome se- 
quence by the end of the decade (Maddox, 1992). Unfor- 
tunately the cell biological and biochemical characteriza- 
tion of cellular membranes and compartments in budding 
yeast remains incomplete, and would benefit from the de- 
velopment of rigorous cellular fractionation techniques 
comparable to the ones available for higher eukaryotes. 

We describe here a procedure for the preparation of a 
highly enriched NE fraction from the yeast Saccharomy- 
ces. NEs were prepared from yeast nuclei on a large scale 
and in high yield. To understand the relationship between 
peripheral and integral membrane components that define 
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the various functions of the NE, we prepared a highly en- 
riched nuclear membrane fraction by stripping the NE 
fraction with heparin. The fractionation pattern of repre- 
sentative markers throughout the procedure was used to 
tabulate the distribution of various cellular organelles and 
functions within the cell. Heparin-extracted NEs (H-NEs) 
were used to raise a panel of mAbs, one of which is de- 
scribed in this paper. Both the NE and H-NE fractions 
were shown to be functional in an ER protein transloca- 
tion assay and thus retain one of numerous potentially 
testable functions that are associated with the NE in vivo. 
Detergent extraction of H-NEs showed that ring struc- 
tures associated with the NE are likely to be responsible 
for anchoring the NPCs to their grommets and stabilizing 
the pore membrane domain. 

Materials and Methods 

Yeast Subcellular Fractionation: Preparation of 
Enriched Nuclei and Highly Enriched NPCs 
The yeast strain Saccharomyces uvarum (NCYC 74, ATCC 9080; Ameri- 
can Type Culture Collection, Rockville, MD), considered a strain of Sac- 
charomyces cerevisiae (Mortimer and Johnson, 1986), was used through- 
out the procedure. Enriched nuclei were prepared as previously described 
(Rout and Kilmartin, 1990, 1994). Briefly, 70-90 g of mid-log phase cells 
were obtained from a 36 liter yeast culture. Cells were harvested and con- 
verted to spheroplasts in 1.1 M sorbitol (Rout and Kilmartin, 1994). 
Spheroplasts were harvested by centrifugation and then lysed in 300 ml of 
polyvinylpyrrolidone (PVP) solution (8% PVP, 20 mM K-phosphate, pH 
6.5, 0.75 mM MgCl2). The cell lysate (fraction 1) was separated by centrif- 
ugation (15 min at 10,000 g) into crude cytosol (fraction 2) and a crude nu- 
clei pellet (fraction 3). The nuclei were resuspended in 144 ml of 1.7 M su- 
crose in PVP solution and this suspension was divided into 12 equal 
aliquots. Each aliquot was overlayered over a three step sucrose/PVP gra- 
dient (8 ml each of 2.01 M sucrose, 2.10 M sucrose, and 2.30 M sucrose in 
PVP solution) in a SW28 tube (Beckman Instruments, Palo Alto, CA). 
The gradients were centrifuged in a rotor (Beckman SW28 ) at 28,000 rpm 
(103,000 g) for 4 h at 4°C. After centrifugation fractions were collected 
from the top. The load zone, including a thick layer at the top of the tube 
(fraction 4), and a thick yellowish band at the load/2.01 M interface (frac- 
tion 5), both contained intact mitochondria, vesicles and microsomes (as 
judged by EM). Very little material was present in the third gradient frac- 
tion at the 2.01/2.10 M interface (fraction 6). A dense white band at the 
2.10 M/2.30 M interface contained the bulk of the nuclei (fraction 7). The 
bottom of the gradient (fraction 8) included a pellet composed mainly of 
cells remnants. 

Highly enriched NPCs were prepared from nuclei (fraction 7) exactly 
as described in Rout and Blobel (1993). 

Yeast Nuclear Envelope Preparation 
NEs were prepared from the enriched nuclear fraction (fraction 7). The 
OD at 260 nm of the nuclear fraction was measured after 1 in 100 dilution 
in 1.0% SDS; approximately 1,000-2,000 OD260nms were obtained from a 
36 liter preparation. The nuclear fraction was adjusted to a refractive in- 
dex of 1.4340 with PVP solution and centrifuged at 145,000 g for 1 h at 
4°C. The supernatant was carefully but thoroughly removed by aspiration, 
and the tubes placed on ice. Typically, 20 ml of freshly prepared, ice cold 
bt-DMSO (bt buffer [10 mM bisTris-Cl, pH 6.5; 0.1 mM MgC12] contain- 
ing 20% [vol/vol] DMSO) in the presence of 20 Ixg/ml DNase I-EP (Sigma 
Chemical Co., St. Louis, MO) and 1% (vol/vol) solution P (18 mg/ml 
PMSF, 0.3 mg/ml pepstatin A in absolute ethanol), were added to 2,000 
OD260 nm of nuclei. This was followed immediately by vigorous vortexing 
at 4°C until the pellet was completely resuspended. The suspension was 
then incubated at room temperature (~25°C) for 5-10 min. After incuba- 
tion, the lysed nuclei were placed back on ice and 60 ml of 2.1 M sucrose, 
20% Nycodenz (Accudenz; Accurate Chemical and Scientific, Westbury, 
NY) in bt buffer in the presence of 0.1% (vol/vol) solution P, were added, 
and thoroughly mixed. The suspension was divided into six tubes (Beck- 
man SW28) and overlayered with 12 ml of 2.0 M sucrose (R.I. = 1.4295) 

and 12 ml of 1.5 M sucrose (R.I. = 1.4055) in bt buffer containing 0.1% 
(vol/vol) solution P. The tubes were centrifuged in a rotor (Beckman 
SW28) at 28,000 rpm (103,000 g) for 24 h at 4°C. The tubes were unloaded 
from the top using a hand-held pipette. A faint white band at the top of 
the tube was completely removed (~6.0 ml collected per tube; fraction 9). 
The NEs were found at the 1.5 M/2.0 M interface, appearing as a broad, 
white, slightly flocculent band (,'~12.0 ml collected per tube; fraction 10). 
Next was a dense, sharp yellowish/white band containing a few NEs, chro- 
matin, and cell remnants (~12.0 ml collected per tube; fraction 11). The 
final ~7.0 ml collected (fraction 12), including a dense brownish/white 
pellet, contained soluble and particulate matter mainly derived from chro- 
matin. 

Extraction of Yeast Nuclear Envelopes 
For heparin extraction, 0.6 ml (~0.4 mg of protein) of the yeast NE frac- 
tion were mixed with 2.4 ml of a solution containing 10 mg/ml heparin 
(Sigma Chemical Co.), 0.1 mM DT]? and 0.5% (vol/vol) solution P in bt 
buffer. After 1 h on ice, 50 iLg/ml RNase A was added and the incubation 
was continued for 15 min at 10°C. The sample was over-layered onto two 
1-ml layers of 1.0 and 2.0 M sucrose in bt buffer containing 0.1% (vol/vol) 
solution P, and centrifuged in a rotor (Beckman SW55) at 45,000 rpm 
(~192,000 g) for 30 min at 4°C. The tube was unloaded from the top using 
a hand-held pipette. The first fraction (~2 ml; fraction 13) contained the 
bulk of the solubilized proteins. The next fraction (~1.8 ml; fraction 14) 
contained some of the soluble proteins together with a few of the NE 
membranes. The bulk of H-NE membranes was recovered at the 1.0 M/2.0 
M sucrose interface and appeared as a tight white band (~0.4 ml; fraction 
15). The last fraction (~0.8 ml; fraction 16) sometimes contained small 
amounts of H-NEs. 

The yeast NE fraction was extracted with sodium carbonate using a 
previously described method (Wozniak et al., 1994). 

Posttranslational Translocation Assay 
The procedures for the preparation of yeast nuclei and NEs described 
above were modified to maintain the ER-translocation activity through- 
out the fractionation procedure. Firstly, yeast spheroplasts were allowed 
to recover in YPD medium (1% yeast extract, 2% peptone, 2% dextrose) 
containing 1.0 M sorbitol for 30 min at room temperature before lysis. 
Secondly, all the solutions starting from the lysis buffer and including all 
the gradient solutions were supplemented with 2 mM DTT. Finally, the 
MgC12 concentration in the nuclear lysis buffer and in the solutions used 
for the NE flotation gradient (fractions 9-12) was raised from 0.1 to 0.5 
mM. The degree of enrichment of "active" NEs was shown to be similar to 
that obtained with the original method (data not shown). Just before the 
in vitro protein translocation reaction the "active" NE fraction was con- 
centrated 20-fold by pelleting at 70,000 g for 30 min, and gently resuspend- 
ing in solution A (20 mM Hepes-KOH, pH 7.4, 100 mM KOAc, 2 mM 
Mg[OAc]2, 2 mM DTT) containing 0.25 M sucrose. The heparin extrac- 
tion of the "active" NE fraction was carried out as described above except 
that 2 mM DTT was added to all solutions and gradients, the RNase A di- 
gestion step was omitted and the H-NEs were pelleted through a 1.0 M su- 
crose cushion (1.0 M sucrose, 2 mM DTI', 0.5 mM MgCl:, 0.5% [vol/vol] 
solution P in bt buffer) instead of being recovered over 2.0 M sucrose. 
Heparin traces were removed by resuspending the "active" H-NEs pellet 
obtained from 2.4 ml of NEs, in 2.4 ml of 0.5 M KCI, 2 mM DTT, 0.25 M 
sucrose, 0.5% (vol/vol) solution P and incubating the suspension for 1 h on 
ice. The membranes were recovered by centrifugation through a 0.5 ml, 
0.6 M sucrose cushion (0.6 M sucrose; 10 mM bisTris-C1, pH 6.5; 0.5 mM 
MgC12; 0.1% [vol/vol] solution P), at 39,000 rpm (~100,000 g) in a TLS-55 
Beckman rotor for 1 h at 4°C. The supernatant from the 0.5 M KCI wash 
was shown not to contain significant amounts of extracted proteins (data 
not shown). Finally, the sample was resuspended in a volume of 0.25 M su- 
crose in solution A equal to roughly 2.5% of the initial NEs volume. 

Yeast crude microsomes (CMs), used as a positive control for the ER 
translocation reaction, and yeast crude cytosol were prepared as described 
(Waters et al., 1986; Waters and Blobel, 1986). [35S]Methionine labeled 
prepro-a-factor (ppaF) was synthesized using a wheat germ in vitro trans- 
lation kit (Promega Biotec, Madison, WI) following the specifications of 
the manufacturer. Immediately before use, the translation mixture con- 
taining ppuF was diluted with 3 vol of 8 M urea and incubated for 10 min 
at 20°C. The translocation reaction and the protease protection assays 
were performed as described (Waters and Blobel, 1986; Chirico et al., 
1988). Typically, the translocation mix (total volume 150 pA) consisted of 
the following: 43.6 }xl of "master mix" (14.4 mM Hepes-KOH, pH 7.4; 276 
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mM KOAc; 1.0 mM Mg[OAc]2; 1.0 mM DTT; 1.7 mM ATP; 86 mM cre- 
atine phosphate; 0.7 mg/ml creatine kinase; 0.07 mM GDP-mannose; 0.07 
mM UDP-glucose; 0.07 mM UDP-N-acetylglucosamine; 1.4% glycerol), 
90 ~1 of yeast crude cytosol in solution A containing 1.0 mM Mg-ATt', and 
14 ILl of CM, NE, or H-NE membranes in solution A containing 0.25 M 
sucrose. This mixture was pre-incubated at 20°C for 5 rain and the import 
reaction was then started by the addition of 2.4 ILl of urea-denatured 
translation product. At the end of the reaction the sample was divided in 
three equal aliquots. 30 ixl of water were added to the first aliquot. 10 ill of 
8 mM CaCI 2, 10 Ixl of water and l0 Ixl of 800 ixg/ml trypsin were added to 
the second aliquot. The third aliquot was treated as the second except that 
10 ixl of water were substituted with 10 ixl of 8% (vol/vol) Triton X-100. 
All aliquots were incubated on ice for 30 min and the reactions were 
stopped by the addition of 10 ~1 of 50 mM PMSF. After an additional 10 
min on ice, the samples were TCA precipitated and analyzed by SDS- 
PAGE and fluorography. 

Miscellaneous 

Protein concentrations were measured by either the modified Bradford 
assay of Pierce (Coomassie Plus; Pierce, Rockford, IL), or the Amido- 
black assay (Rexach et al., 1994), using BSA as a standard. SDS-PAGE, 
immunoblotting, and EM were performed essentially as described (Rout 
and Blobel, 1993). Detergent extracted H-NEs were produced by a pre- 
treatment of the sample on the EM grid in 1.5% Triton X-100, 2.0% Digi- 
tonin in bt buffer for 15 min at 25°C immediately prior to fixation. Highly 
enriched NPCs (Rout and Blobel, 1993) were extracted with heparin by 
mixing 5 p.1 of the sample with 20 ixl of 10 mg/ml heparin in bt-DMSO and I~ 
incubating on ice for 30 rain. After the extraction, the heparin-resistant 1.5M 
material was sedimented over an EM grid and negatively stained as previ- (~) 
ously described (Rout and Blobel, 1993). The intensity of bands on immu- 
noblots was quantified using the ImageQuant software in the Phosphor- 
Imager system (Molecular Dynamics, Sunnyvale, CA). Mice were 
immunized with native H-NEs using standard methods and mAbs were 
raised, identified, and isolated as previously described (Rout and Kilmar- 
tin, 1990). Cells were prepared for indirect immunofluorescence micros- 
copy using the procedure of Kilmartin and Adams (Kilmartin and Adams, 
1982) with the modifications of Wente et al. (1992) and Kilmartin et al. 
(1993). Double labeling with the mouse MAbll8C3 and a polyclonal rab- 
bit anti-Sec61p antibody (Stirling et al., 1992) was visualized using Cy3-1abeled Load 
polyclonal donkey anti-mouse IgG (cross absorbed against rabbit IgG) 
and FITC-labeled polyclonal donkey anti-rabbit IgG (cross absorbed Q 
against mouse IgG) (Jackson ImmunoResearch Laboratories, West 
Grove, PA). The staining and photomicrographic recording conditions 
were as described (Wente et al., 1992) 

Results 

Comments on the Procedure 

An excellent starting point for the preparation of NE frac- 
tions was provided by the yeast nuclear isolation method 
described by Kilmartin. Thus, fractions i to 8 of the proce- 
dure described here (Fig. 1), which included the nuclei 
(fraction 7), were prepared as reported (Kilmartin and 
Fogg, 1982; Rout and Kilmartin, 1990). To be useful as a 
more general assay for subfractionation, as well as a pre- 
parative method for NEs, the NE enrichment procedure 
needed to have a considerably higher yield and degree of 
enrichment than previous techniques (Mann and Mecke, 
1982a,b; Kilmartin and Fogg, 1982). It was also of primary 
importance to retain, when possible, the morphological 
(and potentially functional) characteristics of intact NEs. 

The mild buffer conditions previously determined to be 
favorable for nuclear fractionation were retained for the 
preparation of NEs (Kilmartin and Fogg, 1982; Rout and 
Kilmartin, 1990; Rout and Blobel, 1993). Nuclei were lysed 
in bt-DMSO in the presence of DNase. The presence of 
DMSO appeared to lessen the osmotic shock to the NEs 
during nuclear lysis in addition to its stabilizing effect on 
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Figure 1. Schemat ic  d iagram of  the  yeast  N E  enr i chment  and N E  
hepar in  ext rac t ion procedures .  Numbers  enc losed  in circles rep-  
resen t  the  fract ion numbers  as descr ibed in Materials  and Meth-  
ods and in the  text. The  NE-con ta in ing  fractions are indicated in 
bold type. 

spindles and NPCs (Rout and Kilmartin, 1990; Rout and 
Blobel, 1993). By increasing the density of the nuclear ly- 
sate with sucrose and Nycodenz, the NEs could be made to 
float to their buoyant density on an equilibrium sedimen- 
tation gradient, away from denser protein and nucleo- 
protein contaminants. The presence of Nycodenz in the 
adjusting solution reduced the viscosity of the resulting ad- 
justed lysate, increasing the yield by ensuring the rapid 
egress of even the smaller NE fragments from the lysate. It 
also allowed a lower osmolarity, which reduced the os- 
motic shock to the NEs, especially when floating from the 
lysate into the lighter layer above. An appropriate step 
gradient was chosen to concentrate the NEs at a single 
step interface. The relatively narrow range of NE densities 
is evidenced by the high yield of NEs recovered in this 
layer (see below). 

For the removal of the peripheral NE proteins and nu- 
cleoproteins, a heparin treatment was chosen instead of 
the more usually employed high pH treatments (Fujiki et 
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al., 1982) for two main reasons. First, the heparin treat- 
ment was performed in mild buffer conditions similar to 
those of the NE isolation procedure, lessening the chances 
of compromising membrane integrity or damaging mem- 
brane-bound complexes. Second, it proved especially effi- 
cient at removing the most significant peripheral NE "con- 
taminants": chromatin (Courvalin et al., 1982; Rout and 
Blobel, 1993) and ribosomes. Indeed, purified yeast ribo- 
somes were reduced from their normal sedimentation co- 
efficient of 80 to <6 S by this treatment (data not shown). 
It was also known that high heparin concentrations would 
disassemble NPCs (Rout and Blobel, 1993; see below). 
The heparin-extracted material was run on a 10-40% (wt/ 
vol) sucrose gradient and the sedimentation profile of the 
nucleoporins recognized by MAb414 and MAb350 was an- 
alyzed (Davis and Fink, 1990; Rout and Blobel, 1993). As 
expected, all of the detectable extracted nucleoporins dis- 
played a behavior consistent with a sedimentation coeffi- 
cient of <6 S (data not shown). A treatment with RNase 
was performed because although it did not have a signifi- 
cant effect on the protein composition of H-NEs, it was 
shown to effectively remove contaminating ribosomal 
RNA from this fraction (data not shown). This indicates 
that RNase digestion can be eliminated without signifi- 
cantly altering the efficiency of the heparin extraction pro- 
cedure. The great disparity in size between the extracted 
material and the remaining H-NE membranes allowed the 
latter to be sedimented away from the former by a rapid 
centrifugation step. 

Electron Microscopy of  the NE Fractions 

The NE and H-NE fractions were examined in detail by 
transmission EM of both negatively stained spreads and 
thin sections of pelleted material (Fig. 2). The NE fraction 
(Fig. 2, A and C) consisted mainly of large sheets of dou- 
ble membranes. Significant regions of these had blebbed 
and ballooned (which is not generally seen in the NEs of 
thin sectioned whole cell preparations), probably as a re- 
sult of osmotic shock during nuclear lysis. The sheets were 
interrupted by numerous grommets, and the holes formed 
by these contained thin disks of relatively dense material. 
These structures were morphologically recognizable as 
NPCs in both transverse and tangential sections and nega- 
tively stained preparations. No clear examples of ordered 
filamentous structures could be found on either side of the 
transversely sectioned NPCs. The NPCs were present at 
~30/ixm 2 in the negatively stained NEs (Fig. 2 C), two to 
three times the figure estimated for intact nuclei (Mutvei 
et al., 1992; Rout and Blobel, 1993). This considerable in- 
crease in density could be due to contraction of NEs no 
longer kept under elastic tension by underlying chromatin 
and associated structures, which might be exacerbated by 
osmotically induced swelling of the cisternal spaces be- 
tween the NPCs. SPBs could also be found, still inserted in 
the NE and retaining many of their nuclear microtubules 
(MTs), attesting to the mild isolation conditions used (Fig. 
2, A and C). The presence of these MTs indicates that the 
NE fraction would almost certainly be active in a MT nu- 
cleation assay (Kilmartin and Fogg, 1982; Rout and Kil- 
martin, 1990). The alignment of the asymmetric SPBs 
within the envelope unequivocally established the cellular 

orientation of the two membranes (reviewed in Kilmartin, 
1994). Many of the NEs retained their normal nuclear di- 
rection of curvature; concave on the nuclear (inner) side, 
convex on the cytoplasmic (outer) side. The exposed sur- 
faces of the inner membranes were largely devoid of any 
material, including chromatin and any recognizable lamina 
(Fig. 2 A). In sharp contrast, the outer membranes often 
had exposed surfaces densely studded with ribosomes 
(Fig. 2 A). These were present at ~800/ixm 2 in the nega- 
tively stained NEs (Fig. 2 C), giving roughly 25 ribosomes 
per NPC (this latter figure should be independent of 
shrinkage or swelling of the NE and thus represent the in 
vivo figure more closely). The perinuctear cisternae gener- 
ally contained low amounts of electron dense material, 
though some contained considerably more than others. 
The fraction contained no other recognizable organelles, 
except for occasional small remnants of undigested cell 
walls. 

Many of the H-NEs were also recovered as large dou- 
ble-membraned sheets (Fig. 2, B and D). They appeared 
more ballooned and fragmented than the NE but their cis- 
ternae still contained electron dense material in thin sec- 
tions (Fig. 2 B). However, they lacked any trace of ribo- 
somes, by either thin section or negative stain (Fig. 2, B 
and D). The SPBs had apparently been removed from the 
envelopes, although by thin section occasional examples of 
heparin-extracted SPBs could be found free of membranes 
(Rout and Kilmartin, 1990). Thus, although many of the 
H-NEs were curved, there was no morphological marker 
left to tell whether they retained the native direction of 
curvature, like the NEs. Strikingly, the NPC grommets still 
remained, with the resulting holes being of approximately 
the same size and frequency as those found in the NEs, al- 
though the dense material comprising the morphologically 
recognizable NPC structure had been removed (Fig. 2, B 
and D). This indicates that despite the removal of the pe- 
ripheral NPC components (see also below), integral and 
probably lumenal components of the NE that maintained 
the original circular architecture of the NPCs had been re- 
tained. The only recognizable contaminants were occa- 
sional cell wall remnants, carried through from the NE 
fraction. 

SDS-PA GE Analysis and Immunoblots 

To determine the protein composition and purity of the 
NE and H-NE fractions, the enrichment procedure was 
subjected to biochemical and immunological analyses. 
Protein samples obtained from each of the fractions col- 
lected during the preparation of isolated NEs and H-NEs 
(Fig. 1) were resolved by SDS-PAGE. To compare the 
novel heparin stripping procedure with the standard car- 
bonate extraction method (Fujiki et al., 1982), yeast iso- 
lated NEs (fraction 10) were treated with sodium carbon- 
ate and the carbonate-resistant material (Fig. 3, Carbonate 
Extracted NEs) was run side by side with H-NEs on a pro- 
tein gel. 

Inspection of Fig. 3 reveals that the overall complexity 
and abundance of the proteins present in each of the en- 
richment steps decreased during fractionation. Further- 
more, the fractionation behavior of specific supermolecu- 
lar structures was followed by virtue of the characteristic 
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Figure 2. Morphological analysis of the NE and H-NE fractions. (A and B) Transmission electron micrographs of pelleted, thin sec- 
tioned NEs (A) and H-NEs (B). (C and D) Transmission electron micrographs of negatively stained NE (C) and H-NE (D) fractions. 
(C) The following structures are indicated: outer nuclear membrane (open arrowhead); inner nuclear membrane (closed arrowhead); 
longitudinal (large open arrow) and tangential (large closed arrow) sections of NPCs; SPBs and attached MTs (small arrows). (B and D) 
Circular apertures for the NPCs are indicated (large closed arrows). Bar, 1 i~rn. 

banding pattern of certain of their components on SDS 
gels. Chromatin is represented by the four yeast histones 
(Fig. 3, dots) which were mainly lost after nuclear lysis and 
totally removed by heparin extraction. Characteristic ribo- 
somal bands (Fig. 3, asterisks) were lost throughout the en- 
richment procedure and their complex behavior will be 

discussed below. Three bands are known to contain known 
NPC and pore membrane proteins (Fig. 3, arrows); all co- 
enriched with the NEs but only one, containing POM152 
(a pore membrane specific integral membrane protein) 
was found in the H-NEs (Wozniak et al., 1994; Aitchison 
et al., 1995). The comparison of carbonate-extracted NEs 
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Figure 3. SDS-PAGE profile of proteins in subcellular fractions 
obtained during the preparation of NEs and H-NEs showing the 
loss of a large amount of contaminating proteins and concomitant 
coenrichment of representative NE proteins. (Left and Middle) 
Yeast cells were subjected to subcellular fractionation as de- 
scribed in Fig. 1 and in the text. (Right) NEs were treated with 
carbonate to remove peripheral membrane proteins and the car- 
bonate-resistant material (Carbonate Extracted NEs) was directly 
compared with similar amounts of H-NEs (Heparin Extracted 
NEs). Proteins present in each of these fractions were resolved on a 
5-20% polyacrylamide SDS gel. The gel was first stained with 
Coomassie brilliant blue (Coomassie stain) and then stained with 
silver (Coomassie-Silver stain). The lane number at the top of 
the gels reflects the fraction number (Fig. 1). Total cell lysate 
(Spheroplasts) and subsequent fractions containing NEs are indi- 
cated. Fractions that belong to each of the four enrichment steps 
are grouped as indicated by brackets at the top and bottom of the 
gels. The figures below the bottom brackets (Loading equiva- 
lents) represent the number of cell equivalents (n) that were used 
as a starting material to prepare each of the fractions. This num- 
ber had to be increased from left to right to allow the detection of 
single proteins in the final lanes. Histones (dots), three character- 
istic bands containing known nuclear pore proteins (arrows: the 
lowest band is POM152, a pore membrane protein) and three 
representative ribosomal markers (asterisks, right) are indicated. 
Arrowheads point to a band that is believed to be the RNase A 
introduced in the course of heparin extraction. Numbers at the 
side of the left panel indicated the position of the molecular 
weight standards. 

with H-NEs (Fig. 3) revealed that the protein composition 
of these two fractions was similar, suggesting that heparin 
is at least as efficient as carbonate in the removal of pe- 
ripheral proteins from the nuclear membranes. On the 
other hand, certain specific proteins that were quantita- 
tively removed by carbonate were retained after heparin 
extraction and vice versa. For example, the ribosomal 
markers appeared to be stripped by heparin with greater 
efficacy than by carbonate. 

To assess the degree of enrichment of isolated NEs and 
H-NEs, the percentage yields of cytoplasmic, nucleoplas- 
mic, NE specific (peripheral and membrane-bound), ER- 
specific, and ribosomal proteins were estimated by quanti- 
tative immunoblotting. The yields of the NE components 
were used together with measurements of the total amount 
of protein in each fraction to generate fold-enrichments 
for NE-containing fractions. These data allowed the con- 
struction of a balance sheet of the distributions of various 
cellular proteins and their associated organelles in the dif- 
ferent steps of the fractionation procedure (Figs. 4, 6, and 8). 

Analysis of three non-NE proteins from the mitochon- 
dria, the Golgi apparatus, and nucleolus demonstrated 
that potential cytoplasmic and nucleoplasmic contami- 
nants were efficiently removed from the NE fractions. Mi- 
tochondria were followed by use of the integral membrane 
protein p32 (Pain et al., 1990). As expected virtually all of 
the signal fractionated away from NE-specific markers 
early in the procedure; most of this protein remained in 
the top two fractions of the nuclear gradient (Fig. 4 A, 
fractions 4 and 5). Quantitative immunoblotting showed 
that less than 0.04% of the total cellular amount of p32 re- 
mained associated with isolated NEs and that less than 
0.01% was associated with the H-NE fraction (data not 
shown). The integral membrane protein of the Golgi, 
Sed5p (Hardwick and Pelham, 1992), was mainly found in 
the crude cytosol fraction (Figs. 4 B and 8 D, fraction 2; 
79% of the total cellular signal). Approximately 90% of 
the crude nuclei pool of Sed5p (19% of the total) re- 
mained at the top of the nuclear gradient (Figs. 4 B and 8 
D, fractions 4 and 5). The small remaining amount frac- 
tionated with the nuclei, NEs, and H-NEs (Figs. 4 B and 8 
D, fractions 7, 10, and 15, respectively), consistent with 
this being an integral membrane protein that is involved in 
ER to Golgi transport and which therefore can be ex- 
pected to be present, at least in small quantities, in the ER 
(Hardwick and Pelham, 1992; Hopkins, C., personal com- 
munication). The nucleolar protein NOP1 coenriches with 
the nuclei but was rapidly removed from the NE after nu- 
clear lysis (Fig. 4 C; Aris and Blobel, 1988). Quantification 
of the immunoblot presented in Fig. 4 C demonstrated 
that only approximately 1.4% of NOP1 fractionated with 
the NEs and that NOP1 was undetectable in the H-NE 
fraction (data not shown). 

Peripheral NE proteins, represented here by two SPB 
proteins p90 and SPCll0/NUF1, and various known NPC 
proteins (nucleoporins) detected by MAb350 and MAb414, 
cofractionated with the NE until they were lost after treat- 
ment with heparin (Figs. 4, D-F and 8 A; Rout and Kil- 
martin, 1990; Kilmartin et al., 1993). An exception was 
represented by the nucleoporin NUP2 (Fig. 4 F, indicated 
by white dots), which falls off after DNase digestion of the 
nuclear fraction as it does in the NPC isolation procedure 
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Figure 4. Immunoblot analysis of the enrichment procedure 
showing that the fractionation behavior of various cellular mark- 
ers is consistent with high yields and low levels of contamination 
in the NE and H-NE fractions. Fractions were prepared as de- 
scribed in Fig. 1 and in the text. Gels were exactly as described in 
Fig. 3. Blots were incubated in the presence of the various anti- 
bodies which were detected by incubation with a secondary rabbit 
anti-mouse antibody (in the case of the mAbs) and subsequently 
with 125I-conjugated protein A. (A) The integral membrane mito- 
chondrial protein, p32, detected with a polyclonal rabbit serum 
(Pain et al., 1990). (B) The integral membrane protein of the 
Golgi, Sed5p, detected with an affinity purified polyclonal rabbit 
serum (Sogaard et al., 1994). (C) The nucleolar protein NOP1, 
detected with the mAb D77 (Aris and Blobel, 1988). (D) The 
SPB peripheral membrane protein, p90, detected by the use of 
the mAbs, 35B5 and 48B6 (Rout and Kilmartin, 1990). (E) The 
SPB component SPCll0/NUF1 detected with a mix of the mAbs, 
3D2, 45D10 and 35All (Rout and Kilmartin, 1990). (F) Various 
peripheral nuclear pore proteins revealed by utilizing MAb414 
and MAb350. NUP1 x indicates the overlapping signal of NUP1 
(Davis and Fink, 1990) and NUPll6 (Wente et al., 1992). Simi- 

(Rout  and Blobel, 1993; Loeb et al., 1993). SPCl l0 /NUF1 
was partially retained (~10%)  in the heparin stripped NE 
fraction. This could be a consequence of its localization 
within a heparin-resistant substructure of the SPB that 
may be removed from the NE but not solubilized during 
the extraction procedure (Rout  and Kilmartin, 1990, 
1991), a hypothesis supported by the EM data (above). 
The intensities of the signals generated by p90(SPB) (Fig. 
4 D), SPCl l0 /NUF1 (Fig. 4 E), and the 65-kD fragment of 
NUP145 (p65[NPC], Fig. 4 F; Wente and Blobel, 1994) 
were measured and averaged to estimate the overall per- 
centage yield of  peripheral membrane  proteins of the NE 
(Fig. 8 A). Approximately 80% of the total peripheral NE  
components was recovered in fraction 10 (isolated NEs), 
representing a >90% yield as compared to the nuclear 
fraction (fraction 7). The great majority of this signal was 
removed after heparin treatment (94% of the NE signal, 
totaling 95% of the original cellular signal). This may in 
fact underestimate the efficiency of the extraction of many 
proteins due to the somewhat unrepresentative behavior 
of SPCll0/NUF1 (discussed above); for example, p65(NPC) 
was extracted with an efficiency greater than 98% (data 
not shown). 

Since a NE specific membrane marker was not avail- 
able, one was made by raising mAbs  against the H-NE 
fraction. One of these was found to recognize a single 
band of ~150 kD in isolated NEs, H-NEs, and highly en- 
riched NPCs (Rout  and Blobel, 1993). We used two ap- 
proaches to demonstrate that this antibody, M A b l l 8 C 3 ,  
specifically recognizes POM152 (Fig. 5). First, M A b l l 8 C 3  
recognizes a single band of the expected mobility in both 
isolated nuclei and NEs prepared from wt yeast cells and it 
fails to do so in NEs similarly prepared from a POM152 
knock-out strain (PM7AB; a diploid S. cerevisiae strain 
homozygous for pom152-2::HIS3; generous gift from 
R. W. Wozniak). Second, this same antibody reacts with a 
single band of 150 kD present in chromatographic frac- 
tions highly enriched for POM152 (SDS-hydroxylapati te  
fraction 36 and H P L C  fraction 69; Wozniak et al., 1994). 
M A b l l 8 C 3  was used to monitor  the fractionation pattern 
of the wt POM152 protein throughout the various steps of 
the NE, H-NE and NPC preparations (Figs. 6 and 8 B). As 
expected, POM152 was shown to coenrich with both the 
NE and H-NE as well as the highly enriched NPC fraction. 
Surprisingly, a significant amount  (29%) of the signal frac- 

larly, NSP1 x indicates NSP1 (Nehrbass et al., 1990) and NUP100 
(Wente et al., 1992). These mAbs also recognize NUP2 (white 
dots), p65 (a 65-kD breakdown product of NUP145), NUP57 
(Grandi et al., 1995), and NUP49 (Wente et al., 1992). Other non- 
specifically cross-reacting proteins are detected by this antibody 
and they were described elsewhere (Davis and Fink, 1990; Rout 
and Blobel, 1993). (G) The mAb, TCM1, was used to follow the 
ribosomal marker, L3 (generous gift of S. P. Johnson and J. R. 
Warner). (H) The lumenal heat-shock protein of the ER, Kar2p/ 
Bip was detected using the mAb 2E7 (Napier et al., 1992). (/) A 
rabbit antiserum was used to recognize the ER membrane associ- 
ated protein, Cytochrome P450 reductase (Sutter and Loper, 
1989). (J) The integral membrane protein of the ER, Sec61p, was 
detected with a rabbit anti-peptide serum (Stirling et al., 1992). 
The lanes are numbered as in Fig. 3. The NE containing fractions 
are indicated above the blots. Loading Equivalents, see legend of 
Fig. 3. 
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Figure 5. The mAb, MAb118C3, specifically recognizes the pore 
membrane protein, POM152. Yeast nuclei (lane 1) and NEs (lane 
2) were prepared following the procedure presented in Fig. 1 and 
in the text. NEs were also prepared from wild-type S. cerevisiae 
yeast cells (W303; lane 3) and from a POM152 knock-out strain 
(PM7AB; lane 4), using the same method. S. uvarum cells were 
fractionated as described (Wozniak et al., 1994), to produce chro- 
matographic fractions highly enriched for POM152 (SDS-hydrox- 
ylapatite fraction number 36 [lane 5] and HPLC fraction number 
69 [lane 6]). Equal protein amounts from the above mentioned 
fractions were resolved on SDS-PAGE and transferred to a ni- 
trocellulose filter. The blot was incubated with MAbll8C3 and 
bound immunoglobulin was detected by chemiluminescence 
(ECL; Amersham Life Science, Arlington Heights, IL), following 
the instructions of the manufacturer. The position of POM152 is 
indicated. Numbers on the right of the gel denote the position of 
molecular weight standards. 

t ionates together  with rough E R  markers  (fractions 4 and 
5). The major i ty  (82%) of the nuclear  associated POM152 
(42% of the total  cellular amount)  was recovered in the 
NE fraction similar to the behavior  of the per iphera l  

Figure 7. Double immunofluorescence staining of wt yeast cells 
showing in vivo POM152 localization at the NE and at the ER. 
Logarithmically growing wt yeast cells were harvested, fixed and 
incubated with MAbll8C3 (anti-POM152) followed by a rabbit 
anti-Sec61p antibody (A-D) or with the rabbit serum against 
Sec61p alone (E). All slides were incubated with a mixture of 
FfTC-conjugated donkey anti-rabbit and Cy3-conjugated don- 
key anti-mouse IgGs and they were subsequently photographed 
on a fluorescent microscope. Cells at various stages of the cell- 
cycle starting from interphase (A) all the way to cytokinesis (D) 
can be observed. ER peripheral cisternae are indicated by ar- 
rows. The absence of any signal in POM152, E demonstrates that 
there was no bleed-through from the FITC-channel. Bar, 2 ~m. 

Figure 6. The pore membrane protein, POM152, coenriches with 
both a highly-enriched NPC fraction and with nuclear mem- 
branes. Yeast nuclei (Nuclear Prep; Rout and Kilmartin, 1990) 
were used as the starting point for the preparation of either the 
NE and H-NE fractions (NE Prep) or of a highly enriched NPC 
fraction (NPC Prep; Rout and Blobel, 1993). Blots similar to the 
ones used in Fig. 4 and the ones described by Rout and Blobel 
(1993) were probed with MAbll8C3 that reacts against POM152. 

markers.  Fur thermore ,  nearly 90% of this signal was resis- 
tant  to hepar in  extract ion in contrast  with the per iphera l  
NE components .  To confirm that  this result reflects the in 
vivo subcellular  localization of POM152, logari thmically 
growing cells were stained with both M A b l l 8 C 3  and a 
rabbi t  anti-Sec61p polyclonal  an t ibody and viewed by im- 
munofluorescence microscopy (Fig. 7). Indeed,  this shows 
that  whilst the major i ty  of POM152 was localized at the 
NE,  a certain amount  of this pro te in  was found at the 
pe r iphera l  ER.  A POM152 knock-ou t  s train (PM152-75; 
a haploid S. cerevisiae strain carrying pom152-2::HIS3; 
Aitchison et al., 1995) was examined by immunofluores-  
cence under  condit ions similar to the ones used for the ex- 
per iment  presented  in Fig. 7. As  predic ted  no signal was 
detected,  ei ther  at the nuclear  rim or  at the cellular periph-  
ery where E R  staining would have been  expected (data  
not  shown). 

The behavior  of E R  prote ins  during the enr ichment  pro-  
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cedure was monitored using the ER markers Sec61p, Cy- 
tochrome P450 reductase and Kar2p/Bip (Figs. 4, H-J and 
8 C; Yabusaki et al., 1988; Rothblatt et al., 1989; Rose et 
al., 1989; Normington et al., 1989). As expected the major- 
ity of each ER marker was found in fractions 4 and 5. 
However, approximately 20% of each ER marker was 
found associated with the nuclei (fraction 7). Subfraction- 
ation of the nuclei showed that all three proteins coen- 
riched absolutely with the NEs. The extent to which each 
of the ER markers cofractionated with the H-NE fraction 
correlated with their degree of association with the ER 
membrane. Hence, the integral membrane protein Sec61p 
coenriched absolutely with H-NEs (Fig. 4 J). Cytochrome 
P-450 reductase was more easily extracted by heparin, 
consistent with previous observations (Black and Coon, 
1982; Yabusaki et al., 1988; Fig. 4 / ) .  Roughly half of the 
rough ER lumenal protein Kar2p/Bip (55%; data not 
shown) was resistant to heparin extraction (Fig. 4 H). This 
could indicate that a substantial proportion of this protein 
is protected from heparin because it is enclosed in intact 
membranous compartments (i.e., perinuclear cisternae). 
This explanation is unlikely since approximately 80% of 
Kar2p/Bip present in both NE fractions is sensitive to 
trypsin (data not shown), suggesting that the majority of 
the perinuclear cisternae is accessible to heparin but not 
efficiently extracted by it. 

Ribosomes were followed using a mAb against the large 
subunit protein L3 (Fried and Warner, 1981; Figs. 4 G and 
8 E). The fractionation pattern was complex but as ex- 
pected this ribosome marker was observed to associate 
with cytosolic ribosomes (fraction 2) and ER-bound ribo- 
somes (fractions 4 and 5). The L3 cofractionating with the 
nucleus (fraction 7) appeared to be associated with two 
different nuclear compartments, which were separated 
during the preparation of isolated NEs. 27% of the nuclear 
L3 was found in the ribosomes bound to the outer surface 
of the NE (fraction 10). The remaining 73% (fractions 11 
and 12, 7% of the total) was found in fractions containing 
the nuclear and nucleolar remnants. As this antibody 
stains the cytoplasm and the nucleolus but not the rest of 
the nucleus by immunofluorescence microscopy (data not 
shown), the remaining signal is believed to represent the 

Figure 8. Quantitative analysis of the NE enrichment procedure. 
(A-E) The immunoblots presented in Figs. 4 and 6 or similar 
ones were subjected to quantitative analysis. Fractions are num- 
bered as in Fig. 1 and grouped with brackets as in Figs. 3 and 4. 
An estimate of the amount of a given marker present in each 
fraction is expressed here as a percentage of the total cellula[ 
amount calculated from the sum of the quantity found in frac- 
tions 2 (crude cytosol) and 3 (crude nuclei). The figures in paren- 
theses represent the percentage yield of each of the markers 
relative to the NE containing fraction from the preceding frac- 
tionation step. The SPB proteins p90 and SPCl l0 /NUF1,  and the 
NPC protein p65 were used to construct the histogram of A. Sim- 
ilarly, the data presented in panel C reflect the results of the 
quantification of cytochrome P450 reductase and Sec61p. (F) To- 
tal amount of protein present in each fraction. (G) The percent- 
age yields of the peripheral NE markers (A, fractions 1-12) and 
of POM152 (B, fractions 13-16) were used together with the 
numbers expressing the total amount of protein of each NE con- 
taining fraction to determine the fold-enrichment of nuclear 
membranes throughout the enrichment procedure. 
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ribosomal proteins associated with nucleolar pre-riboso- 
real structures. Greater  than 93% of the NE-bound pro- 
tein was removed upon heparin extraction of the NE frac- 
tion, leaving only 0.2% of the total cellular ribosomal 
protein bound to the nuclear membrane after heparin 
treatment. 

The removal of  contaminating proteins was dramatically 
demonstrated in Fig. 8 F, where less than 1% of the total 
cellular protein was present in the NE fraction (fraction 
10) while less than 0.2% was associated with the H-NE 
(fraction 15). These data were used in combination with 
the numbers representing the percentage yield of nuclear 
membranes in fractions 1, 3, 7, 10, and 15 (generated from 
the yields of peripheral NE  proteins [fractions 1-12] and 
POM152 [fractions 13-16]) to calculate the approximate 
degree of enrichment of NEs throughout the fractionation 
procedure (Fig. 8 G). As can be seen the enrichment of the 
NE and H-NE fractions was roughly 100- and 340-fold re- 
spectively, which represent a 68% overall recovery of  nu- 
clear membranes. The degree of enrichment of the NE 
and H-NE fractions described here was highly reproduc- 
ible between preparations (data not shown). Similar prep- 
arations have been successfully made, with minor tech- 
nical modifications, from numerous other S. cerevisiae 
strains (see for example Fig. 5). 

Protein Translocation Activity 

Having determined the protein composition of the NE and 
the H-NE fractions it was necessary to evaluate their func- 
tional integrity. Cell-free systems have been developed to 
study various NE functions including nuclear transport, 
MTs nucleation, nuclear fusion, budding of E R  to Golgi 
transport vesicles, and translocation of proteins across the 
rough E R  membrane (i.e., outer nuclear membrane).  The 
latter assay was chosen as it is comparatively straightfor- 
ward and since both the NE and the H-NE fractions would 
be expected to have E R  protein translocation activity. 
"Active" NE and H-NEs fractions (see Materials and 
Methods for details) were mixed with radiolabeled, urea- 
denatured ppetF in the presence of yeast cytosol and an 
energy source (Chirico et al., 1988). The presence of trans- 
located pro-a- fac tor  was demonstrated using two stan- 
dard criteria: (a) the acquisition of protease-resistance; 
and (b) the appearance of core-glycosylated forms of pro- 
cx-factor. Moreover,  both the absolute and the specific 
translocation activity were determined for each sample 
studied (Fig. 9). 

When ppctF was incubated with either NEs or  H-NEs 
(Fig. 9, NEs and heparin-extracted NEs, respectively), a 
significant fraction of it was translocated into the E R  lu- 
men (i.e., perinuclear space) similar to that observed with 
the CM fraction (Fig. 9, crude microsomes). Interestingly, 
the specific translocation activity of the NE and H-NE 
fractions appeared to be significantly higher (three- and 
fivefold, respectively) as compared with the CM fraction 
(Fig. 9). All of the glycosylated pro-¢x-factor (Fig. 9, gpctF) 
was protease resistant, unlike much of  Kar2p/Bip (see pre- 
vious section). Thus, either only sealed membranes are 
translocation-competent or translocated gpaF is associ- 
ated with lumenal proteins such that it is resistant to 
trypsin even in unsealed membranes. Detergent  would dis- 

Figure 9. Both the isolated NEs and H-NE fraction are active in 
a cell-free protein translocation assay. "Active" NEs and H-NEs 
and CMs were prepared as described in Materials and Methods. 
(Top) [35S]Methionine labeled, in vitro synthesized ppaF was de- 
natured with urea immediately before adding it to a reaction mix- 
ture containing either buffer (no additions), NEs, H-NEs (hep- 
arin extracted NEs), or CMs (crude microsomes) in the presence 
of ATP and crude cytosol. After 1 h at 20°C the reaction was 
stopped and each sample was divided in three equal aliquots. The 
first set of aliquots was incubated on ice without further treat- 
ments (lanes a). The second set was digested with trypsin (lanes 
b). The third set was treated with Triton X-100 before trypsin di- 
gestion (lanes c). All samples were analyzed by SDS-PAGE and 
fluorography. The position of ppctF and of the tri-glycosylated 
form of the protein (glycosylated pro-tx-factor [gpaF]) is indi- 
cated. An t~-factor specific band migrating slower than the fully 
glycosylated product is indicated by an asterisk. This previously 
reported product presumably corresponds to gpaF prior to man- 
nose and glucose trimming (Waters et al., 1988). The position of 
the molecular weight standards is indicated at the right of the gel. 
(Middle) The intensity of the bands present in lanes a (no treat- 
ment) was measured with the Phosphorimager system and the 
translocation activity was determined in each case by calculating 
the percentage of the total radioactivity that corresponded to 
translocated material. (Bottom) The percentage translocation ac- 
tivity in successive twofold dilutions of each fraction was deter- 
mined and a graph of activity versus volume of sample was con- 
structed. The slope of the graph in the linear range (% activity/ 
ill) was divided by the total amount of protein present in each 
fraction to yield the specific activity (Specific activity [% activity/lxg]). 
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rupt this association and make gpe~F sensitive to proteoly- 
sis. These results demonstrate that both the translocation 
apparatus and the glycosylating enzymes are active in our 
highly enriched NE and H-NE fractions. This provides ev- 
idence that the outer nuclear membrane and the perinu- 
clear space not only share ER components but also its 
functions. That both of the NE fractions are functionally 
well-preserved suggests that they could be used to develop 
cell-free systems to investigate other NE and ER func- 
tions. 

Detergent Extraction of H-NEs 

The retention of the NPC grommets after heparin extrac- 
tion of the isolated NEs suggested that they were stabi- 
lized by a heparin-resistant NPC substructure associated 
with the membrane, most likely in the perinuclear space. 
H-NEs were therefore extracted with detergents after at- 
tachment to an EM grid in order to reveal any substruc- 
tures underlying the grommets (Fig. 10). Negative staining 
of these samples revealed the presence of numerous rings 
of approximately the same internal diameter (~100 nm) 
and distribution as the grommets (Fig. 10 A, arrows), with 
an extensive filamentous network lying between them. To 

Figure 10. Detergent extraction of H-NEs suggests that ring 
structures associated with the NE may be involved in stabilizing 
the grommets of the NPCs. (A) Isolated H-NEs were immobi- 
lized on EM grids, extracted with detergents and negatively 
stained as described in Materials and Methods. Arrows point to 
heparin-resistant ring structures that have the same internal di- 
ameter as the NPC grommets seen in Fig. 2 D. (B) Highly en- 
riched NPCs (Rout and Blobel, 1993) were extracted with hep- 
arin as described in Materials and Methods; following extraction, 
the heparin-resistant material was sedimented onto EM grids and 
negatively stained as above. Bar, 0.2 Ixm. 

investigate this finding further, a highly enriched fraction 
of NPCs (Rout and Blobel, 1993) was treated with heparin 
under conditions similar to the ones used to extract iso- 
lated NEs. Heparin-resistant material was then sedi- 
mented onto an EM grid and negatively stained, as for the 
extracted H-NEs (above). This also produced ring-like 
structures, strongly resembling those seen in the extracted 
H-NEs but without any other associated material (Fig. 10 
B). Preliminary experiments indicated that, when the 
highly enriched NPCs were similarly extracted in solution 
and sedimented over a velocity gradient, the rings thus iso- 
lated contained the pore membrane protein POM152 as a 
major constituent; likewise, the detergent extracted H-NEs 
were also found to retain POM152 (data not shown). The 
rings must therefore be derived from integral pore mem- 
brane proteins possibly associated with peripheral pro- 
teins present in the perinuclear space. Attempts to sepa- 
rate the rings directly from the H-NEs in solution have so 
far failed. 

Discussion 

This paper presents a method for the large scale isolation 
of yeast NEs and for extraction of isolated NEs with hep- 
arin. EM analysis showed that both of these preparations 
are devoid of gross contaminants and are morphologically 
well-preserved. Moreover, negative staining of H-NEs 
showed that heparin extraction removes the main struc- 
ture of the NPCs leaving open pores in the membrane. Us- 
ing biochemical criteria it was demonstrated that key cyto- 
plasmic and nucleoplasmic contaminants are absent from 
both NE fractions and that NE-associated proteins were 
recovered with yields ranging between 80-90%. The NE 
and H-NE fractions are respectively 100- and 340-fold en- 
riched based on the yields of NE specific markers. Both 
the NEs and H-NEs were shown to be active in a cell-free 
ER translocation assay, each having a higher specific activ- 
ity than that of previously published crude ER-derived 
membranes (Waters and Blobel, 1986; Rothblatt and 
Meyer, 1986; Hansen et al., 1986). Finally, extraction of 
H-NEs with detergents showed that the grommets left in 
the NE after heparin treatment are apparently stabilized 
by previously uncharacterized ring structures of approxi- 
mately the same internal diameter as the grommets them- 
selves. 

The high yields of the NE fractions allowed the con- 
struction of a balance-sheet that tallies the distribution of 
representative markers in various nuclear and non-nuclear 
compartments. For example, this strategy was used to de- 
termine the quantitative localization of ribosomal proteins 
within the cell. Using the same approach it was established 
that while the majority of the Golgi integral membrane 
protein Sed5p (98% of the total cellular amount) is indeed 
found in low-density membranes that characterize this or- 
ganelle, a small pool of this protein is associated with the 
ER consistent with its role in ER to Golgi transport and 
with previous observations (Hopkins, C., personal com- 
munication). It was also possible to show that the NE rep- 
resents approximately 20% of the ER, similar to what was 
previously reported (Preuss et al., 1991). A possible caveat 
of the results presented here is that cells are subjected to 
exhaustive cell-wall digestion (3 h at 30°C) before lysis. 
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This treatment stops cell division and could alter the 
amount and composition of various organelles. However, 
the qualitative subcellular localization of each of the 
markers used here has been previously ascertained. In all 
cases (with the exception of NUP2), this localization cor- 
responds with the quantitative distribution of the marker, 
and the organelle(s) with which it is associated, in the en- 
richment procedure presented here. This indicates that the 
quantitative data obtained from the subcellular fraction- 
ation of a given marker accurately reflect the subcellular 
distribution of that marker in vivo. Hence, quantitative 
analysis of the fractionation behavior predicted that a pro- 
portion of POM152 would be associated with the ER, 
which was confirmed by immunofluoreseence staining of 
cells. This suggests that the balance-sheet approach could 
be used to predict the subcellular localization and propor- 
tional distribution of other cellular components. 

As mentioned above, NEs and H-NEs are competent in 
the translocation of ppaF to the perinuclear space. These 
fractions therefore provide a viable source of yeast rough 
ER membranes that could be used to develop cell-free sys- 
tems for the study of various rough ER functions and to 
further purify the molecular components involved in these 
functions. For example, systems for the reconstitution of 
protein translocation into proteoliposomes have been de- 
veloped and used successfully in yeast (Brodsky and 
Schekman, 1993; Brodsky et al., 1993). The utilization of 
the highly enriched NE fractions described here instead of 
cruder fractions may enhance the potentiality of these sys- 
tems. In addition, the NE and H-NE fractions could be 
used to develop cell-free systems that will allow the molec- 
ular dissection of other important NE related functions. 
These include: nuclear transport, at least in the aspect of 
specific docking and undocking of the substrate to the 
NPC (Moore and Blobel, 1993, 1994; Gorlich et al., 1994; 
Adam and Adam, 1994; Radu et al., 1995); chromatin-NE 
interactions, such as the binding of telomeric structures to 
the inner nuclear membrane (Dresser and Giroux, 1988; 
Klein et al., 1992; Palladino et al., 1993); assembly of the 
mitotic spindle (Kilmartin and Fogg, 1982; Rout and Kil- 
martin, 1990; Masuda et al., 1992); regulation of events in- 
volving the nucleus such as karyokinesis and karyogamy 
(Latterich and Schekman, 1994); and regulation of gene 
expression (Mori et al., 1993; Cox et al., 1993). 

The ring structures underlying the grommets in H-NEs, 
as revealed by detergent extraction, appear to be the same 
as those produced by heparin treatment of highly enriched 
NPCs (which were extracted with detergents in the course 
of their isolation). These rings are derived from the pe- 
riphery of the NPC disks, contain the pore membrane pro- 
tein POM152 as a major component, and apparently serve 
to support the membrane grommets in the H-NEs. These 
rings may be the structural and functional analogs of the 
lumenal spoke domains/radial arms found in vertebrate 
NPCs (Akey and Radermacher, 1993), where they could 
both anchor the NPC within the nuclear membrane and 
stabilize the reflexed membrane of the pore grommet. 

There is evidence to suggest that some NE-associated 
structures have not been preserved during the enrichment 
procedure. In particular, the NPC protein NUP2 was lost 
at nuclear lysis, as it is when NPCs are isolated (Rout and 
Blobel, 1993). This protein may be part of a fragile, pe- 

ripheral structure that is sheared off during NE prepara- 
tion. Other such structures may be similarly lost. No struc- 
tures resembling the nuclear lamina or major components 
that could be lamins were found in the NE preparations, 
except for the unidentified filamentous material remaining 
after detergent extraction of the H-NEs. Antibodies that 
were previously reported to cross-react with lamins A and 
B analogues in yeast (Georgatos et al., 1989), did not de- 
tect any co-enriching bands of the expected molecular 
weight either in the NE or in the H-NE fractions (data not 
shown). Further studies and better reagents are needed to 
assess whether a nuclear lamina is present in yeast and to 
what degree it cofractionates with the NE fractions. 

The high degree of enrichment of the NE and H-NE 
fractions makes them excellent material for raising mAbs 
against NE and ER specific components; this has been 
demonstrated by the isolation of the anti-POM152 mAb, 
MAb118C3. A second mAb, raised by immunizing mice 
with isolated NEs, specifically recognizes the novel nucleo- 
porin NUP159 and was essential in the isolation and im- 
munolocalization of this protein (Kraemer et al., 1995). 
An additional 170 monoclonal lines have been isolated 
that recognize at least 10-15 different antigens present in 
the NE fractions. These are still in the early phases of 
characterization. MAb118C3 has been used to gain new 
insights into the in vivo behavior of POM152. The unex- 
pected localization of POM152 could have important im- 
plications for the understanding of the mechanisms that 
lead to the assembly of new NPCs in actively growing 
yeast cultures. This result could only have been obtained 
by use of a mAb that allows the detection of the unaltered 
protein at normal levels of expression. The NE and H-NE 
fractions can therefore provide the source material to gen- 
erate the reagents necessary to study the activities associ- 
ated with the NE, and at the same time be the substrates 
with which these activities can be studied. 
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