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Abstract: Motion tracking based on commercial inertial measurements units (IMUs) has been widely
studied in the latter years as it is a cost-effective enabling technology for those applications in
which motion tracking based on optical technologies is unsuitable. This measurement method
has a high impact in human performance assessment and human-robot interaction. IMU motion
tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the
user motion in situated environments. After a survey on IMU-based human tracking, five techniques
for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU
based estimation was matched against motion tracking based on the Vicon marker-based motion
tracking system considered as ground truth. Results show that all but one of the selected models
perform similarly (about 35 mm average position estimation error).
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1. Introduction

In recent years, the development of sensing technologies and sensor signals processing
techniques paved the way for the use of wearable sensors to monitor human status and performance.
These developments resulted in the need for managing efficiently such networks, as explained by
Fortino et al. in [1]. Wearable body sensor networks (BSN) are nowadays used in several applications
which include healthcare, ergonomics, sport and entertainment, (see [2] for a review on the argument).
A field that has benefited from the research on BSN is motion tracking.

Motion tracking has received the attention and the effort of generations of researchers. There
are several techniques that allow for motion reconstruction based on different information sources.
One of the biggest challenges in motion tracking is having an accurate estimation with non-invasive
sensors and non limited workspace. In the recent years, a new generation of inertial measurement
units (IMUs) based on micro-electro-mechanical systems (MEMS) technology has given a new surge to
motion tracking research. These devices are cost-effective and can be successfully used for accurate,
non-invasive and portable motion tracking. The big interest in these devices is mainly motivated by the
fact that they overcome many issues raised by optical systems and mechanical trackers. IMUs indeed
do not suffer from occlusions and have theoretically unlimited workspace compared to optical motion
tracking systems, and despite the accuracy of mechanical trackers, IMUs are much more affordable
and far less intrusive.

Inertial units-based motion tracking has been used for navigation since decades ago. Initially
developed for the attitude estimation of aerial vehicles (see [3,4]), it is nowadays used for other
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unmanned vehicles tracking (see [5–8]). In recent years, IMUs are often used to track human motion
thus becoming an enabling technology for several applications which include localization, human-robot
interaction, rehabilitation and ergonomics. This development is also witnessed by the rise of companies
that sell IMUs and IMU-based systems e.g., Invensense (Invensense, San Jose, CA, USA), Trivisio
(Trivisio, Trier, Germany), Microstrain (Lord Microstrain, Willistone, VT, USA) and XSens (Xsens
Technologies B.V., Enschede, The Netherlands) and the amount of start-ups which target IMU-based
systems. The products that they sell often include attitude reconstruction, which is provided as output
to the user, or even full body motion reconstruction.

IMUs are typically composed of accelerometers and gyroscopes. These signals are used in different
manners according to the applications as it will be explained in Section 2 (as an example see [9]). In most
cases IMUs are used to reconstruct the pose or at least either the position or the orientation of the
body they are attached to. The naive use of IMUs is the integration of the sensors’ signals over time to
estimate velocity, position and orientation. Since both accelerometer and gyroscope measurements
suffer from time varying biases and noises, this approach leads to a quick drift of the estimation
that is unreliable after a few seconds. Therefore, researchers started investigating both algorithmic
and hardware solutions to solve the drift issue. In many cases IMUs are equipped with a three axis
magnetometer (e.g., [10–13]), we refer to these sensors as mIMUs. The magnetometer measures the
local (earth) magnetic field that is used as an earth-fixed reference for the current estimation of the
IMU orientation. Other solutions include exploiting ultrasonic sensors [14], GPS [15], ultra wide bands
(UWB) [16], cameras [17], and magnetic field generated by actuated coils [18].

Motivated through the variety of approaches to IMU-based human motion tracking (IHMT), the
goal of this article is introducing the reader to IHMT. In the first part (Section 2) this article introduces
the reader to IHMT main issues, then it presents a survey of the methods that have been used so far
to tackle the IHMT problem. In the second part (Section 3) , the article includes a tutorial section
which explains in details five selected methods for upper limb tracking. This part aims at both making
concrete some of the main issues presented in the survey and letting the reader familiarize with IHMT
methods. These methods are finally compared to each other in Section 4. The latter section concludes
the presented work.

2. IMU-Based Human Motion Tracking

2.1. Reviews on Wearable Motion Tracking

In recent decades, emerging technologies allowed for a huge step forward in human motion
tracking. Exoskeletons, vision-based systems as well as motion capture based on inertial systems have
become commonly used firstly in laboratory settings and nowadays in everyday life. Several reviews
described human motion capture under different perspectives with a focus on the application [19]
and/or on technical aspects [20]. For example, Patel in [21] proposes a review of wearable sensors for
human monitoring in which a great emphasis is laid on applications and on the enabling technology.
Their survey moves from sensing technology including motion capture based on inertial sensors to
applications, including health monitoring, wellness and safety. Similarly, Shull et al. [22] review
wearable sensing systems applied to gait analysis in clinical settings. They group methods according to
the sensors that are used, subject populations and measured parameters. In a recent review paper [23],
Gravina et al. discuss issues and advantages of body sensor networks, then they focus on their
applications to human activity recognition. Wong et al. [24] review applications of wearable sensors to
biomechanics. Differently from [21], they focus on the devices and the sensors that are used for motion
tracking. Moreover, they explain advantages and disadvantages of the different methods. In the recent
review [9] a specific focus is laid on wearable inertial sensors. The authors analyze several medical
applications of wearable inertial motion tracking, including gait analysis, stabilometry, instrumented
clinical tests, upper body mobility assessment, daily-life activity monitoring and tremor assessment.
For all applications, they report the methods proposed to tackle those. Interestingly, the selection of
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the applications provides a grouping of methods that reflects different complexity levels in using IMU
sensors: for example stabilometry requires simpler algorithms and fewer sensors than upper body
mobility assessment. Harle et al. [25] provide a technical review of the issues arising and methods
used in IMU-based pedestrian localization. Similarly, Yang et al. in [26] target localization, reviewing
sensors as well as methods with their respective sources of errors. In [27] the focus is on walking
speed estimation. Sabatini in [28] proposes a review of (m)IMU-based tracking systems for 3D attitude
estimation focusing on the technical aspects of IHMT methods. In particular, sensor fusion techniques
and related issues are explained in details including techniques to estimate and tune filter parameters.
In [29] the authors compare six algorithms for the estimation of a smartphone’s attitude. The goal
of their analysis was to compare algorithms in order to select the most suited one for pedestrian
localization even when magnetometer’s signal is disturbed. They test such algorithms indoor while
artificially distorting the magnetic field by means of magnets. Although authors claim that two of the
selected methods perform better than the others, reported average orientation errors differ less than
half of the error’s standard deviation.

The survey presented in the following subsections has a different scope and target with respect
to previously published surveys: both applications and technical aspects are taken into account.
Moreover, it explicitly encompasses the evolution of algorithms from the estimate of one rigid body
pose to full body tracking. All reported methods are listed and characterized in the Appendix A
(see Table A1). The table summarizes relevant information related to application, target, kinematic
representation, sensor fusion technique and validation of each method and may help the reader in the
following sections.

2.2. Introductory Concepts to IHMT Methods

In the late 1990s, technological advancements made inertial systems a candidate alternative to
optical ones for online human motion capture. Moving from the findings in aerial vehicles navigation
and accelerometry techniques, researchers started tackling the problem of human motion tracking
based on (m)IMUs [30,31]. In this, major issues are: How to represent and constrain human limbs
kinematics, how to fuse measurements from multiple sensors to track these with minimal drift, also
considering erroneous measurements e.g., due to magnetic disturbances, and how to make the relation
between technical sensor and (anatomical) body segment frames through calibration, when several
(m)IMUs are involved. Moreover, ways of and measures for assessing and comparing different methods
are of major interest for evaluation purposes. In the following, these major aspects and preliminary
concepts of IHMT are described in more detail in order to prepare the reader for Section 2.3, which
provides the IHMT survey.

2.2.1. Kinematics and Constraints

All reported techniques used for inertial body motion tracking assume that human limbs are
rigid bodies. Therefore, from the point of view of kinematics IHMT reduces to determining the
attitude and/or the position of these limbs. When more limbs are involved a kinematic chain can be
modeled. The first multi-limb models used this kinematic chain in a second step after estimating the
attitude of each limb separately (e.g., [10,32]). However, the kinematic chain can be better exploited by
providing joint constraints that can be added to the sensor fusion algorithm to make the estimation
more consistent with human motion.

Kinematics Representation

While the position of a limb in space is typically represented through a Cartesian frame, several
possibilities are proposed in literature to represent its orientation. Euler angles are a common choice
since they have an intuitive physical meaning, which is the case of the roll-pitch-yaw representation of
a vehicle attitude (e.g., [15,33–35]) or the identification of the roll-pitch-yaw angles with the anatomical
degrees of freedoms (DoFs) of human limbs (e.g., [36,37] ). The major drawback of such a solution
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(and of all the three parameters attitude representations) is the existence of singularities that may occur
in certain configurations, as in the case of the gimbal lock. This is why many methods use quaternions
for the estimation (e.g., [38–42]). Quaternions allow for a computationally efficient and singularity-free
attitude representation and are often used for the attitude representation of a single body. However,
besides their non-minimal rotation parametrization, they do not provide direct access to anatomical
or functional angles. Factorized quaternion algorithms [43,44] decompose attitude quaternions in
order to identify physically meaningful rotations (e.g., about the articulations’ axes), thus allowing for
a simpler implementation of constraints. Kinematic chains are indeed often parametrized either by
means of Euler angles (e.g., [45]) or using the Denavit Hartenberg (DH) [46] convention (e.g., [47–49])
to represent the relative joint angles.

Constraints

Kinematic constraints play a fundamental role in the whole estimation process, as they can prevent
the relative displacement of the body segments to drift over time. Kinematic constraints are sometimes
embedded in the sensor fusion algorithm to provide more consistent solutions (e.g., [45,47,50,51]).
In other cases the constraints are applied after the sensor fusion algorithm has provided the attitude
estimation (e.g., [39]). Since the estimated quantities are often random variables, applying limits to
those variables in a consistent way is a delicate issue. This is shown by Simon in [52], where different
approaches to solve the issue are reviewed. In [44] quaternions are used to represent the attitudes of
the human arm limbs. Anatomical constraints such as joint angle limits and limitations of the limb
motions are implemented by posing the attitude estimation as an optimization problem in which the
estimated attitudes have to respect the constraints and at the same time optimize the consistency with
the accelerometer measurements. Also in [45,47–50,53,54], the elbow is constrained to reduced DoFs.

In contrast to the kinematic chain model, free segments models have been proposed in [51,55].
These representations keep some of the anatomical constraints as hard constraints, e.g., the connectivity
between successive limbs [55], while others are relaxed (implemented as soft constraints) in order to
reduce the effects of errors related to their implementation. For example, the elbow is not a perfect
hinge joint as its axis is not fixed when the ulna moves with respect to the humerus [56]. Moreover,
localizing the elbow axes is a further source of error [48]. On the one hand, detrimental effects of such
model errors may be mitigated by the free segments approach, on the other hand this may lead to
unwanted behaviours, such as measuring elbow abduction, which is not physically plausible.

2.2.2. Sensor Fusion Technique

Signals gathered from accelerometers, gyroscopes, magnetometers and other sensors need suitable
sensor fusion techniques to derive useful information about the attitudes and poses of the limbs. Note,
sensor-to-limb calibration parameters are here assumed known. Calibration methods are addressed
below. In most of the sensor fusion methods the unknown variables (e.g., Euler angles) are estimated
in discrete settings at successive time steps based on previous time step estimation and current time
step measures. Two main approaches are adopted for sensor fusion: complementary filters (CF) and
Kalman filters (KF). More complex approaches include particle filters (PF) and optimization-based
approaches, which are now suitable for online IHMT.

Complementary filters exploit the different frequency spectra of gyroscope, accelerometer and
magnetometer signals. Many of the methods that exploit the CF approach (e.g., [10,30,57–60]) apply
the following steps: The accelerometer signal is used to estimate the acceleration due to gravity in the
sensor frame. This and the magnetometer signal are then used to obtain a “low frequency” estimate
of the sensor’s attitude. At the same time an estimate of this attitude is dynamically calculated from
the gyroscope measurement. These two estimates are then fused in the complementary filter. Some
methods assume the body acceleration being negligible, thus modeling the accelerometer signal as a
noisy measurement of acceleration due to gravity (e.g., [30,60]). In other methods body acceleration
is calculated and removed from the accelerometer signal (e.g., [58]). Acceleration due to gravity and
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measured local earth magnetic field are then used to estimate the pose of the sensor in an earth-fixed
frame (world frame). Some methods (e.g., [10]) simply implement the TRIAD algorithm [61] or
TRIAD-like algorithms to reconstruct the attitude with respect to the world frame. Others [30,59,60]
use more complex optimization algorithms to find the attitude as best fit of the different measurements.

The most widespread sensor fusion techniques are the Kalman Filters [62]. There are many cases in
which a linear KF suffices for sensor fusion (e.g., [32,63–65]). In most of the cases, nonlinear equations
require a manipulation of the KF. The Extended Kalman Filter (EKF) is the most immediate solution
that has been adopted to use the KF approach with nonlinearities (e.g., [38,40,66–69]. Alternatively,
Unscented Kalman Filters (UKF) are used in [47,49,53] as they provide a more accurate estimation of
probability density functions (PDF) under nonlinear transformations. The method proposed in [70]
uses unscented transformations, but implements constraints through probabilistic graphical models.
Particle filters have been used by [39,42] to further improve and generalize the representation of PDFs.

Compared to the EKF, the UKF improves the estimation of the transformed probability density
function. Moreover, the UKF keeps a convenient complexity when compared to the PF. Conversely, the
PF allows to drop the hypothesis of Gaussian distributed random variables, thus permitting a more
accurate PDF estimation. Comparisons between EKF and UKF provided conflicting results [71–73].
The most recent work highlighted the performance being highly influenced by the application. They
describe the UKF as being more robust to initialization issues whereas the EKF is more computationally
efficient [74]. The few comparisons that were found between the PF and the UKF are far from
IMU-based motion tracking applications and are not reported.

Recent improvements of computational powers made optimization approaches attractive to IHMT.
The methods presented in [44,51,55] show optimization based approaches that allow for both sensor
fusion and implementation of constraints. Optimization approaches make it easier to take into account
large time windows for the estimate. However, a good compromise has to be found between accuracy
and speed of the algorithm [51] to allow for online IHMT. These latter methods are really promising
because they showed to be highly flexible to add, remove, loosen or strengthen constraints as well as
to find a compromise between accuracy and computational burden.

2.2.3. IHMT Common Issues

There are three main issues that recur in IHMT: how to reduce the estimate’s drift, how to handle
magnetic disturbances and calibration issues.

Drift

A very first approach to IHMT was based on inertial navigation systems (INS) strapdown
integration of gyroscope measurements which was inherited from the navigation of aerial vehicles.
Though adapted to follow the dynamics of a human, this solution cannot be used alone as the estimate
quickly drifts. Many methods have their main focus in reducing drifts. One solution is fusing
the INS or INS-like estimate with a quasi-static one, as it is done in many CF-based approaches
(e.g., [58,75], see Section 2.2.2). Since drift is mainly due to gyroscope bias, a second solution is
to include the bias in the estimation and to account for it [50,75–78]. A third solution exploits
constraints from the kinematic chain to avoid a drifting attitude estimate of one limb with respect to the
others [41,45,47,49,50,53,58,66,67,77,79]. A further solution is used mainly in lower limbs tracking and
exploits contacts of the feet with the ground [38,69,78,80]. When the foot is in contact with the ground
its velocity is almost null. This information can be used to reset the speed (zero velocity update, ZUPT)
and, when moving on a flat ground, to also reset the height of the foot with respect to the ground.
These techniques have highly reduced drifts as demonstrated in many of the aforementioned methods.

Magnetic Disturbances

Many of the aforementioned methods rely on magnetometers. Despite being a valuable aid to have
an absolute orientation reference, their signals are easily distorted by the presence of ferromagnetic
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materials in the vicinity of the sensor. Distortion effects are typically classified as hard and soft
iron interferences (e.g., [38,81]), which are related respectively to permanently magnetized objects
and to objects that are magnetized only when an external field is applied. Hard iron effects cause
an offset of the earth magnetic field whereas soft iron effects cause a distortion. If the magnetic
environment does not change, these effects can be corrected through internal sensor calibration,
which is out of the scope of this article. However, for dealing with a changing magnetic field,
either through a changing environment or translational motion of the sensor in an environment
with inhomogeneous magnetic field, several solutions have been proposed. The simplest solution
is to establish a policy to decide when the magnetometer signal is reliable. This can be done by
thresholding its magnitude (e.g., [82,83]). Another common solution is limiting the contribution of
the magnetometer measurement to the heading variable (e.g., [45]) or to two components (e.g., [59]).
A more sophisticated solution is model-based estimation of the disturbance; e.g., in [84] the magnetic
field direction is estimated simultaneously with the sensor orientation. Another approach is proposed
in [85]. Under the assumption that magnetic field is constant for a given period, the authors take the
magnetometer measurement at the beginning of the period as a reference. They then use the error
with respect to this reference at each time step to update the error state estimate in their Kalman Filter.
A survey of methods to handle earth’s magnetic field disturbances is proposed by Ligorio et Sabatini
in [86].

Calibration

All IMU based motion reconstruction algorithms require some parameters to be provided.
A subset of these parameters defines the orientations (and sometimes the positions) of the IMU

frames with respect to the tracked body segments they are attached to. In most of the cases these
parameters are assumed to be known: the IMU frame is supposed to be physically aligned to the body
frame (e.g., [50,60,87]). In other cases these parameters are obtained by means of a calibration procedure
that is carried out at the beginning of the capturing session (e.g., [47]). Another subset is related to the
dimensions of the human body: human limb lengths are typically either measured (e.g., [87]), taken
from anthropometric models (e.g., [64]) or calculated by means of calibration procedures (e.g., [64,88]).
In contrast to the IMU-to-segment orientations and positions, there is no need for online estimation of
human limb lengths as they can safely be assumed constant during tracking.

Several calibration procedures were proposed to obtain IMU and limb parameters when tracking
humans. The most typical procedure requires the human to rest in the neutrum-pose (N-pose) that is
standing still while leaving the arms vertical alongside the trunk in the sagittal plane (e.g., [39,45,47,89]).
Another widespread calibration pose is the T-pose, where the user is standing still keeping the
arms horizontal in the sagittal plane [47,64,90,91]. In [45] the user is asked to lean forward to
define an earth-fixed reference frame. In [14] the user is required to assume a rest pose before
each motion. Besides the static poses, functional calibration methods require the user to perform
rotations around different joint axes in order to better align the body segment frames with anatomical
axes (e.g., [54,92,93]).

In a clinical setting, it is particularly important to obtain anatomically interpretable joint angles
and, hence, to obtain accurate IMU-to-segment orientations. In [48,94] calibration procedures
comprising IMU placement protocols, static poses and functional movements are proposed for
identifying the knee and elbow flexion/extension axes and the forearm pronation/supination axes,
thus improving the estimation of the anatomical joint angles. A simpler calibration procedure based
on two static poses (standing and sitting or lying) is proposed and evaluated in [89]. Picerno et al. [37]
proposes a specific rig equipped with an IMU for IMU-to-segment orientation calibration based on
anatomical landmarks. For this, the rig endpoints have to be manually placed on anatomical landmarks,
which is applied to the thigh and the shank.
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The effects of errors in the different calibration parameters on the limb orientation estimation errors
have been recently investigated in [51] demonstrating a clear dominant role of the sensor-to-segment
orientations compared to the positions and limb lengths.

2.2.4. Methods’ Assessment

The assessment of motion tracking methods often relies on ground truth data, where the estimated
trajectories are compared to ground truth trajectories using typical metrics, such as the root mean square
error, namely RMSE, (e.g., [30,36,50,84,88,95–97]) or correlation coefficients (e.g., [49,53,58,87,88,96,98]).
Two performance measures are mainly used for the evaluation: the drift and the accuracy of the target
reconstruction, either based on the position of a reference point or the orientation of a rigid body.

Drift assessment requires to perform relatively long trials. In [36] the proposed algorithm is
evaluated with respect to its drift dependency over time. In [87] the drift of the wrist position estimate
is calculated and reported for one circular and one square trajectory. Luinge and Veltink [95] report
attitude estimation drifts obtained from a strapdown integration of the measured angular velocities as
compared to a sensor fusion algorithm using a KF. In many papers validation trials are longer than a
few seconds (e.g., [10,31,38,75,92]) so that it is possible to at least qualitatively assess drift by visual
inspection of the RMSE along time. Other works (e.g., [10,32,80]) do not report long assessment trials,
making it difficult to evaluate drift.

Accuracy assessment requires ground truth data being at least as accurate as the method is
expected to be. Single body attitude/position estimation can exploit very reliable ground truth data,
such as those gathered from tilt tables (e.g., [30,43,97]). Since the IMU can be aligned very accurately
to these devices, the error introduced through the evaluation device is limited and often much smaller
than the estimation error. In many applications related to human motion tracking, the positions
of anatomical landmarks are of interest. For this, marker-based optical motion capture (OMC) has
become the gold standard (e.g., [39,40,47,48,50,55,66,77,79,91,95,99]). OMC permits to evaluate both
attitude and position tracking. In the first case the main source of error resides in the alignment
of the coordinate frame calculated from the OMC data with respect to the model estimation frame.
The second case requires to estimate the parameters (e.g., the segment lengths) needed to calculate
the reference point positions from the IMU data. Since it is not possible to measure these parameters
exactly, they represent an additional source of error.

Other types of reference data were also used. One example is the work of Zhu et al. [32], in which
the authors constrain the hand to follow a straight line and then check the reconstructed trajectory to
be straight. Other mechanical platforms and robots were used in [42,57,75,76,81] as ground truth data.

As an alternative to tilt tables, Picerno et al. used in [100] a method for assessing the orientation
estimation accuracy by attaching mIMUs to a rigid plate that is oriented in 12 different ways. They use
the RMSE of the reconstructed orientation angles with respect to the known plate’s poses as accuracy
metric. Devices from Xsens have also been used as providers of ground truth data. Robert-Lachaine
et al. recently published [91] a comparison of MVN [64] and optical motion tracking performance
when using such systems either with proprietary kinematic models or when estimating angles derived
from ISB (International Society of Biomechanics) recommendations. The MVN suite was also used
by Pons et al. in [41] and Taunyazov in [90], whereas the attitude estimate provided by the MTx IMU
units was used by Brigante et al. in [68] and by Lee et al. in [44] to validate their methods.

It is worth noting that evaluation results always depend on the assessment method, while a great
variety of such methods is currently used. Hence, it is difficult to make a fair comparison between the
results reported in different publications. The summary Table A1 takes this into account by reporting
the assessment methods along with the results.

2.3. Survey of IHMT Methods

This section provides a survey of IHMT methods categorized by the targeted body parts.
This categorization allows following the historical development of IHMT methods. Indeed, starting
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to work on methods for a specific target (e.g., the upper limbs) and then refining it before moving to
other targets represents a pattern found for many teams of researchers. Note, the presentation of the
different methods combines solutions introduced in Section 2.2.

2.3.1. Generic Limb Orientation

Limbs pose tracking has been tackled by means of (m)IMUs since the end of the last century.
Works of Bachmann [30] and Marin [31] pioneered the field targeting orientation tracking of human
limbs and robotic links by using mIMUs for computer graphics applications. The former proposed
a quaternion-based attitude tracking method that updates the attitude quaternion by means of the
gyroscope measurement and corrects it based on a “low frequency” estimate from the accelerometer
and magnetometer measurements. Differently from [30] the second model assumes a time decay of the
limbs’ angular velocities. This assumption is suitable for human motion as humans cannot maintain an
average non-zero magnitude of their limbs’ accelerations for long time periods. The same group further
investigated this matter with different approaches: Marin et al. in [31] moved to using an EKF to fuse
a gyroscope-based quaternion attitude estimate with the estimate obtained from the accelerometer and
magnetometer signals through an optimization procedure. Yun tackles the problem of limb attitude
estimation in a similar way with two variants: In [97] the authors take into account a decay of human
limb acceleration, whereas in [43] they adopt a factorized quaternion approach to limit the use of the
magnetometer measurements for heading estimation. Both methods replace optimization with the
QUEST (QUaternion ESTimator) algorithm [4] to determine the attitude from the accelerometer and
magnetometer measurements. Hol et al. propose an alternative approach to IHMT for pose estimation
of one limb based on UWB [101]. They develop a sensor composed of a 6-axes IMU and a UWB
transmitter, whose pose estimation is the goal of the algorithm. First UWB measurements are modeled
considering transmission time as an unknown, whereas gyroscope and accelerometer models are based
on the kinematics of the sensor and they include time varying biases. Finally, an EKF is set to estimate
the pose of the sensor. Kok et al. in [102] extend this method. They also propose a tightly coupled
approach to fuse UWB measurements and IMU measurements to obtain a set of variables which
includes poses of human limbs. A novel two-steps method for calibration of UWB is first proposed to
obtain positions and time offsets of UWB receivers and transmitter, as well as the parameters of an
asymmetric probability distribution, that they use to model measurements of UWB. Obtained UWB
measurements are then used to set an optimization problem which includes IMU measurements to
estimate the poses of human limbs. In [10] the upper limb posture is estimated using a CF which
fuses accelerometer and magnetometer signals based on the TRIAD algorithm to reconstruct the
attitude of each limb. Two nonlinear CFs are proposed in [75,76] to fuse accelerometer, magnetometer
and gyroscope measurements to obtain an attitude quaternion estimation. The authors define an
orientation error and demonstrate by means of a Lyapunov stability analysis that the proposed filters
enforce the defined error to converge to zero. The method of Madgwicks et al. [59] is also based on a CF
and includes two variations. The former uses inertial signals, while the latter uses also magnetometer
measurements. The method with magnetometers is described in Section 2.2.2. It exploits an earth-fixed
frame to reconstruct the IMU’s orientation as a quaternion q. The relation of its time derivative with
the angular velocity allows the authors to use the gyroscope measurements for the CF “high frequency”
estimate of q. The “low frequency” estimate is obtained from an optimization procedure in which
the goal is to align vectors measured in the sensor frame with their known counterparts in the Earth
fixed frame. This second part can be adapted depending on the availability of measurements; e.g.,
acceleration due to gravity in case of an IMU and, in addition, local magnetic field in the case of an
mIMU. Finally, the method of To and Mahfouz [42] tries to improve the quaternion attitude estimation
by using von Mises-Fisher and Bingham densities in a PF that provides the attitude quaternion based
on the IMU signals.
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2.3.2. Lower Limbs Tracking

IMU-based lower limbs tracking has been tackled for several purposes. In some cases it has
been used for gait analysis [36,37,79,93], in other cases only parts of the lower limbs were targeted,
mainly for monitoring purposes in medical settings [94,96] or rehabilitation [44,59]. In [88] a system
for tracking shank and thigh orientation in the sagittal plane is presented. The authors use two IMUs
(both the accelerometers and the gyroscopes were biaxial) attached to these body segments. They
perform direct integration with updates according to the difference between the detected acceleration
and the acceleration due to gravity.

The work in [63] aims instead at estimating the knee flexion/extension angle based on IMUs
attached to the user’s thigh and shank. They use KFs to estimate the IMUs’ attitudes and model the
knee as a hinge joint to obtain the flexion/extension angle assuming the orientations of the sensors
with respect to the knee joint to be known. Similarly, in [98] the target is knee angle estimation,
and the IMU poses with respect to the knee rotation axis are supposed to be known or determined
through a calibration procedure. Favre et al. show an application of a similar approach to knee
ligament injury monitoring [92,96]. The same authors further developed their method to overcome
calibration issues. In [103] they propose a functional calibration procedure to obtain clinically relevant
joint angles. The importance of calibration (see Section 2.2.3) for measurements in clinical settings is
further witnessed by the works of Picerno et al. [37] and Cutti et al. [48,94] who developed calibration
procedures to map mIMU-based 3D kinematics reconstruction to anatomical landmarks. Knee angle
estimation based on two IMUs on thigh and shank is also the target of Seel et al. in [93]. They propose
a calibration procedure that allows to obtain the knee joint position and knee flexion/extension axis
in the sensors’ frames. Based on this, they propose two magnetometer-free joint angle estimation
methods. The first method exploits IMU orientation estimation to obtain the knee angle as orientation
difference about the knee axis. The second method exploits directly the hinge joint assumption to
obtain the knee angle by integrating the difference of the angular speeds with respect to the knee
axis. Finally, drift is removed by an acceleration-based joint angle estimation. They test their method
against ground truth from an OMC system by mounting IMUs and optical markers on both human
and prosthetic legs.

Lower limbs reconstruction has often been used to aid localization during locomotion. Examples
include the methods presented in [65,104]. The first exploits detection of contacts and a lower limbs
biomechanical model to correct acceleration and velocity errors. Localization is then obtained by
integration of linear velocity. The second implements KFs too estimate limbs orientations from mIMUs
signals. KFs estimate IMUs biases and the errors of limbs orientation quaternions, which are then used
to correct orientation estimate from INS. The method implements also ZUPT and adaptive weighting
of accelerometer and magnetometer signals to mitigate detrimental effects of linear acceleration and
magnetic field disturbances. Estimates from left and right legs are finally merged by a KF to obtain
pelvis displacement.

Joukov et al. propose to use five IMUs to track locomotion for gait analysis [79]. They use two
kinematics models to model the support and the swing leg. The first connects the feet to the ground by
means of hinge joints (stance leg), whereas the latter connects the waist to the ground by means of
three prismatic and three hinge joints. IMU data are fused in an EKF whose states comprise the joint
variables and their time derivative. The method is validate on ten cycles but only knee joint angles
are reported.

Zihajehzadeh and Park in [105] propose a method that substitute magnetometer with UWB. They
use 7 IMUs attached to feet, shanks, thighs and pelvis as well as 3 UWB tags attached to feet and
pelvis to reconstruct lower limbs motion and localize pelvis. Interestingly they exploit the robustness
of the estimate of limbs’ inclination to remove yaw estimation drift. Their method moves from a
first KF (tilt KF) that estimates inclination of the seven limbs based on accelerometer an gyroscope
signals. Then they use UWB for a second KF whose output are feet positions and yaw of feet and pelvis.
This output and tilt KF output are finally used to estimate shanks and thighs yaw. They obtained good
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results (orientation error below 5◦ and position error below 5 cm) walking, jumping and ascending
validation trials.

2.3.3. Upper Limbs Tracking

More than a decade ago, Luinge and Veltink in [95] exploited IMUs to track the orientation of the
upper limbs by modelling the accelerometer and gyroscope measurements as a function of attitude,
biases and noises and using a KF to estimate orientation errors and biases based on these models.
This method was applied in [54] for tracking the relative orientation of the forearm with respect to
the upper arm. Other works from these and associated researchers addressed magnetic disturbance
handling [84] and extending the method to full body motion tracking [64].

Mihelj [50] used IMUs to track human arm motion in a rehabilitation task. In this task the
user’s hand was firmly fixed to a robot and the known hand pose was used to complement the IMU
information. mIMUs were also used by Jung et al. in [67] to track the motion of the trunk and the
upper limbs. These were modeled as two four DoF serial kinematic chains which were connected to
the trunk, while the latter had three rotational joints with respect to the pelvis.

Bleser et al. proposed in [45] a novel method for upper limbs tracking that exploits an egocentric
camera and markers to aid mIMU-based estimation. The topic was then further investigated
addressing motion tracking algorithms for general kinematic chains [66], investigation of the effects of
different model calibration errors and biomechanical model representations on the segment orientation
estimation accuracy [51] (studied based on arm motions), simultaneous motion and IMU-to-segment
calibration estimation [106] as well as low-cost full body sensor suits [107]. Targeted applications
include ergonomics in industrial manufacturing [108] and rehabilitation [109].

Peppoloni proposed in [47] an mIMU-based method for arm tracking, modeling each shoulder
and elbow with five DoFs and using an UKF to fuse the mIMU data. In [70], the same group proposed
a method where the UKF was replaced by a probabilistic graphical model approach. The method
takes into account the constraints provided by the kinematic chain model and implements a message
passing approach to estimate the joint angles. Considered applications include ergonomics [110], robot
teleoperation [111] and rehabilitation.

Particle filters were used by Zhang et al. [39] to fuse inertial and magnetometer measurements for
estimating the elbow flexion/extension angles. The same authors worked previously on an UKF-based
method presented in [49].

The upper limbs tracking approach of El Gohary [53,77] exploits IMU measurements fused in an
UKF. The method was eventually improved [78] by including IMU biases and ZUPTs to limit drift.

Taunyazov et al. [90] adopted a simpler approach to track the upper limbs. Their method relies on
one IMU mounted on the upper arm and a simple mechanical tracker equipped with a potentiometer
to measure the elbow’s rotation angle.

Finally, upper arm pose estimation is the goal of the methods analyzed in Section 3,
i.e., [32,45,47,58,97] which are all based on mIMUs and exploit different calibration and sensor
fusion techniques.

2.3.4. Full Body Motion Tracking

Some of the aforementioned methods were extended to full body motion tracking. Works from
professor Veltink’s group led to the development of a commercially available inertial body tracking
system based on a body suit with 17 mIMUs [64] (the Xsens MVN system). The motion reconstruction
algorithm also benefits from the work of Schepers, Roetenberg and Slycke on the exploitation of
disturbed magnetic field signals [99,112].

Vlasic et al. [14] developed a full body suit equipped with 18 IMUs and eight ultrasonic sources.
The IMUs were equipped with microphones so that the received signals provided a reference to avoid
the drift that would occur when purely integrating accelerometer and gyroscope measurements.
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The full body tracking method of Pons-Moll et al. [41] is mainly based on camera images.
The limbs poses are inferred from the video information within a set of possible poses. This set is
reduced thanks to the orientation cues from IMUs mounted on the body.

A linear CF is proposed in [58] in which the orientation quaternion of each limb is obtained as
a linear combination of an estimate based on the gyroscope measurements and one based on the
accelerometer and magnetometer measurements.

Miezal et al. [66] exploited an EKF to develop a general framework for motion tracking of arbitrary
kinematic chains based on mIMUs.

An interesting probabilistic method has been developed by Kok et al. in collaboration with
XSens [55]. Instead of using a recursive filter, joint angles are estimated from IMU measurements using
constrained optimization. Here, constraints from the biomechanical model and from assumptions
about the average acceleration over time are included into the cost function as both hard and soft
constraints. Moreover, errors due to sensor shortcomings and soft tissue artefacts are modelled by
incorporating appropriate noise terms. The maximum a posteriori estimate is obtained in an offline
process using an infeasible start Gauss Newton method to solve the weighted least squares problem.
Recently, Miezal et al. [51] proposed a variation of Kok’s offline method to enable online constrained
optimization using a sliding window approach.

Multiple limbs and full body suits have been applied to several fields. In the sports field, for
example, Ruffaldi et al. in [113] use IMUs to analyze rowing performance by estimating the rower’s
motion based on five mIMUs. Measurements from the rowing simulator hardware (oars and seat) aids
the overall estimate. Supej et al. developed a full body suit based on Xsens MTx sensors to track ski
performance [114]. In [57] Miller et al. addresses remote robot control through IMU-based motion
tracking. YostLabs (YostLabs, Portsmouth, OH, US), formerly YEI technologies, distributes full body
IMU-based motion tracking applied to computer graphics and Virtual Reality (PrioVR). The system
enables computer game players to control virtual characters through their own motions (see YEI
technology, http://www.yeitechnology.com/).

3. Selected Methods

This second part of the article is in the form of a tutorial, and provides more details on five
methods which have been selected in order to span the different areas that were identified in Section 2.
These methods differ concerning the sensor fusion technique, using either CF, KF, EKF or UKF. They
also differ concerning the sensors that are used: all of them exploit IMUs, but magnetometer signals
are not always used and one method requires a visual reference for tracking human upper limbs.
They also differ regarding the kinematic models: some use Euler angles, some use the DH convention
and others use quaternions. Moreover, they differ in how the constraints of the kinematic chain are
considered. Finally, they differ in how the parameters of the algorithms are set. In the following these
methods are briefly recalled, more details can be found in the cited papers.

The following notation will be used. The i-th accelerometer signal will be ãi, the gyroscope’s will
be ω̃i and the magnetometer’s will be m̃i. Vector a will denote linear acceleration of a point. The earth
magnetic field and the gravity vectors will be respectively m and g. lp will specify that the vector p is
written in the reference system l. In will be the size n identity matrix, 0n,m a n by m null matrix, and T
is the sample time. The quaternion qi will represent the attitude of the i-th body.

3.1. Method 1

The first method that is described in [32] is suitable for the reconstruction of an arbitrary kinematic
chain, given that each link is provided with a nine axis mIMU. Figure 1 shows the block diagram that
summarizes this method. Given two consecutive links in the kinematic chain, namely i and i + 1, each
one provided with a frame τi ≡ (Oi, xi, yi, zi), the authors represent the orientation between the two
frames by a axis-angle representation with axis ki+1

i and rotation angle θi, from which the rotation
matrix Ri+1

i can be obtained.

http://www.yeitechnology.com/
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Figure 1. Diagram of method 1 for the i-th limb, the diagram represents one temporal slice of the
motion reconstruction. Vectors gr and mr are the gravity and the magnetic field vectors represented in
the i-th limb frame in a reference configuration, e.g., N pose.

The rate of change of gi and mi within the same frame τi can be calculated as

iġ = S(ωi)ig
iṁ = S(ωi)im

(1)

where ωi is the angular velocity of the frame τi and S(ω) is the skew-symmetric matrix of vector ω

S(ω) =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (2)

It is worth noting that the gyroscope measurement is treated here as a known control input, thus
not taking into account the gyroscope measurement noise.

Under the assumption of slow motion (or that the linear acceleration is known) and that the i-th
sensor frame is aligned with τi, then gi, mi and ωi are approximately the output of the i-th sensor, i.e.,

ig ≈ ãi and im ≈ m̃i (3)

The authors hence propose to use a KF for each segment in which the state is

Xi =

[
ig
im

]
. (4)

The process model between steps j and j + 1 is derived from Equation (1):

Xi
j+1 = (Ẋi

jT + I6)Xi
j + wj (5)

where wj is white noise. According to Equation (3) the measurement model is hence

Zi
j = Xi

j + δi
j (6)

where and δi is the white measurement noise.
The KF estimation of ig and im feeds the QUEST algorithm to calculate the attitude quaternion qi.

The resulting quaternion qi is converted to a rotation matrix that feeds the homogeneous matrices

Ai+1
i =

[
Ri+1

i
idi+1

i
0 1

]
, (7)

in which idi is the position of Oi+1 in the frame τi, are then recursively applied from the chain root up
to the desired point to obtain its position in the root frame.
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3.2. Method 2

In the method proposed by Yun et al. [97] each limb is supposed to be independent of the others
and equipped with a nine axes mIMU sensor. Figure 2 shows the block diagram that summarizes
this method. The attitude of i-th limb with respect to the root frame is represented by a quaternion
qi. Under the assumption that the linear acceleration of the human limbs is negligible with respect to
the gravity, and that the mIMU axes are aligned with the limb ones, then qi is initially estimated by
means of the QUEST algorithm fed by equally weighted accelerometer and magnetometer signals thus
obtaining qi

m. To compensate for the dynamic effect of the linear acceleration, the authors estimate the
rate of change of qi based on the link angular velocity ωi also measured by the mIMU:

q̇i =
1
2

qi ⊗ωi = Q(ωi)qi (8)

where Q(ωi) is the matrix representation of the quaternion:

Q(ωi) =
1
2

[
0 −ωiT

j
ωi

j −S(ωi
j)

]
(9)

KFQUEST

ã 

m q

gr mr

qm

w
~

~

Figure 2. Diagram of method 2 for the i-th limb, the diagram represents one temporal slice of the
motion reconstruction. Vectors gr and mr are the gravity and the magnetic field vectors represented in
the i-th limb frame in a reference configuration, e.g., N pose.

The authors also assume that human limb acceleration is bounded and averages to zero over a
certain amount of time, hence they propose to model the angular velocity as exponentially decaying
over time:

ω̇i
k = −

1
tk

ωi
k k ∈ {x, y, z} (10)

where tk is a parameter of the algorithm that determines the time horizon within which ωk averages to
zero. These two methods for estimating qi are fused by means of an EKF in which the state vector is

Xi =

[
ωi

qi

]
. (11)

The process model between steps j and j + 1 is derived from Equations (8) and (10):

Xj+1 = (ΦjT + I7)Xj + wj (12)

where wj is white noise in a 7-dimensional space and

Φj =


−1/t1 0 0

0 −1/t2 0 03,4

0 0 −1/t3

04,3 Q(ωi
j)

 . (13)
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The measurement model is the identity as ω̃i ≈ ωi and qi measurement is qi
m. The final estimation

of qi is then used to reconstruct the pose of the links composing the human arm.

3.3. Method 3

The third method is presented in [58]. The attitude of the i-th limb with respect to the root
is represented by the quaternion qi. They assume to attach a mIMU sensor to each moving limb.
The authors propose two versions of their method. In the first version that is called pure the linear
acceleration is neglected. In the second version that is called perfect the authors model the human body
as a kinematic chain that allows them to calculate the linear acceleration lai of each frame. Figure 3
summarizes the two versions of the method. The authors assume that the mIMU axes are aligned with
the limb frames, thus having im ≈ m̃i, and they suppose to know all the parameters that are required
to define the kinematic chain.

Prediction

QUEST

g

m

w q

qm

qp

Linear 

Acceleration

Correction

CF

ã

gr mr

~

~

Figure 3. Diagram of method 3 for the i-th limb, the diagram represents one temporal slice of the
motion reconstruction. Dashed lines apply to the perfect version only whereas dotted lines to the pure
version only. Vectors gr and mr are the gravity and the magnetic field vectors represented in the i-th
limb frame in a reference configuration, e.g., N pose.

In both versions the authors propose a complementary filter in which the “high frequency”
estimation of qi, namely qi

p is obtained from the limb angular velocity ωi as in Equation (8). The “low
frequency" estimation of qi, namely qi

m is obtained from igi and imi by means of the QUEST algorithm.
Given qi estimation at time step j, the proposed CF computes

qi
j+1 =

1
k
(qi

m − qi
p) + qi

j (14)

where k is a parameter that allows us to tune the filter.
The pure and the perfect filters differ in the gi that is provided to the algorithm:

gi =

{
ãi pure version,

ãi − lai perfect version.
(15)

The authors associate a hierarchical model tree with the human kinematic chain so that one limb
is the root and every other limb i has its parent p. Given the angular velocity of the i-th limb, lai is

lai = lap + [S(ω̇i) + S2(ωi)]d
p
i (16)

where lap is the linear acceleration of the i-th limb’s parent, S(ω) is defined in Equation (2), and dp
i is

the position of i-th frame origin in the parent frame.
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Finally qi is used to reconstruct each limbs pose according to the defined kinematic chain.

3.4. Method 4

The fourth selected method [45] has two main innovations with respect to the previous ones. First
it embeds the kinematic constraint equations in the sensor fusion filter. Second it proposes a visual
reference to aid magnetometers under severe magnetic disturbances. This method aims at tracking
the upper body (but can be extended to the full body) by means of five mIMUs attached on the chest,
the upper arms and the forearms. The mIMU on the chest is also provided with a camera (CmIMU)
that tracks the markers placed on the user’s wrists. The authors consider a five degree of freedom
(DoF) model for each arm and also model the shoulder motion accounting for the scapulohumeral
rhythm [115]. The resulting kinematic chain is rooted in the chest and organized as a hierarchical tree.

The method is based on three loosely coupled EKFs, the first returns the trunk orientation given
the mIMU signals, the latter two estimate the shoulder (three DoFs) and elbow (two DoFs) joint angles
q1, . . . , q5 of each arm based on the mIMU signals, the trunk orientation and the wrist position are
obtained from the camera image. Figure 4 summarizes the components of the EKF that estimates the
arm motion given the trunk orientation.

X
Prediction

Kinematic

Model

Camera

Model
heading

Update

Xp

image m

ã, ω
X

a, ω d
w
0

~

~

Figure 4. Diagram of the method 4, the diagram represents one temporal slice of the motion reconstruction.

The state of these EKFs is X = [q1 q̇1 q̈1 ... q̈5]
T , the process model is linear and it assumes constant

angular acceleration between two time steps j and j + 1, thus having for the i-th angleqi
q̇i
q̈i


j+1

=

1 T T2/2
0 1 T
0 0 1


qi

q̇i
q̈i


j

+ wi i = 1, . . . , 5 (17)

The authors then propose a calibration procedure to relate the state X to the available
measurements. Assumed that the mIMUs sit on the frames of the limbs, the orientation of each
mIMU frame with respect to the related link frame is represented by the rotation matrix Rui

i that is
obtained through this procedure as well as the position of the CmIMU with respect to the shoulder
joint center. The other link lengths are gathered from anthropometric tables. Given Rui

i , the orientation
of each mIMU with respect to the root is Rui

0 and the mIMU measurements are

ãi = Rui
i (iap + ig) + wa

ω̃i = vex(Rui
0 Ṙui

0 ) + wo

m̃i = Rui
0 m0 + wh

(18)

where vex(S(ω)) = ω being S(ω) defined in Equation (2), ap is the acceleration of the link hosting
the i-th mIMU, and wj are white noises. The latter measurement equation is only partially used and



Sensors 2017, 17, 1257 16 of 40

reduced to the heading direction. A further measurement equation relates the position of the wrist to
the wrist position estimated from the camera:

cd̃w
0 =

1
dw

0z

[
dw

0x

dw
0y

]
+ wc (19)

where dw
0 is the wrist position and wc is white noise. The measurement equations are then grouped as

Z = h(X) (20)

that is linearized to obtain the observation matrix

H =
∂h
∂X

∣∣∣∣
Xj+1,j

(21)

This method directly provides the poses of all limbs.

3.5. Method 5

The last selected method [47] has two main differences with respect to the previous ones. First,
it does not rely on the linearization of nonlinear equations, but it exploits the unscented transformation
to cope with non-linearities. Second, it proposes refinements in the kinematics of the upper body and
exploits a nonlinear sensor fusion algorithm to cope with nonlinear models. The method aims at upper
limb motion tracking. Each of the clavicles, upper arm and forearm is provided with a mIMU. Taken
the chest as root, a seven DoFs hierarchical kinematic model of each arm was developed according to
the Denavit Hartenberg convention.

The sensor fusion technique of this method is an Unscented Kalman Filter in which the state
vector is X = [q1 q̇1 q̈1 ... q̈5]

T and the process model is the same as Equation (17).
The authors propose a calibration procedure to gather the parameters needed to relate the state

X to the measurements. The orientation of each mIMU frame with respect to the related link frame
is represented by the rotation matrix Rui

i , whereas its translation with respect to the parent frame is
measured to obtain the homogeneous matrix Aui

i that fully refer the mIMU frame to its parent’s one.
Given that the sth mIMU is attached to the i-th frame whose parent frame is p, the measurements
model is:

ãs = Rs
p ap + [S(ω̇p) + S(ωp)2]rs

p + Rs
0

0g + wa

ω̃s = Rs
p(ω

p + ϑ̇p+1z0) + wo

m̃s = Rs
0m0 + wh

(22)

where Rs
p is the rotation matrix from the parent frame to the sensor frame, z0 = [0, 0, 1]T vector, and

rs
p is the position of sensor frame relative to parent in sensor frame. The measurement equations

are then grouped as Equation (20). In this case the function h is not linearized, but it is used for the
unscented transformation that provides the measurement estimation based on the state prediction.
As for method 4, the state already provides he pose of each limb.

4. Comparison

4.1. Experimental Setup

Selected methods were compared to each other using OMC. Ground truth data were obtained
from the Vicon (OMG plc, Oxford, UK) OMC system while tracking a healthy 28 years old male that
was equipped with the mIMUs Colibri mIMUs from Trivisio Prototyping GmbH, sampled at 100 Hz),
the CmIMU (Firefly MV color camera from PointGrey with diagonal field of view of 140 deg, sampled
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at 12.5 Hz, hardware synchronized with the mIMUs), and markers on the anatomical landmarks. After
holding N-pose and T-pose as calibration procedure, he was asked to perform several movements that
involved one functional degree of freedom at a time, namely elbow flexion/extension (EFE), forearm
pronation/supination (EPS), shoulder flexion/extension (SFE), shoulder abduction/adduction (SAA),
and shoulder internal rotation (SIR). The participant gave his informed consent for inclusion before he
participated in the study. The study was conducted in accordance with the Declaration of Helsinki,
and the protocol was approved by the Ethics Committee of Scuola Superiore Sant’Anna (Delibera
n. 1/2017). The setup of the experiment is shown in Figure 5.

Figure 5. Experimental setup showing markers that were placed on the anatomical landmarks and on
the 9 mIMUs.

The joint motion reconstruction from optical data is based on the following kinematic model: the
chest was considered as a steady rigid body. Shoulder was modeled as a spherical joint, so that the
humerus has three rotational DoFs with respect to the chest. The forearm was considered to have two
DoFs with respect to the humerus, i.e., the flexion-extension and pronation-supination functional DoFs.
The Vicon Nexus R© software (Oxford Metrics, Oxford, UK) allowed us to use this kinematic model
for offline adjustment of the marker positions. The marker on the acromions served to capture the
shoulder joint center, that is assumed to be 4.5 cm under the acromion in the Zv direction.

Each sequence lasted at least 10 s. Wrist position was used to assess the methods. Moreover, each
sequence of movements includes a pair of repetitions performed at higher speed to test how methods’
performance varies as the linear acceleration increases.

Captured data include the markers positions in the Vicon reference system τv, the mIMU signals in
the respective sensor reference systems, and the images gathered by the CmIMU in the camera reference
system. All the data are synchronized and gathered at 100 Hz. IMU and OMC data were manually
synchronized by exploiting the transitions from static postures to motion. This synchronization method
may introduce a time misalignment in the data which accounts for up to 3 samples (variations in the
data are sufficiently clear to identify onset of motion). This means that the maximum misalignment



Sensors 2017, 17, 1257 18 of 40

cannot exceed 30 ms. The dataset used for the comparison is available in Zenodo (https://zenodo.org/)
and it can be found through the digital object identifier (DOI) of this paper.

4.1.1. Data Alignment for the Comparison

The comparison of the estimated positions (joints and end effectors) against the OMC based
ones requires to represent both in a common reference system. OMC data is available in a frame
τv ≡ (Ov, xv, yv, zv) that is defined during the OMC system calibration. Since the chest frame τ0 was
the root for the IMU based estimation, all these data were available in τ0. Once decided to represent all
the body frames in τv, the rigid transformation between the global frame τv and the root IMU frame τ0

is sufficient for the comparison. The homogeneous transformation matrix

Av
0 =

[
Rv

0
vdv

0
0 1

]
(23)

represents such a transformation, where Rv
0 is the rotation matrix that aligns τ0 axes with τv ones, and

vdv
0 is the position vector of the τ0 origin. Since in data capturing there was not enough information to

calculate Av
0, it was decided to estimate it for each method. Let X̃ = [vx̃1, . . . , vx̃n] be a n samples set of

optical captured positions and Ỹ = [0ỹ1, . . . , 0ỹn] the corresponding estimated positions. Let then vy
and 0x be the captured and reconstructed positions in the reference configuration, i.e., the N-pose for
the present evaluation. If we consider two new sets of samples, namely X and Y, obtained from X̃ and
Ỹ as

xj = ṽxj − vx

yj =
˜0yj −

0y.
(24)

then
vdv

0 = 0. (25)

The rotation matrix Rv
0 is calculated to minimize the reconstruction error, for any method m and a

reference r the quality Q can be computed as

Rv
0 = argmin

Rv
0

n

∑
j=1
‖(yj − Rv

0xj)‖2. (26)

Finally, the samples set Z = [vx1, . . . , vxn] obtained as

Z = Rv
0Y (27)

can be compared against X.
This method underestimates the absolute error of each method, but it provides a fair comparison

between the methods. The quality of a set of body tracking techniques can then be evaluated against
the OMC dataset by comparing the joint and end-effector points with the reference method.

4.1.2. Performance Indices

Aligned mIMU and OMC data are then used to calculate the performance measures that we
introduced in Section 2.2.4 and hence compare the algorithms. Given two random variables X and Z
each sampled with N samples, the following indices will be used for this purpose:

1. Accuracy:

E =
1
N

N

∑
i=1
‖Zi − Xi‖ (28)

https://zenodo.org/
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2. Correlation:

C = cor(X, Z) =
cov(X, Z)√

var(X) var(Z)
(29)

4.2. Experimental Results

Data gathered from the mIMUs provided the input for the methods reported in Section 3 to
reconstruct the arm kinematics. The parameters of each method’s filter were selected to optimize the
method performance in terms of stability and accuracy. To enable the comparison of the methods, OMC
and mIMU-based position estimation were aligned according to the method reported in Section 4.1.1.
Figure 6 shows how the mIMU-based data are first translated to match OMC data in N-pose and then
rotated to obtain the best alignment with OMC data.
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Figure 6. Alignment procedure for the mIMU-based data. mIMU-based estimated (Y), translated (Ỹ)
and aligned (Z) are reported along with OMC data (Z).

Figure 7 refers to the EFE functional motion and shows how the error E (see Equation (28)) evolves
over time.

After these examples we report the values of the error and of the correlation that the different
methods scored. For the comparison of the methods three functional movements were selected, namely
EFE, SFE, SAA. The first movement allows us to assess how the methods behave when only one joint of
the kinematic chain as well as only one mIMU moves. The latter two involve the motion of two mIMUs.
With respect to the EFE motion, in the SFE and SAA motions the estimation provided by methods that
use the kinematic chain is likely to differ more from the other methods’ estimation. The average of E
and C in the three trials are reported in Table 1.

To obtain a more detailed insight of the methods’ performance, the EFE functional motion was
further studied. It was divided into cycles: cycles 1–7 were carried out at a slower speed, whereas the
latter two were carried out at a higher speed. Figure 8 shows how the error E is distributed within
the cycles of the EFE trial, whereas Table 2 reports the average of E and C (see Equation (28)) for the
same cycles.
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Figure 7. Error on the wrist motion reconstruction for the EFE functional motion trial. On the x-axis the
seconds elapsed since the trial beginning are shown. Dotted lines represent average error in the trial.
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Figure 8. Error on the wrist motion reconstruction for each period of the EFE functional motion trial.
The boxplots show the median of E along with the 25th and 75th percentiles. Whiskers extend to
1.5 times over the interquartile range.
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Table 1. Accuracy and correlation of the methods’ estimation. Error E and correlation C are calculated
according to Equation (28) for elbow flexion-extension EFE, shoulder flexion-extension SFE, and
shoulder abduction-adduction SAA. For each performance index (i.e. each column), bold values
highlight methods that performed better.

EFE SFE SAA

Method E (mm) C E (mm) C E (mm) C

1 38.8 0.86 108.9 0.46 66.0 0.66
2 89.2 0.77 121.4 0.86 243.8 0.36

3-pu. 45.7 0.84 122.86 0.46 156.0 0.59
3-pe. 59.7 0.84 100.4 0.50 272.2 0.60

4 75.7 0.91 82.7 0.86 86.0 0.73
5 89.2 0.77 214.4 0.89 125.4 0.66

Table 2. Accuracy and correlation of the methods’ estimation. Error E and correlation C are calculated
according to Equation (28) for each period of the EFE motion. For each cycle, bold values highlight
methods that performed better. The amount of bold values per column allows the reader to have an
impression of what methods performed better.

Method

Cycle Index 1 2 3-Pure 3-Perfect 4 5

E (mm)

1 43.7 102.8 53.8 73.4 72.3 51.3
2 49.9 100.3 64.2 79.9 90.7 44.8
3 46.6 103.4 63.1 84.0 98.3 49.4
4 37.7 102.8 53.3 68.1 92.1 47.7
5 35.3 97.1 44.5 57.6 79.0 59.6
6 49.4 102.8 51.3 64.1 85.7 89.6
7 50.4 108.4 45.9 57.5 90.5 101.3
8 38.9 100.2 44.7 56.3 76.0 97.8
9 23.6 60.9 27.8 36.5 59.0 136.9

C

1 0.94 0.73 0.96 0.92 0.94 0.93
2 0.94 0.77 0.91 0.87 0.92 0.85
3 0.96 0.75 0.91 0.82 0.95 0.81
4 0.95 0.72 0.96 0.92 0.96 0.76
5 0.95 0.78 0.93 0.89 0.94 0.87
6 0.93 0.81 0.95 0.92 0.92 0.82
7 0.83 0.77 0.84 0.85 0.91 0.76
8 0.88 0.74 0.86 0.89 0.95 0.71
9 0.87 0.86 0.92 0.93 0.95 0.94

4.3. Discussion

The methods can now be compared according to the indices that were proposed in Section 4.1.2.
Before comparing the methods, we see from Figure 7 that for all the methods the error varies
periodically with time. This time error may be due to residual error of mIMU-OMC data alignment.
However, each of the methods may have other source of error related to biomechanical constraints:
lack of kinematic constraints (methods 1, 2 and 3 pure) and too rigid constraints (method 3 perfect,
4 and 5) are all suitable candidates for periodic errors in the estimation of a periodic motion.

4.3.1. Accuracy

The first measure that we proposed is accuracy, as obtained via E. Clearly, the lower E the more
accurate the method is. Accuracy is a measure of reliability in accurate position estimation, accuracy is
needed when an absolute measure of the position is required, for example in the analysis of motion or
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to provide force rendering when interacting with a Virtual Environment. From Table 1 we see that
method 1 is generally the most accurate and method 4 is also comparable. We note that the accuracy
gap between methods 1 and 4 is smaller for SAA and SFE movements, being method 4 more accurate
for the latter movement. This partially supports the finding that imposing a kinematic chain in the
motion estimation improves the estimation when the measurements of mIMUs on different links are
affected by the same joint variable. This hypothesis is further supported when methods 1, 2 and 3-pure
are compared. Differently from methods 3-perfect, 4 and 5, the first two methods do not take into
account the kinematics of the arm. The latter has a lower accuracy in the EFE motion, but has a better
accuracy for the motions SAA and SFE (except for method 3-perfect in the SAA motion).

4.3.2. Correlation

Correlation C is the second measure that is considered. Correlation indicates whether the estimated
position follows the real pattern of the performed movement. A good correlation of the estimated
human motion with the real movement suffices to teleoperate a remote robot. In facts, in this case it is
anyhow needed to map the operator motion to the robot kinematics, and what matters is that this map
does not vary along time. In other words, even if accuracy is poor, the human who teleoperates the
robot can easily adapt motion of his arm to be able to control the robot unless there is a good correlation
between the performed motion and the method’s estimate. When correlation is poor, human has to
adapt the motion of the arm and eventually perform unnatural motions to control the robot (e.g.,
activate more DoFs to obtain a simple elbow motion). From the point of view of the correlation, Table 1
shows that the best performing methods are 4 and 5.

4.3.3. Fast Motion

One of the differences between the methods is the use of the kinematics of the human arm, in
particular of the linear acceleration of the limbs. A reasonable hypothesis is that methods 3-perfect,
4 and 5 perform better with respect to the others when the motion of the limbs is fast and the speed
changes quickly. This condition should make linear acceleration of the limbs play a bigger role. In our
case, this role is enhanced by mounting the mIMUs far from the parent joint. However, looking at
Figure 8 and at Table 2, there is no significant difference in the variation of the accuracy between slow
cycles (1 to 7) and fast cycles (8 and 9). Similarly, Table 2 shows that correlation does not improve
between cycles 1–7 and 8–9 for methods 1,2,3-perfect and 5, whereas there is a small improvement
for method 4. These results suggest that the linear acceleration of the limbs plays a minor role with
respect to gravity, as assumed by several models. However, this aspect should be further investigated
with specific motions in which gravity plays a minor role to identify limb’s orientation.

4.3.4. Sources of Error

As a final remark of the discussion, the accuracy and the correlation that were obtained are
generally comparable or worse with respect to the literature. However, apart from possible suboptimal
tuning of the methods’ parameters, possible sources of error that can explain our results

• Knowlegde of human parameters (i.e., arm length). This source of error can be minimized by
including human parameters in the estimation e.g., [51]

• Body to mIMUs calibration. Although the calibration procedure that we carried out suffices to
determine the orientation of the mIMUs, uncertainties in the position of mIMUs with respect to
their parent is still subject to assumptions. Also the effects of this source of error can be reduced
by a proper calibration and by taking into account the sensor poses in the sensor fusion technique.

• Time alignment of OMC data with mIMU data. OMC and mIMU-based data are manually done
based on a known motion from a steady condition. However, the effects of misalignment are
much smaller than the error we have reported.
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• Preprocessing of data. Here we tested only the reported algorithm, not considering possible
filtering on mIMU data. For example, having a hard magnetic calibration, it would be possible to
handle bad data with distorted magnetic field.

5. Conclusions

After introducing the reader to the main issues of IHMT, relevant methods from the literature
were reported. Analysis of the literature revealed that several approaches perform similarly for IHMT.
However, optimization-based methods seem to have the potential to bring substantial improvements
to IHMT. Currently methods and solutions for lower limbs tracking such as ZUPT have not been
widely applied to full body tracking yet. These methods are often capable of accurate estimation even
during long walk trials. Therefore their combination with their upper limbs counterparts may improve
accuracy and reduce drift of full body IHMT also when walking.

Five methods that span the different techniques used for IMU data sensor fusion were presented
and analysed in depth, and an evaluation of these methods was proposed based on accuracy and
correlation with OMC data. Results showed that method 1 is the best performing for accuracy followed
by method 4, which is the best in terms of correlation. We hence advise to use method 1 for attitude
estimation and for navigation purposes. Instead we consider 4 the best method for robot teleoperation.
Motion speed analysis provided minor results, possibly due to the choice of movements that make
gravity play a dominant role in limb attitude estimation.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Appendix A. Summary of Presented Methods

A summary of the methods presented in Section 2 is reported in Appendix A in Table A1. Methods
are sorted in chronological order and described according to the following categories:

Ref: reference to the article where the methods described.
Year: publication year.
Body: this category describes which part(s) of the body are targeted by the method Application:

some methods are connected by the authors to one ore more applications. Most of the times this link is
made explicit in the introduction. This category reports the application(s) extracted from the article.
They span from computer graphics to robotics and medical applications.

Target: this category describes the physical quantities that are targeted by the method in relation
to the body parts to be tracked. For example, when the body parts to be tracked are upper limbs, arm’s
orientation and position are possible targets. The word “attitude” is referred to methods that are not
referred to a specific part of the human body but to a generic rigid body.

Focus: Most of the cited articles focuses on the description of the IHMT method. However, some
articles focus on the assessment of some methods, or on their application. In these cases fewer or no
details about the IHMT method are reported. Calibration and handling of magnetic disturbances are
also focuses of some of the articles reported in Section 2.

Sensors: List of the sensors required to apply the method described in the article. Each sensor is
preceded by the numbers of units that are used.

Kinematics and Constraints: This category lists the kinematic representation(s) that was (were)
chosen in the method and the biomechanical constraints that were used. Orientation is often
represented as a quaternion or a rotation matrix which is a function of three independent variables.
Exponential maps have also been used to represent orientation. When a kinematic chain is used,
position and orientation may be obtained through the joint variables. This is the case when “kinematic
chain” is reported without other kinematic representation specifications (e.g., “quaternion orientation”).
“Kinematic chain” also indicates that joints are used either to impose constraints to motion or to
reconstruct limbs’ pose. This category reports also the use of free segments modelling. Other constraints
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specifications (e.g., hinge, soft or hard constraints) are specified for some methods. This category is
linked to Section 2.2.1.

Parameters: Kinematic chain, constraints and sensor fusion technique require to set and tune
some parameters. These parameters are grouped and reported in this category. Lengths (e.g., arm
length), orientations (e.g., mIMU’s orientation with respect to the link it is attached to), Kalman Filter
parameters (e.g., covariance matrices) are parameters that many models require.

Sensor Fusion Technique: The mathematical method(s) that was (were) used is reported in this
category. Kalman Filters, Complementary Filters and Optimization are the most popular possibilities
that are reported. However, some methods use other tools such as inertial navigation systems and
probabilistic graphical models. This category is linked to Section 2.2.2.

Calibration: When one or more calibration procedures are required to obtain the parameters
needed for the method, these are here summarized. Most of the methods include static calibration,
whereas other requires more complex procedures which include motion of specific articulations.
This category is linked to Section 2.2.3.

Validation: Validation methods are reported in this category, the number of participants and the
source of ground truth data is reported.

Measure: Quantitative validation of the methods requires the definition of variables to be assessed.
In many cases these variables replicate the target of the method, in other cases they are a subset of the
variables need for tracking of the declared targets.

RMSE: Root mean square error of the variables reported as measures for the validation when
compared to ground truth data. Angular variables are reported in degrees whereas position are
reported in millimetres. Drift are reported in meters per seconds.

Correlation: Correlation of estimated variables with ground truth data as reported in the
referenced article.

The Notes column completes the description of each method with a few details specific of the
method. Some formulas are worth to be mentioned:

Sens align link refers to the assumption that a sensor’s frame is supposed to be aligned to the
frame of the body it is attached to; Sens sitting link is used referring to the situation of a (m)IMU
attached to a human limb. In this case the the limb is supposed to be a beam and the formula refers to
the assumption that the sensor’s frame origin is a point of such a beam; Bias est refers to models in
which sensors’ biases are among the variables that are estimated;

Lin acc noise is referred to methods in which linear acceleration of the sensor is considered to
be noise;

Show plot refers to method for which RMSE and/or correlation are not reported as figures in the
text on in tables but a plot of such quantities is available.

Appendix A.1. Description of Abbreviations

In Table A1 some abbreviations are used to make the table more compact. These abbreviations are
listed according to the previously defined categories and described in Table A2:
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Table A1. Summary of IHMT methods.

Ref. Year Body Application Target Focus Sensors Kinematics &
Constraints

Parameters Sensor
Fusion
Technique

Calibration Validation Measure RMSE Correlation Notes

[30] 1999 attitude computer
graphics

link ori method 1 acc, 1 gyro,
1 mag

quat ori CF gain CF, GN opt no 1, tilt table roll 1.0 - initial condition study,
120 s valid trial, lin acc
negl

[31] 2001 attitude computer
graphics

link ori method 1 acc, 1 gyro,
1 mag

quat ori CF gain CF, GN opt - 1, tilt table quat compar - - initial condition study,
25 s valid trial

[10] 2004 attitude computer
graphics

link ori method 1 acc, 1 gyro,
1 mag

rot mat CF gain CF - 1, robot EE roll, pitch, yaw - 0.7–0.87 drift, 12s valid trial, omni
phantom

[32] 2004 upper
limbs

- arm ori
forearm ori
wrist pos

method 2 acc, 2 gyro,
2 mag

rot mat link len, KF
params

KF, QUEST - 1, hor line vert
line

wrist pos,
shoulder abd,
elbow fle

- - lin acc negl, sens align
link, sens sitting link, 25s
valid trial, show plot

[57] 2004 full
body

teleoperation link ori application 14 acc, 14
gyro, 14 mag

kinematic
chain, quat
ori

CF gain CF like - robot EE - - - sens sitting link, plot traj,
valid teleop robot

[95] 2005 upper
limbs,
lower
limbs

medical link ori method 1 acc, 1 gyro rot mat KF params KF static 2, OMC pelvis incli
trunk incli
forearm incli
pelvis drift
trunk drift
forearm drift

pelvis incli 1
trunk incli 2
forearm incli 3
pelvis drift 0.6
trunk drift 0.4
forearm drift 0.4

- drift modeled, sens align
link

[84] 2005 attitude - link ori mag
comp

1 acc, 1 gyro,
1 mag

rot mat KF params KF, lin acc err,
mag err

static 1, box, 1, OMC ori err sta
ori err dyn

ori err sta 0.6
ori err dyn 2.7

- linear acc noise,

[75] 2005 attitude - link ori method 1 acc, 1 gyro,
1 mag

quat ori CF gain CF - mech platform link ori - - bias est, 60s trial, show
plot

[36] 2005 lower
limbs

medical:
locomotion

link ori
link pos

method 1 acc, 1 gyro rot mat - acc double int static
dynamic

6 static
poses

6 known
traj speeds

1, OMC link ori
link pos

link ori 0.8–1.3
link pos 22–26

- sens sitting link, sens
align link, 4 s localization
valid tasks

[88] 2006 lower
limbs

- shank ori method 2 2d acc, 1
gyro

knee hinge CF gain CF like static, n pose
like

8, OMC shank
thigh

shank 0.74–0.78
thigh 1.42–1.69

0.999 motion limited sagittal

[96] 2006 lower
limbs

medical:
knee
function
analysis
post
cruciate
ligament
lesion

knee fle
knee abd
knee rot

application 2 gyro - - gyro int - 5, US knee fle
knee abd
knee rot

knee fle 4.4
knee rot 2.7
knee abd 4.2

- target ROM, 30m walk
valid trial

[97] 2006 attitude computer
graphics

link ori method 1 acc, 1 gyro,
1 mag

quat ori KF params EKF, QUEST - 1, tilt table roll
pitch
yaw

2.0–9.0 - initial condition study,
25 s valid trial

[50] 2006 upper
limbs

computer
graphics

shoulder ori
shoulder pos
arm ori
arm pos
forearm ori

method 1 2d acc,
1 1d gyro,
mech track
wrist pos

kinematic
chain, quat
ori

link len, KF
params

KF, GN opt - 1, OMC shoulder ori
elbow ori
wrist ori

<OMC prec - sens align link, sens
sitting link, bias est

[38] 2006 attitude medical link ori method 1 acc, 1 gyro,
1 mag

quat ori KF params EKF - 1, OMC quat err
roll
pitch
yaw

quat err 4.57
roll 1.31
pitch 1.40
yaw 4.13

- adaptive covariance,
bias est, ZUPT like sens
inline calib, 120s free
movements valid trial

[54] 2007 upper
limbs

medical:
monitoring,
neuromuscular
disorders

elbow angle method 2 acc, 2 gyro elbow hinge KF params KF dynamic 1, OMC elbow fle elbow fle 8–25 - static plus pro mov calib,
variation R, 130s daily
activities valid trial

[99] 2007 full
body

- arm ori
forearm ori
hand ori
pelvis ori
thigh ori
shank ori

method 1 acc, 1 gyro,
1 mag

magnetic
coil

rot mat link len, KF
params

INS, EKF - 6, OMC trunk ori
arm ori
thigh ori
trunk pos
arm pos
thigh pos

trunk pos 4.8–5.6
arm pos 5.0–7.9
thigh pos 8.6
trunk ori 2.4–3.0
arm ori 2.3–3.1
thigh ori 3.2

- sens align link, sens
sitting link, 30s walking
valid trial
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Table A1. Cont.

Ref. Year Body Application Target Focus Sensors Kinematics &
Constraints

Parameters Sensor
Fusion
Technique

Calibration Validation Measure RMSE Correlation Notes

[14] 2007 full
body

computer
graphics,
sport

arm ori
forearm ori
hand ori
trunk ori
pelvis ori
thigh ori
shank ori

method 18 acc, 18
gyro, 18 US

kinematic
chain, quat
ori

link len, KF
params

EKF static, rest
pose

1, OMC head ori
arm ori
thigh ori

head ori 5.7
arm ori 8.0
thigh ori 6.6

- sens sitting link, 30s valid
trials, drift observed

[92] 2008 lower
limbs

medical knee fle
knee abd
knee rot

calibration 2 gyro - - gyro int static,
n pose,
dynamic hip
abd

10, MAG knee fle
knee abd
knee rot

knee fle 1.5
knee rot 1.6
knee abd 1.7

knee fle 1.0
knee rot 0.95
knee abd 0.86

30m walk valid trial

[37] 2008 lower
limbs

medical:
gait

hip fle
hip abd
hip rot
knee fle
knee abd
knee rot
ankle fle
ankle abd
ankle rot

calibration 2 acc, 2 gyro,
2 mag

- - - static 6, OMC hip fle
hip abd
hip rot
knee fle
knee abd
knee rot
ankle fle
ankle abd
ankle rot

hip fle 3.0
hip abd 3.6
hip rot 4.5
knee fle 2.4
knee abd 4.8
knee rot 9.4
ankle fle 1.2
ankle abd 5.5
ankle rot 21.7

- calibration from 6
participants

[48] 2008 upper
limbs

medical scapula pro
scapula ret
scapula ele
shoulder fle
shoulder abd
shoulder rot
elbow fle
elbow pro

calibration 4 acc, 4 gyro,
4 mag

- - - static 1, OMC scapula pro
scapula ret
scapula ele
shoulder fle
shoulder abd
shoulder rot
elbow fle
elbow pro

0.2—3.2 -

[43] 2008 attitude - link ori method 1 acc, 1 mag quat ori FQA - 1, tilt table roll, pitch, yaw - - sens align to link
[76] 2008 attitude - link ori method 1 acc, 1 gyro,

1 mag
quat ori CF gain CF - robot EE link ori - - bias est, 60 s valid trial,

show plot
[63] 2009 lower

limbs
- shank ori

thigh ori
knee fle

method 2 acc, 2 gyro knee hinge KF params KF static, n pose
like

7, OMC shank ori
thigh ori
knee fle

shank ori 0.4–4.7
thigh ori 0.4–1.5
knee fle 0.7–3.4

-

[98] 2009 lower
limbs

- hip ab
hip fle
knee fle

method 4 acc, 4 gyro knee hinge rot acc - 8, OMC hip abd
hip fle
knee fle

hip abd 3.96
hip fle 4.46
knee fle 3.73

0.91 limited motion to 80 deg,
low speed valid trial

[103] 2009 lower
limbs

medical knee fle
knee abd
knee rot

calibration 2 gyro - - gyro int dynamic 8, MAG knee fle
knee abd
knee rot

knee fle 8.1
knee rot 4.0
knee abd 6.2

knee fle 1.0
knee rot 0.85
knee abd 0.76

[64] 2009 full
body

computer
graphics

head ori
trunk ori
pelvis ori
arm ori
forearm ori
thigh ori
shank ori

calibration,
application

17 acc, 17
gyro, 17 mag

soft joints
cardan euler
helical

joint coord
sys

link len, KF
params

KF static, t pose,
dynamic,
axis rot,
closed loop
calib

- - - - three steps calib, closed
loop calib

[94] 2010 lower
limbs

medical:
monitoring
cerebral
palsy

hip fle
knee fle

calibration 8 acc, 8 gyro,
8 mag

- - - static 9, OMC, 2,
manual

ankle fle par
knee fle par

1.4-1.8 - manual measurement
therapist

[58] 2010 full
body

computer
graphics

pelvis ori
thigh ori
shank ori
foot ori

method 9 acc, 9 gyro,
9 mag

kinematic
chain, quat
ori

link len, sens
pos, CF gain

CF, lin acc err - sim sens meas pelvis ori
thigh ori
shank ori
foot ori

pelvis ori 1.64
thigh ori 1.82–2.2
shank ori 1.81–2.02
foot ori 2.31–2.96

0.939 0.999 sens align link, sens
sitting link, walking gait,
running gait

[112] 2010 pose - link ori
link pos

mag
comp

1 acc, 1 gyro,
1 mag

magnetic
coil

rot mat - INS, EKF,
mag sto
model

- static pos - - -
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Table A1. Cont.

Ref. Year Body Application Target Focus Sensors Kinematics &
Constraints

Parameters Sensor
Fusion
Technique

Calibration Validation Measure RMSE Correlation Notes

[114] 2010 full
body

sport link ori
link pos

application 16 acc, 16
gyro, 16 mag

- - - - 2, GNSS link ori
traj len

link ori 0.8–4.2
traj len 8

- 35 s pendulum valid trial,
entire ski race

[67] 2010 upper
limbs

- pelvis pos
pelvis ori
trunk pos
trunk ori
arm pos
arm ori
forearm pos
forearm ori

method 6 acc, 6 gyro,
6 mag

kinematic
chain

link len
sens pos

NR opt, inv
kin

- 1, OMC wrist pos wrist pos 5 - sens sitting link, sens
align link, 180s valid trial,
lin acc negl

[69] 2010 pose localization foot ori
foot pos

method 1 acc, 1 gyro,
1 mag

rot mat KF params EKF, INS - 1, known path foot pos foot pos 450–1350 - bias est, lin acc est, ZUPT,
ZARU, HDR, 100s valid
trial 125m

[87] 2010 upper
limbs

- link ori
link pos

method 2 acc, 2 gyro,
2 mag

kinematic
chain, rot mat

KF params,
link len

KF, CF like - 8, OMC wrist pos
elbow pos
wrist pos drift
arm ori
forearm ori

wrist pos 3–15
elbow pos 4–6
wrist pos drift 0.3
arm ori 2.04–2.06

forearm ori
2.16–2.41

wrist pos 0.95–0.97
elbow pos 0.95–0.98
arm ori 0.94–0.98

forearm ori
0.96–0.97

sens sitting link, sens
align link, const lin acc,
const ang vel, sens reloc,
30s square and circle
valid trials, 100 s daily
activities valid trials

[80] 2010 full
body

- link ori method - - KF params KF - 1, OMC - - - lowest point alg, const
height ground, lin acc
noise, show plot, drift
visible, ZUPT

[18] 2010 full
body

- arm ori
forearm ori
hand ori
pelvis ori
thigh ori
shank ori

method 1 acc, 1 gyro,
1 mag, mag
coil

rot mat link len, KF
params

INS, EKF - 6, OMC trunk ori
trunk pos
thigh ori
thigh pos
arm ori
arm pos

trunk ori 3.6–4.5
trunk pos 26–35
thigh ori 2.8–3.6
thigh pos 47–62
arm ori 2.8
arm pos 25

- sens align link, sens
sitting link

[45] 2011 upper
limbs

industrial
assembly

arm ori
forearm ori
wrist pos

method 5 acc, 5
gyro, 5 mag,
Camera
marker

kinematic
chain, rot mat

KF params
sens pos
link len

EKF static
n pose, back

bent

1, OMC wrist pos - - show plot, visual insp
drift, 40 s valid trial

[41] 2011 full
body

computer
graphics,
sport

arm ori
forearm ori
hand ori
trunk ori
pelvis ori
thigh ori
shank ori

method 10 acc, 10
gyro, 10 mag

kinematic
chain
exp map
quat ori

link len, OPT
params

OPT, VMF
dist

static 1, MVN 5 links ori 7.3 - sens sitting link, 20 s valid
trials

[59] 2011 attitude medical link ori method 1 acc, 1 gyro,
1 mag

quat ori CF gain CF like, OPT - 1, OMC roll
pitch
yaw

roll 0.581–0.625
pitch 0.497–0.688
yaw 1.073–1.110

- sens sitting link, sens
align link, average over
860 s valid trials

[40] 2011 attitude medical link ori method 1 acc, 1 gyro,
1 mag

quat ori KF params EKF - 1, OMC roll
pitch
yaw

roll 1.75
pitch 1.96
yaw 5.46

- sens sitting link, sens
align link, adaptive
covariance, bias est, 20 s
valid trial, lin acc negl

[68] 2011 full
body

medical link ori
link pos

application 1 acc, 1 gyro,
1 mag

quat ori KF params,
link len

EKF static 1, MTX roll
pitch
yaw

roll 1.62
pitch 0.8
yaw 6.06

- sens sitting link, sens
align link, adaptive
covariance, bias est, 20 s
valid trial, lin acc negl

[49] 2011 upper
limbs

- arm ori
arm pos
forearm ori
forearm pos

method 2 acc, 2 gyro,
2 mag

kinematic
chain, rot mat

KF params,
link len

UKF static, n pose 1, OMC shoulder fle
shoulder abd
shoulder rot
elbow fle
elbow pro

shoulder fle 2.35
shoulder abd 0.877
shoulder rot 2.90
elbow fle 6.18
elbow pro 13.06

shoulder fle 0.999
shoulder abd 0.999
shoulder rot 0.997
elbow fle 0.887
elbow pro 0.964

DH, sens sitting link, sens
fixed to limit soft tissue
effect, lin acc negl
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[39] 2011 upper
limbs

computer
graphics

arm ori
arm pos
forearm ori
forearm pos

method 2 acc, 2 gyro,
2 mag

kinematic
chain
quat ori
free seg

PF params,
link len

PF static, n pose 1, OMC shoulder rot
shoulder pitch
shoulder fle
elbow fle
elbow pro

shoulder rot 3.23
shoulder pitch 1.32
shoulder fle 2.52
elbow fle 12.14
elbow pro 6.33

shoulder rot 0.999
shoulder pitch 0.999
shoulder fle 0.996
elbow fle 0.887
elbow pro 0.964

bias est, lin acc negl, sens
sitting link, sens fixed to
limit soft tissue effect

[53] 2011 upper
limbs

- arm ori
forearam ori

method 2 acc, 2 gyro,
2 mag

rot mat KF params
link len
sens pos
sens ori

UKF - 1, OMC elbow fle
elbow pro
shoulder fle
shoulder abd

- elbow fle 0.89–0.92
elbow pro 0.93–0.96

shoulder fle
0.94–0.97

shoulder abd
0.91–0.94

DH, sens sitting link,
sens align link, 5 s anat
movements valid trials

[100] 2011 full
body

- link ori assessment 9 acc, 9 gyro,
9 mag

quat ori - - static, 12
poses

1, OMC roll
pitch
yaw

rollIC 4.3–8
pitchIC 2.2–4.8
yawIC 2–11.4
rollSC 0.5–2.7
pitchSC 0.5–1.6
yaw 1.5–3.1

- inter MIMU error, intra
MIMU error, static valid
trial, MTX proprietary KF

[77] 2012 upper
limbs

- arm ori
forearm ori

method 2 acc, 2 gyro,
2 mag

kinematic
chain, rot mat

link len, KF
params

UKF static, n pose 8, OMC shoulder abd
shoulder fle
elbow fle
elbow pro

shoulder abd 4.4
shoulder fle 5.5
elbow fle 6.5
elbow pro 5.5

shoulder abd 0.99
shoulder fle 0.98
elbow fle 0.98
elbow pro 0.95

DH, sens align link, sens
sitting link, bias est, calib
remove gyro bias, 12 s
functional movements
valid trials, 12 s daily
actitvities trials

[81] 2012 full
body

- link pos
link ori

mag
comp

1 acc, 1 gyro,
1 mag

- - OPT - mech platform mag magnitude
mag center

mag magnitude 0.01
mag center 0.01

-

[44] 2012 upper
limbs

medical:
rehabilitation

link ori
link pos

method 2 acc quat ori opt params NR opt static 1, MTX shoulder fle
shoulder rot
elbow fle
elbow pro

shoulder fle 2.12
shoulder rot 4.78
elbow fle 3.7
elbow pro 3.16

- motion limited sagittal,
lin acc negl, sens sitting
link, sens align link, static
poses calib, 40 s trial
sagittal plane

[66] 2013 upper
limbs

link ori
link pos

method n acc, n gyro,
n mag

kinematc
chain, rot mat

KF params,
link len

EKF static, n
pose
back bent

1, OMC hand pos distance to plane 13
circle length 14

- DH, any kinematic chain

[104] 2013 lower
limbs

- link ori, pelvis
pos

method 7 acc, 7 gyro,
7 mag

kinematic
chain, quat
ori

KF params,
link len

KF - 1, OMC pelvis pos pelivs pos x 90–120
pelivs pos y 40–100
pelivs pos z 60–80

- sens align link, sens
sitting link, ZUPT, 20 s
hopping valid trial,
walking valid trial

[107] 2013 full
body

link ori
link pos

application 21 acc, 21
gyro, 21 mag

kinematc
chain, rot mat

KF params,
link len

EKF static
cubic rig

poses

MIMUs
comparison

- - - no head

[108] 2013 upper
limbs

ergonomics link ori, link
pos

application 21 acc, 21
gyro, 21
mag, 2
goniometers

kinematic
chain, rot mat

KF params,
link len

EKF static, n
pose
back bent

12 experts execution time,
RULA class freq

- - -

[47] 2013 upper
limbs

- shoulder ori
shoulder pos
arm ori
arm pos
forearm ori
forearm pos

method 3 acc, 3 gyro,
3 mag

kinematic
chain, rot mat

KF params
sens pos
link len

UKF static, n
pose, t pose

1, OMC scapula ret
scapula ele
shoulder abd
shoulder rot
shoulder fle
elbow fle
elbow pro
shoulder pos
elbow pos
wrist pos

scapula ret 6.19
scapula ele 3.43
shoulder abd 8.19
shoulder rot 10.68
shoulder fle 8.79
elbow fle 5.00
elbow pro 9.61
shoulder pos 34.1
elbow pos 65.5
wrist pos 103.6

ang 0.63-0.99
pos 0.97-0.99

DH, 160s functional
movements valid trials

[65] 2013 lower
limbs

localization,
training

method 1 acc, 1 gyro,
1 mag, 1
pressure

kinematic
chain, rot mat

KF params,
link len, sens
pos

KF static, three
walk step
poses

1, OMC,
known path

pelvis vel
pelvis pos

pelvis vel 0.03–0.13
pelvis pos 3.2–1832

- sens sitting link, >40s
walking valid trial, >40s
jogging valid trial, lin acc
noise

[42] 2013 full
body

medical link ori method 1 acc, 1 gyro,
1 mag

quat ori PF params PF, VMF dist static 1, OMC, robot
EE

quat ori
quat thigh
quat shank

quat ori 0.45-0.6
quat thigh

0.416–0.598
quat shank

0.431-0.606

- bias est, sens sitting links,
init GN opt acc mag meas

[60] 2013 attitude - link ori method 1 acc, 1 gyro,
1 mag

quat ori CF gain, opt
params

CF, GN opt static,
dymanic

1, OMC roll
pitch
yaw

roll 0.66
pitch 0.60
yaw 0.82

- adaptive gain CF, bias
from calib, bias est, 1000s
valid trials, variation mag
disturbance static, lin acc
negl
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[93] 2014 lower
limbs

medical:
gait

ankle fle
knee fle

method 6 acc, 6 gyro knee hinge CF gain CF like dynamic 1, OMC ankle fle
knee fle

ankle fle 1.62
knee fle 3.3

- walk 10m straight valid
trial

[79] 2014 lower
limbs

medical:gait,
rehabilitation

knee fle
knee pos
ankle pos

method 5 acc, 5 gyro kinematic
chain

KF params EKF - 5, OMC knee fle
knee pos
ankle pos

knee fle 5.03–6.46
knee pos 0.9–10.3
ankle pos 0.3–11.9

- 2 full cycles valid trial

[70] 2014 upper
limbs

- arm ori
arm pos
forearm ori
forearm pos

method 2 acc, 2 gyro,
2 mag

kinematic
chain

U transform,
link len, sens
pos

PGM static, n
pose, t pose

1, OMC shoulder abd
shoulder rot
shoulder fle
elbow fle
elbow pro

shoulder abd 6.78
shoulder rot 6.64
shoulder fle 3.77
elbow fle 7.24
elbow pro 15.49

shoulder abd 0.94
shoulder rot 0.81
shoulder fle 0.98
elbow fle 0.98
elbow pro 0.74

DH, 160s functional
movements valid trials

[55] 2014 lower
limbs

- link pos
link ori

method 17 acc, 17
gyro, 17 mag

kinematic
chain
quat ori
rot mat
free seg

opt steps, link
len

OPT unspecifieds 1, OMC knee ori - - bias est, lin acc negl,
covmat allanvar, no sens
to hinge and acc model,
no real time, 37s walking
valid trial, show plot

[89] 2014 lower
limbs

- pelvis ori
thigh ori
shank ori
foot ori

calibration 7 acc rot mat - TRIAD like static, n
pose, seat
pose

10, OMC hip fle
hip abd
hip rot
knee fle
ankle fle
ankle abd
ankle rot

hip fle 0.2–0.4
hip abd 0.6–0.9
hip rot 0.4–0.8
knee fle 0.3–0.6
ankle fle 0.6–1.3
ankle abd 0.7–1.9
ankle rot 0.3–0.8

hip fle 0.95–0.99
hip abd 0.87–0.96
hip rot 0.90–0.97
knee fle 0.95-0.98
ankle fle 0.84–0.92
ankle abd 0.69–0.92
ankle rot 0.90–0.97

lin acc negl

[109] 2015 full
body

medical:
physical
activity
monitoring

activity class
activity rate

application - kinematic
chain, rot mat

KF params,
link len

EKF static, n
pose, back
bent

- - - -

[78] 2015 upper
limbs

- arm ori
forearm ori
hand ori

method 2 acc, 2 gyro,
2 mag

kinematic
chain, rot mat

KF params,
link len

UKF static, n pose 1, mech shoulder rot
shoulder fle
elbow fle
elbow pro
wrist fle
wrist twi

shoulder rot 3.0–7.8
shoulder fle 0.8–2.5
elbow fle 0.9–2.8
elbow pro 1.1–1.3
wrist fle 1.1–1.8
wrist twi 1.7–2.8

- DH, sens align link, sens
sitting link, bias est,
calib remove gyro bias,
ZUPT reduce gyro bias,
joint limit, mech synch
crosscorrelation, 120s
funct mov valid trial,
120 s norm tasks valid
trial

[113] 2015 full
body

sport arm ori
forearm ori
hand ori
trunk ori
arm pos
forearm pos
hand pos
trunk pos

method,
application

5 acc, 5 gyro,
5 mag, 5 enc

kinematic
chain, rot mat

KF params,
link len

UKF static 1, OMC shoulder pos
elbow pos
wrist pos

shoulder pos 78–81
elbow pos 153–158
wrist pos 34–54

shoulder pos
0.40–0.48
elbow pos 0.83–0.91
wrist pos 0.99

40s rowing valid trial

[110] 2016 upper
limbs

ergonomics arm ori
arm pos
forearm ori
forearm pos

application 3 acc, 3 gyro,
3 mag, EMG

kinematic
chain

KF params,
link len

UKF static, n
pose, t pose

10, manual vs
auto

- - -

[90] 2016 upper
limbs

computer
graphics

arm ori
elbow fle

method 1 acc, 1 gyro,
1 mag, mech
track elbow
fle

quat ori KF params,
link len

UKF static, t pose 1, XsensMVN elbow pos
wrist pos

- - lin acc negl, sens align
link, sens sitting link, 5.5 s
valid trial, show plot

[86] 2016 - - link ori mag
comp

1 acc, 1 gyro,
1 mag

quat ori KF params KF - 1, OMC quat ori quat ori6 - 180s walking valid trial,
similar to [32]
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[51] 2016 upper
limbs

- link ori
link pos

method 3 acc, 3 gyro,
3 mag

kinematic
chain
rot mat
quat ori
free seg

KF params
link len
sens pos
sens ori
opt params

EKF, OPT static 1, sim sens
meas
1, OMC

arm ori
forearm ori
wrist ori

arm ori qs 1.68–5.31
forearm ori qs

2.58–8.49
wrist ori qs

2.71–4.57
arm ori qi
1.63–4.66

forearm ori qi
2.40–8.40

wrist ori qi
2.52–4.46
arm ori op 1.27–1.88

forearm ori op
2.16–2.23

wrist ori op
2.28–2.33

- DH, link len est, sens ori
est, motion speed

[91] 2016 full
body

- link ori
link pos

assessment 12 acc, 12
gyro, 12 mag

- link len - static 1, OMC hand ori
elbow ori
shoulder ori
neck ori
back ori
ankle ori
knee ori
hip ori

hand ori 5.7–14.1
elbow ori 6.2–12.5

shoulder ori
19.7–40.2
neck ori 3.9–12.3
back ori 4.4–5.9
ankle ori 4.3–7.3
knee ori 3.2–4.1
hip ori 4.0–7.5

hand ori 0.80–0.89
elbow ori 0.81–0.96

shoulder ori
0.39–0.86
neck ori 0.84-0.98
back ori 0.70–0.95
ankle ori 0.77–0.89
knee ori 0.75–0.97
hip ori 0.94–0.97

complex vs simple task
valid trials, 1920s manual
handling valid trial, error
due to biomechanics,
total err, ISB kinematic
model, MVN kinematic
model

[85] 2016 attitude - link ori method 1 acc, 1 gyro,
1 mag

quat ori KF params EKF - 4, OMC roll
pitch
yaw

roll 1.0–5.0
pitch 1.6–4.1
yaw 6.2–19

- bias est, lin acc negl,
120 s texting walking
valid trial, 120s swinging
walking valid trial, 780 s
unsupervised walking
valid trial

[105] 2016 lower
limbs

- link ori, pelvis
pos

method 7 acc, 7 gyro,
3 UWB

kinematic
chain, rot mat

KF params,
link len

KF - 1, OMC yaw
ankle fle
knee fle
hip fle
hip abd

ankle fle 1.4–2.1
knee fle 3.5–4.5
hip fle 2.7–3.4
hip abd 2.9–3.7

- ZUPT, 100s walking valid
trial, 100s jumping valid
trial, 100s ascending valid
trial
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Table A2. List of abbreviations.

Abbreviation Full Name Categories Description

ori orientation Target, Kinematics & Constraints, Measure, RMSE, Correlation orientation of a rigid body
pos position Target, Calibration, Parameters, Validation, Measure, RMSE,

Correlation, notes
position of a point of a rigid body

fle flexion/extension Target, Measure, RMSE, Correlation, Sensors, anatomical term of motion
abd abduction/adduction Target, Measure, RMSE, Correlation, Sensors, anatomical term of motion
rot rotation Target, Kinematics & Constraints, Measure, Sensor Fusion

Technique, Calibration, RMSE, Correlation
rotation related either to rotation about an axis or rotation
matrix

pro pronation/supination Target, Measure, RMSE, Correlation, notes
ret retraction/protraction Target, Measure, RMSE scapular retraction/protraction
ele elevation/depression Target, Measure, RMSE scapular elevation/depression
mag magnetometer Focus, Sensors, Sensor Fusion Technique, Measure, notes referred to either 3 axis (unless otherwise specified)

magnetometer or its signal
comp compensation Focus referred to compensation of magnetic field distortions
acc accelerometer Sensors referred to either 3 axis (unless otherwise specified)

accelerometer or its signal
gyro gyroscope Sensors, Sensor Fusion technique, notes 3 axis (unless otherwise specified) gyroscope
xd - Sensors x axes sensor (e.g., 2d acc means biaxial accelerometer)
mech mechanical Sensors, Validation, notes mechanical is usually referred to either trackers or rigs for

validation
biomech biomechanical notes -
track tracker Sensors -
US ultrasound Sensors, Validation ultrasound sensor or motion tracking system based on

ultrasound
exp exponential Kinematics & Constraints exponential maps representation
seg segment Kinematics & Constraints referred to free segments representation
CF Complementary Filter Parameters, Sensor Fusion Technique, notes -
len length Parameters, Measures, RMSE, notes length of human limbs or robotic links
KF Kalman Filter Parameters, Sensor Fusion Technique -
EKF Extended Kalman Filter Parameters, Sensor Fusion Technique -
UKF Unscented Kalman Filter Parameters, Sensor Fusion Technique -
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PF Particle Filter Parameters, Sensor Fusion Technique -
PGM probabilistic grpahical models Sensor Fusion Technique -
opt/OPT optimization Parameters, Sensor Fusion Technique, notes -
params parameters Parameters -
sens sensor(s) Parameters, Validation, notes Typically referred to position and orientation of the sensor

with respect to the link it is attached to. Otherwise referred
to simulated measurements of a virtual sensor

U unscented Parameters -
INS inertial navigation system Sensor Fusion Technique navigation system based on signals from accelerometers

and gyroscopes aimed at estimating position, velocity
and orientation of a rigid body. It is typically referred
to navigation of aerial vehicles

GN Gauss-Newton referred to Gauss-Newton optimization
QUEST Quaternion estimator algorithm Sensor Fusion Technique -
err error Sensor Fusion Technique, Measure, RMSE typically error is quantitatively defined as difference of a

variable with respect to a reference
int integration Sensor Fusion Technique referred to integration of gyroscope’s or accelerometer’s

signal
FQA Factorized Quaternion Algorithm Sensor Fusion Technique -
lin acc linear acceleration Sensor Fusion Technique, notes acceleration of a point in space
sto stochastic Sensor Fusion Technique -
NR Newton-Raphson Sensor Fusion Technique referred to Newton-Raphson algorithm used for

optimization
MAG - Sensors, Motion tracking system based on magnetic field

measurement
VMF dist Von Mises-Fisher distribution Sensor Fusion Technique, notes -
calib calibration Calibration, notes -
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traj trajectory Calibration, Measure, RMSE, notes trajectory of a point in space
EMG electromyography Sensors array of surface electromyography sensors
quat quaternion Kinematics & Constraints, Measure, RMSE, -
coord sys coordinate system Kinematics & Constraints -
EE end effector Validation end effector of a robot
hor horizontal Validation -
ver vertical Validation -
OMC optical motion capture Validation, RMSE OMC is referred to tracking of points in space by means

of optical motion capture. Tracking of these points is often
used to compute orientation of rigid bodies

sim simulated Validation referred to simulated measurements of virtual sensors
GNSS global satellite navigation system Validation provider of ground truth data in outdoor motion capture

sessions
meas measurement Validation, notes -
compar comparison Measure -
incli inclination Measure, RMSE deviation with respect to a given direction
sta static Measure, RMSE -
dyn dynamic Measure, RMSE -
RULA rapid upper limb assessment Measure method of ergonomic assessment based on articular

motion and forces exerted during an activity
freq frequency Measure number of occurrence of a risk class in RULA evaluation
twi twist Measure, RMSE referred to wrist motion
valid validation notes referred to validation trials carried out for the validation

of the method, typically preceded by their duration
negl neglected notes referred to a variable that is neglected in a method,

typically linear acceleration
align aligned notes used in the formula sens align link to indicate the

assumption that a sensor’s frame is supposed to be aligned
to the frame of the body it is attached to

teleop teleoperation notes -
ROM range of motion notes -
est estimation notes -
alg algorithm notes -
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const constant notes -
ZARU zero angular rate update notes technique to reduce drift based on detection of steady

orientation
HDR heuristic heading reduction notes technique that exploits straight paths to improve

localization estimate
reloc relocation notes referred to relocation of sensors
ang angle or angular Correlation, notes -
insp inspection notes referred to visual inspection
DH Denavit-Hartenberg notes standard to define kinematic chains
synch synchronization notes -
ISB International Society of Biomechanics notes used to refer to the standard proposed by ISB to define

frames attached to human limbs to define their pose and
motion

UWB ultra wide band Sensors -
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