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Abstract

GAN, Lens epithelium, IF accumulations

Giant axonal neuropathy (GAN; ORPHA: 643; OMIM# 256850) is a rare, hereditary, pediatric neurodegenerative
disorder associated with intracellular accumulations of intermediate filaments (IFs). GAN knockout (KO) mouse
models mirror the IF dysregulation and widespread nervous system pathology seen in human GAN. Validation of
therapeutic efficacy and viral vector delivery systems with these GAN KO models has provided the springboard for
the development of a viral vector being delivered intrathecally in an ongoing Phase | gene therapy clinical trial for
the treatment of children with GAN (https://clinicaltrials.gov/ct2/show/NCT02362438). During the course of a
comprehensive pathologic characterization of the GAN KO mouse, we discovered the very early and unexpected
involvement of the ocular lens. Light microscopy revealed the presence of intracytoplasmic inclusion bodies within
lens epithelial cells. The inclusion bodies showed strong immunohistochemical positivity for glial fibrillary acidic
protein (GFAP). We confirmed that intracytoplasmic inclusion bodies are also present within lens epithelial cells in
human GAN. These IF inclusion bodies in lens epithelial cells are unique to GAN. Similar IF inclusion bodies in lens
epithelial cells have not been reported previously in experimental animal models or human diseases. Since current
paradigms in drug discovery and drug repurposing for IF-associated disorders are often hindered by lack of
validated targets, our findings suggest that lens epithelial cells in the GAN KO mouse may provide a potential
target, in vivo and in vitro, for evaluating drug efficacy and alternative therapeutic approaches in promoting the
clearance of IF inclusions in GAN and other diseases characterized by intracellular IF accumulations.
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Giant axonal neuropathy (GAN, OMIM# 256850) is a
rare, hereditary, pediatric neurodegenerative disorder as-
sociated with intracellular accumulations of intermediate
filaments (IFs) [1]. The disease affects both the peripheral
nervous system (PNS) and central nervous system (CNS),
and patients nearly always succumb to disease by the third
decade. The pathologic signature of GAN in the PNS and
CNS is giant axonal swellings filled with dense accumula-
tions of whorled, structurally normal neurofilaments.
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GAN is caused by autosomal recessive loss-of-function
mutations in the GAN gene that encodes the protein giga-
xonin. Gigaxonin plays a pivotal role in the cytoskeletal
organization and degradation of IFs. Loss of gigaxonin
leads to accumulation of different types of IFs within a
variety of cells, including desmin in muscle cells, vimentin
in fibroblasts, neurofilaments in neurons, and glial fibril-
lary acidic protein (GFAP) in astrocytes [2]. Most GAN
patients also have characteristically tightly curled hair due
to alterations of keratin IFs [3].

Three mouse models of GAN have been developed by
knocking out part of the endogenous GAN gene [4—6]. All
three mouse models mirror the IF dysregulation and wide-
spread nervous system pathology seen in human GAN [7].
Validation of therapeutic efficacy and viral vector delivery
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systems with these GAN KO models [8] has provided the
springboard for the development of a viral vector to be
delivered intrathecally in a Phase I gene therapy clinical
trial for the treatment of children with GAN [9].

During the course of a comprehensive study of the patho-
logic findings in the GAN KO mouse, we encountered the
unexpected and very early involvement of the ocular lens
(Fig. 1). Here, described for the first time, we document the
early appearance of abundant IF accumulations in lens epi-
thelial cells of the GAN KO mouse. Lens epithelial cells
potentially provide an easily accessible target for accelerat-
ing complementary drug discovery and drug repurposing
strategies for human GAN.

GAN KO mice with a deletion of GAN exons 3-5 (GAN/
Y) [4] or a deletion of GAN exon 1 (GAN/]) [6] were main-
tained at the University of North Carolina at Chapel Hill
(UNC-CH) as previously described [8]. Heterozygous GAN
mice are phenotypically normal [4, 6] and were used as con-
trols. Mixed sex and age-matched littermates from both
GAN KO models were used in these studies (4-month-old
cohort: 4 KO, 2 heterozygotes; 24-month-old cohort: 10
KO, 15 heterozygotes).

In 4-month-old GAN KO mice, light microscopic
examination of H&E-stained sections revealed oval,
intracytoplasmic eosinophilic inclusion bodies within
lens epithelial cells (Fig. 2a). Histologically identical in-
clusion bodies were found in 24-month-old GAN KO
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mice (Fig. 2b). In both 4-month-old and 24-month-old
cohorts, inclusion bodies were present in almost every
epithelial cell. A panel of immunohistochemical stains
for lens IF proteins (GFAP, vimentin, keratin 8/18, CP49
and filensin) [10] showed strong immunoreactivity of in-
clusion bodies for GFAP (Fig. 2c). The epithelial cell in-
clusion bodies were present in both GAN/J and GAN/Y
KO mice. Age-matched control mice had no inclusion
bodies (Fig. 2d). The inclusion bodies were not present in
lens fiber cells in the GAN KO mice or age-matched con-
trols. No lens fiber cell degeneration was identified histo-
logically in 4-month-old GAN KO mice or age-matched
controls. Lens fiber cell degeneration, morphologically
consistent with age-related degeneration [11], was present
to a similar degree in both 24-month-old GAN KO mice
and age-matched controls.

The neuropathological phenotype of the GAN KO
mouse model shares many morphological features with
the human disease [7]. Here, described for the first time
in the GAN KO mouse, we document the presence of
intracytoplasmic IF inclusion bodies in lens epithelial
cells. The inclusion bodies were present in the young
4-month-old KO mice and served as a reliable, easily
identifiable, early marker of GAN.

These IF inclusion bodies in lens epithelial cells appear
to be unique to GAN, as similar IF inclusion bodies have
not been reported previously in experimental animal
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Fig. 1 Ocular Lens. Control. Lens cells exist in two distinct forms, lens epithelial cells and lens fiber cells. The anterior surface of the lens is
covered by a single layer of epithelial cells that serve as a reservoir for continual lens fiber cell formation and lens growth throughout life. The
lens is unique as reflected in almost continuous cell production with negligible cell loss. On their path to becoming mature lens fiber cells, lens
epithelial cells undergo extraordinary structural differentiation [10]. GAN KO mouse. Oval intracytoplasmic eosinophilic inclusion bodies within

Lens epithelial cells
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Fig. 2 Lens epithelial cells in GAN KO mice, age-matched controls and human GAN. a. GAN KO (4-month-old) lens epithelial cells show
intracytoplasmic inclusion bodies (H&E original magnification 100X). b. GAN/J KO (24-month-old) lens epithelial cell inclusion bodies (H&E original
magnification 100X). c. GAN/J KO (24-month-old) lens epithelial cell inclusion bodies show strong GFAP immunoreactivity (GFAP IHC original
magnification 100X). d. Control mouse (24-month-old) histologically unremarkable lens epithelial cells (H&E original magnification 100X). e.
Human GAN lens epithelial cells reveal intracytoplasmic inclusion bodies (H&E original magnification 100X, formalin fixed, paraffin embedded
tissue. Decedent was a young child with phenotypically typical GAN) (arrows point to one of the numerous intracytoplasmic inclusion bodies). Inset.
Lens epithelial cells. Control mouse (24-month-old) (H&E); GAN/J KO (24 -month-old) lens epithelial cell inclusion body (H&E); GAN/J KO (24-
month-old) lens epithelial cell inclusion body shows strong GFAP immunoreactivity (GFAP IHC). (N designates nucleus, arrow points to cytoplasmic

inclusion body)

models or human diseases. Although lens abnormalities
have not been reported in clinical or postmortem studies
of human GAN [12-16], we confirmed in a specimen
obtained at autopsy that similar appearing, intracytoplas-
mic inclusion bodies are also present in lens epithelial
cells in human GAN (Fig. 2e).

The presence of GFAP-positive inclusion bodies in lens
epithelial cells and their absence in lens fiber cells is intri-
guing. One difference between lens epithelial cells and lens
fiber cells is the large concentration of the chaperone pro-
tein complex alpha-crystallin in lens fiber cells [17]. The
chaperone activity of alpha-crystallin modulates the assem-
bly of IFs, including GFAP, and assists IFs in recovery from
stress by preventing inappropriate filament-filament interac-
tions that would otherwise lead to aggregation [18].

Current paradigms in drug discovery and drug repurpos-
ing for IF-associated disorders are often hindered by lack of
validated targets [19]. One strategy to circumvent this con-
straint is to screen against a disease phenotype in cell
culture or animal model that recapitulates the pathologic

phenotype of the human disease [19, 20]. Our findings sug-
gest that lens epithelial cells in the GAN KO mouse may
provide a potential target cell, in vivo, for evaluating the
efficacy of drugs and other therapeutic approaches in
promoting clearance of IF inclusions. Additionally, lens
epithelial cells can be grown on their native basement
membrane or as dissociated cells [21] and serve as a simple
in vitro model system of target cells.

Intracytoplasmic accumulations of IFs are a distinctive
pathological feature shared by common neurodegenerative
diseases of adulthood, such as Alzheimer’s disease and
Parkinson’s disease, as well as rare neurodegenerative dis-
eases of childhood, such as Alexander disease and GAN
[2]. It is possible that lens epithelial cells from the GAN
KO mouse, if used as a drug repurposing screen, could be
extended to address multiple diseases that share an IF
accumulation pathologic phenotype [20, 22].

In summary, the GAN KO mouse exhibits great fidel-
ity to the characteristic pathologic features and selected
functional deficits of human GAN ([7]. Here, we present
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the novel finding of GAN pathology in both mouse and
human lens epithelial cells. We suggest that lens epithe-
lium may serve as a target tissue in which to study the
effects of pharmacological interventions on GAN and
potentially other disorders characterized by intracyto-
plasmic IF accumulations.
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