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Abstract

Background: Medical ontologies are expected to contribute to the effective use of medical information resources
that store considerable amount of data. In this study, we focused on disease ontology because the complicated
mechanisms of diseases are related to concepts across various medical domains. The authors developed a River
Flow Model (RFM) of diseases, which captures diseases as the causal chains of abnormal states. It represents causes
of diseases, disease progression, and downstream consequences of diseases, which is compliant with the intuition
of medical experts. In this paper, we discuss a fact repository for causal chains of disease based on the disease
ontology. It could be a valuable knowledge base for advanced medical information systems.

Methods: We developed the fact repository for causal chains of diseases based on our disease ontology and
abnormality ontology. This section summarizes these two ontologies. It is developed as linked data so that
information scientists can access it using SPARQL queries through an Resource Description Framework (RDF) model
for causal chain of diseases.

Results: We designed the RDF model as an implementation of the RFM for the fact repository based on the
ontological definitions of the RFM. 1554 diseases and 7080 abnormal states in six major clinical areas, which are
extracted from the disease ontology, are published as linked data (RDF) with SPARQL endpoint (accessible API).
Furthermore, the authors developed Disease Compass, a navigation system for disease knowledge. Disease Compass
can browse the causal chains of a disease and obtain related information, including abnormal states, through two
web services that provide general information from linked data, such as DBpedia, and 3D anatomical images.

Conclusions: Disease Compass can provide a complete picture of disease-associated processes in such a way that
fits with a clinician’s understanding of diseases. Therefore, it supports user exploration of disease knowledge with
access to pertinent information from a variety of sources.
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Background
Recently, medical information resources that store consid-
erable amount of data have become available. Semantic
technologies are expected to contribute to the effective
use of such information resources, and medical ontologies
such as the Systematized Nomenclature of Medicine-
Clinical Terms (SNOMED-CT, http://www.nlm.nih.gov/
research/umls/Snomed/snomed_main.html main.html)

and the Ontology of General Medical Sciences (OGMS)
[1] have been developed to realize sophisticated medical
information systems. Although medical ontologies consist
of various domains, such as diseases, anatomies, drugs,
and clinical information, disease is a particularly import-
ant concept because diseases have complicated mecha-
nisms that are deeply related to concepts across many
medical domains. Therefore, in this study, we have fo-
cused on a disease ontology.
Although disease ontologies such as the Human Disease

Ontology (DOID) [2] and the Infectious Disease Ontology
(IDO) [3] exist, they primarily focus on the ontological
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definition of a disease with related properties, i.e., static
aspects of diseases are the main concern. While the
OGMS provides an ontological representation model of
disease disposition, it does not capture a complete picture
of disease-associated processes.
In contrast, we proposed a definition of a disease that

captures the causal chain of the abnormal states in a
computational model known as the River Flow Model
(RFM) of diseases [4, 5]. Our disease ontology consists
of rich information about these causal chains, which
provides domain-specific knowledge about diseases and
answers questions such as “What disorder/abnormal
state causes a disease?” or “How might the disease ad-
vance, and what symptoms may appear?” Consequently,
we believe that the ontology could be a valuable know-
ledge base for advanced medical information systems.
In this paper, we discuss a fact repository for causal

chains of disease based on our disease ontology. It is de-
veloped as linked data so that information scientists
can access it using friendly SPARQL queries through
an RDF model for causal chain of diseases. We de-
signed the RDF model as an implementation of the
RFM for the fact repository while ontological defini-
tions of the RFM are discussed in our previous work
[4, 5]. It provides known knowledge about mechanism
of disease to support education for novice clinicians,
differential diagnosis, decision making for medical
treatment and so on.
In this paper, we also describe Disease Compass, a

navigation system for disease knowledge based on the
RDF model of our disease ontology. The system has two
special features. First, users can browse disease know-
ledge according to the causal chains of diseases defined
in the disease ontology. Second, users can obtain related
information about the selected disease from linked data
sources. Thus, Disease Compass helps users make sense
of disease knowledge from various relevant sources.
The remainder of this paper is organized as follows.

The methods used to develop our disease ontology
and navigation system are introduced in Methods sec-
tion. In Results section, we describe the disease ontol-
ogy in detail and discuss how it can be published as
linked data and Disease Compass. In Discussion sec-
tion, we discuss our contributions from the perspec-
tive of the ontological definition of disease and
medical information systems. Conclusions and sugges-
tions for future work are presented in Conclusions
section.
This paper is an extended version of the conference

paper presented in ICBO2015. It is mainly added the fol-
lowing 3 topics; 1) details of integration of biomedical
abnormal states discussed in Integration of biomedical
abnormal states section, 2) details of development of
Disease Compass, especially about its navigation

function for general causal chains, and 3) Some concrete
examples of how the system is used with discussions.

Methods
We developed the fact repository for causal chains of
diseases based on our disease ontology [4, 5] and abnor-
mality ontology [6, 7]. This section summarizes these
two ontologies.

Definition of a Disease
Basic definition
Based on the RFM, we define a disease as follows [4].

Definition 1
A disease is a dependent continuant constituted of one
or more causal chains of clinical disorders (abnormal
states) that appear in a human body and is initiated by
at least one disorder.
In this definition, by clinical disorders (abnormal

states), we mean states in a human body which consists
of causal chains of a disease. They are associated with
dysfunctional or otherwise pathological functioning in
organisms while they may not be abnormal in some
cases. They are defined in our Abnormality Ontology [7]
as mentioned in Abnormality Ontology section.
Then, what is a causal chain of disorders? Although it

looks like a process, it is a dependent continuant. It is
possible to compare a causal chain of disorders to a
waterfall, river flow, or a forest fire. Here, we show how
a disease is a dependent continuant rather than a
process. The following is an informal account of our
view. This topic is extensively discussed with ontological
definitions of related concepts in the literature [5].
A causal chain is composed of one or more pairs of

entities, such as a causal event and an effect event, in
which the latter has been caused by the former. In the
case of multiple-pair chains, the effect becomes another
cause that causes another effect. What makes clinical
causal chains special is that causal entities are usually
still active when the effect entity has been caused.
Therefore, the two entities overlap in temporal space. In
the case of continuant entities, by “overlap” we mean
that the intervals of active states of neighboring continu-
ants overlap, i.e., the causal continuant maintains its
state when the effect state has been caused.
Let us examine how well a flowing river matches a

causal chain of a disease. The river itself enacts branch-
ing, changing shape, extending, diminishing, etc. A river
could be created when a lake overflows, e.g., after a
heavy rainstorm. Initially, the flow is minimal and,
potentially, temporary. Here, overflow from a lake would
correspond to an etiological disorder in a clinical causal
chain. If the initial flow increases, the water extends in
length and is recognized as a river. After emerging as a
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river (as a disease), it extends further to another lake or
to the sea. While extending, it branches (branching can
be the appearance of another disorder). Eventually, the
river may dry up due to climate change (cure). Thus, the
life of a river corresponds well to the life of a disease.
Note that a river is defined as an enactor of those pro-
cesses, and Definition 1 suggests that a disease is defined
as an enactor of its manifestation process. Thus, in con-
cordance with OGMS, both a river and a disease are
continuants; however, a river is an independent continuant
and a disease (causal chain) is a dependent continuant that
depends on a bearer, i.e., an organism.
This informal observation is supported by ontological

accounts of processes and objects [8]. Although we omit
details because of space limitations, we present the ana-
logy to support the definition of a disease as a dependent
entity of a new type that differs from both a disposition
and a process.

Granularity
We do not specify any particular granularity of disorder
and causal chains because we believe granularity should
be determined flexibly according to the necessity of de-
scription of each disease. That is, we define diseases
based on the most agreeable medical knowledge at this
time because the current medical knowledge changes
as time goes. However, with regard to the original
cause, we should trace the causal chain back to the
cell level rather than to the genome level. When we
define diseases generally, granularity is not an issue;
however, it matters when we define a particular dis-
ease in the ontology.
In addition, we do not impose specific time resolution

on the causal processes, so that, if necessary, we can in-
clude rapid processes, such as fractures. After receiving a
strong external pressure, a bone undergoes a very quick
destruction process resulting in fracture. The causal
process can be captured by much finer time resolution
than those involved in ordinary pathological processes
captured at the clinical level. Fractures can be handled by
the disease model discussed in the next section.

Related work
Here we compare the definitions of diseases in the
OGMS and RFM.

(1)Dispositions are introduced in the course of disease
development in the human body. A disposition is a
potentiality. In the current OGMS, realization of this
potentiality takes the form of chains of physical/
physiological changes. Thus, disease and disease
course are distinguished, that is, the former is
dependent continuant and the latter a process. We
believe this use of “disease” is counterintuitive to

clinicians; thus, we propose a disease definition that
allows the disease to be understood as a causal chain
of abnormal states.

(2)Consider how a particular disease is identified. For
example, when explaining diabetes, OGMS refers to an
“elevated level of glucose in the blood.” However, it
provides an insufficient account of why the explanation
of diabetes must include “elevated level of glucose.”
What role does this elevated level play in diabetes?
Why must “elevated level of glucose in the blood” be
included for diabetes but nothing else? It must be
something specific to the disease of interest, i.e., each
realization of the disease must involve an entity of this
sort. For OGMS, emphasis is placed on the disposition
and the disorder (a certain disordered body part) in
which this disposition inheres. We believe that the
reference to elevated glucose level suggests a need for
an additional entity, which is included in our disease
model. Thus, we introduce the notion of core causal
chain, which roughly corresponds to so-called main
pathological/etiological condition(s).

We know that defining such an entity type, i.e., causal
chains, discussed in (2) is difficult because such causal
chains are not always definite for each disease because
they vary from one patient to another. Hence, OGMS’ use
of disposition is a mere potentiality. In the case of latent
diabetes, for example, there is no elevated level of glucose
in the blood, although there is a disposition thereto. Ac-
cordingly, for latent diabetes, we follow OGMS in recog-
nizing the need for something other than just “elevated
level of glucose in the blood.” However, we think that
something more is required–something that is essential
for each particular disease. In the case of diabetes, this
would be the deficiency of functioning of insulin, because
this must have occurred for all patients who suffer from
diabetes. To address this issue, we draw on OGMS’ notion
of homeostasis and introduce the term “disturbance of
homeostasis” to explain what we consider as the essential
core of each disease. Disturbance of homeostasis can be
caused through the concretization of a disposition, or it
can be caused by some outside trigger, e.g., an injury.
We agree with OGMS in that a disease is a dependent

continuant, and its definition is expected to address the fol-
lowing conditions: (1) the existence of its pre-clinical mani-
festation, (2) the fact that it can cause another disease, and
(3) variation in the disease course from patient to patient
[1]. We have attempted to find a disease definition that sat-
isfies these conditions using an RFM [4].

Abnormality Ontology
Three-Layer Ontological Model of Abnormal States
Here we discuss the abnormal states used in our disease
ontology to define diseases. The reliability and utility of
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the disease definitions are considerably dependent on
the quality of the abnormal states. To develop abnormal
states consistently, we have developed an abnormality
ontology [6, 7] with a three-layer structure:

� Level 1: Generic abnormal states
Level 1 defines very fundamental (or generic)
concepts, which do not depend on any structural
entity, i.e., object independent states. They are
commonly found in several objects, and can be
usable in several domains besides medicine, such as
machinery, materials, and aviation.

� Level 2: Object-dependent abnormal states
Level 2 has been developed by identifying the target
object and specializing generic abnormal states at
Level 1 with consistency. The top level concepts at
Level 2 are dependent on generic structures, such as
“wall-type structure,” “tubular structure,” and
“bursiform structure,” which are common and are
used in several domains.

� Level 3: Specific context-dependent abnormal states
Level 3 consists of context-dependent abnormal
states, which refer to the Level 2 abnormal states to
define them, and are specialized into specific
disease-dependent ones.

Level 1 defines very fundamental and generic con-
cepts, e.g., “small in area,” “hypofunction,” etc., which
are commonly used in clinical medicine and other do-
mains. Therefore, they do not have a target entity which
has the abnormal state. Level 2 concepts are dependent
on objects. In the lower level of the tree, concepts are
designed to represent abnormalities at specific human
organ/tissue/cell levels. For example, by specifying “small
in area” at Level 1, “tube narrowing,” where the cross-
sectional area of a tubular structure has become nar-
rowed, is defined at Level 2. This is further specified in the
definitions “vascular stenosis” (blood vessel-dependent),
“arterial stenosis,” “coronary artery stenosis” (coronary
artery-dependent), and so on. Level 3 concepts are cap-
tured as specific disease-dependent (context-dependent)
abnormal states. For example, “coronary artery stenosis”
at Level 2 is defined as a constituent of ischemic heart
disease at Level 3. In the proposed ontological ap-
proach, common concepts can be kept distinct from
specific concepts and can be defined appropriately ac-
cording to their context.

Representation of Abnormal State
In medicine, abnormal states are interpreted from the di-
verse perspectives of specialists, such as clinicians, pathol-
ogists, biologists, and geneticists, and correspondingly a
variety of representations of abnormal states are used.
Therefore, we have classified abnormal states into three

categories: a property (e.g., hypertension), a qualitative
representation (e.g., blood pressure is high), and a quanti-
tative representation (e.g., blood pressure 180 mm Hg).
Their interdependence is formulated in a Property-
Attribute interoperable representation framework for
abnormal states we proposed in previous work [6, 7].
We capture all abnormal states as properties repre-

sented by a tuple: <Property (P), Property Value (Vp)>,
e.g., <stenosis, true>. Apparently, any state requires tem-
poral specification as well as its bearer. For simplicity,
these temporal indexes are omitted. However, the bearer
is specified to represent the fact that it is in a state, as dis-
cussed below. We specify the property by decomposing it
into a tuple: <Attribute (A), Attribute Value (V)>. The
Attribute Value can be either a Qualitative Value (Vql) or
a Quantitative Value (Vqt). For example, “arterial stenosis”
is decomposed into < cross-sectional area (A), small
(Vql) > as a qualitative representation, or < cross-sectional
area (A), 5 mm2 (Vqt) > as a quantitative representation.
Then, we introduce “Object” to identify the target

object, and we represent an abnormal state as a triple:
<Object (O), Attribute (A), Value (V)>. This is the basic
form of abnormalities in our representation model. In
addition, we introduce “Sub-Object” (SO) as an ad-
vanced representation of what will be focused on. For
example, in the case of “hyperglycemia,” since the glu-
cose concentration (A) means the ratio of the focused
object (SO) relative to the whole mixture (O), the repre-
sentation of “hyperglycemia” is a quadruple, <blood (O),
glucose (SO), concentration (A), high (V)>. In an ad-
vanced representation, “colonic polyposis” is described
as < colon (O), polyp (SO), number (A), many (V) > .
Our model can deal with both clinical test data and

abnormal states in disease definitions. Clinical test data
can be represented in the form <Object (O), Attribute
(A), Quantitative Value (Vqt) > (OAVqt), which can be
converted into a property representation form <Object
(O), Property (A), Property Value (Vp) > (OPVp) via a
qualitative representation form. For example, in terms of
the state of hypertension, our model ensures interoper-
ability among the forms < blood (O), pressure (A),
180 mmHg (Vqt)>, <blood pressure, high>, and < hyper-
tension, true>. Therefore, our model realizes interoper-
ability between test data and abnormal states in the
definition of diseases. The ontological foundation for the
concepts discussed thus far is given by an upper ontol-
ogy, i.e., YAMATO [9].

Ontology Editing
We used the Hozo (http://www.hozo.jp) [10] ontology
editing tool. Hozo is based on an ontological theory of
role [11] and has a sophisticated graphical user interface.
Although Hozo uses a proprietary ontology format based
on XML, it can export ontologies in Web Ontology
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Language (OWL) [12]. An API for use the Hozo format
is also available at the website of Hozo. We also devel-
oped a graphical tool that allows clinicians to edit a dis-
ease definition intuitively without prior knowledge of
ontology construction. The tool can export disease defi-
nitions in the Hozo ontology format.

System Development based on Linked Data Technology
There are several approaches for system development
based on ontologies. A typical approach is to use APIs
for ontology processing. Because our disease ontology is
constructed using Hozo, we can develop application sys-
tems using APIs for Hozo ontologies. We can also use
the OWL API because Hozo has an OWL export func-
tion. However, linked data technology is particularly effi-
cient for developing applications across multiple datasets
on the web. Therefore, we adopted an alternative ap-
proach to publish the disease ontology as linked data so
that it can be used to develop an application system easily.
At the same time, the schema of RFM is published at

http://rfm.hozo.jp/ the Hozo format and the OWL format.
If the users are familiar with OWL, they can use the OWL
version in spite of our disease ontology is currently pub-
lished only as Linked Data through its SPARQL endpoint
(see Disease ontology as linked data section).

Results
Computational Model of Diseases
Core causal chain of a disease
Based on the disease ontology based on RFM, we build a
computational model of diseases to make it easier to
define particular diseases. In the following, we divide
diseases into (Type 1) those whose etiological and
pathological processes are well understood and (Type 2)
other diseases.
Type 1 diseases are identified by their inherent etio-

logical/pathological process(es). Type 2 diseases include
so-called syndromes and are typically represented in
terms of criteria for diagnosis. We deal with Type 1 dis-
eases first. Note that every Type 1 disease should have a
clue to identify the disease. In other words, we should
be able to find something similar to the so-called main
pathological/etiological condition(s) that theoretically
characterize(s) the disease. As stated above, this is what
OGMS should include. We know that Type 2 diseases
necessarily employ criteria for diagnosis to identify them
because of a lack of knowledge about their etiological/
pathological processes. However, this does not mean
Type 2 disease is excluded from our disease model as
discussed below, which we share with OGMS.
We also need a formulation to organize diseases in an

is-a hierarchy in a disease model. According to our def-
inition, a disease can be represented as a directed graph
consisting of disorders as nodes and causal links. An is-a

relation between diseases using an inclusion relationship
between causal chains can be described as follows.

Definition 2: Is-a relation between diseases
Disease A is a super class of disease B if all causal chains
at the class level of disease A are included in those of
disease B. The inclusion of nodes (disorders) is deter-
mined by considering an is-a relation between the
nodes, as well as the sameness of nodes.

Definition 3: Core causal chain of a disease
The causal chain of a disease included in the chains of
all its subclass diseases is called the core causal chain.
Definition 3 helps us capture the necessary and suffi-

cient conditions of a particular disease systematically,
which roughly corresponds to the so-called “main patho-
logical/etiological conditions.” Figure 1 shows one of the
main types of diabetes constituted by corresponding
types of causal chains. The most generic type in this ex-
ample is (non-latent) diabetes, which is constituted by
the following chain:

deficiency of insulin→ elevated level of glucose in the
blood.

The next lower subclasses include Type-I diabetes,
which is constituted by:

destruction of pancreatic beta cells→ lack of insulin I in
the blood→ deficiency of insulin→ elevated level of
glucose in the blood,

and steroid diabetes, which is constituted by:

long-term steroid treatment→…→ deficiency of
insulin→ elevated level of glucose in the blood.

If a doctor wanted a hierarchy that represents diabetes-
caused blindness, it would be:

deficiency of insulin→ elevated level of glucose in the
blood→…→ loss of sight.

Although we explain the disease model using Type 1
diseases, the model is also applicable to Type 2 diseases
because of the flexibility of granularity and degree of
being “well-understood.” These two kinds of flexibility
can be exploited according to each disease. In the case
of Type 2 diseases, we could employ an “unknown”
causal node linking to just a few of the symptoms that
are typically observed in the syndrome under consider-
ation. Note that this model can capture a seemingly iso-
lated symptom by combining it with an unknown cause
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to form a causal network. It also captures diseases with
multiple causal chains.
In addition, the proposed model can distinguish, for ex-

ample, between diabetes with blindness and diabetes-
driven blindness by specifying the core causal chain of
focus. In summary, the disease model yielded by the pro-
posed definition of disease (Definition 1, Disease ontology
as linked data section) covers a wide range of diseases. In
fact, we have constructed models of 6051 diseases from 12
different divisions in our ontology, which shows the ex-
pressive power of the proposed disease model.

Types of causal chains in disease definitions
In theory, when we define a disease, we can consider
three types of causal chains that appear in the definition
of disease.
General Causal Chains are all possible causal chains

of (abnormal) states in a human body. They can be
referred to by any disease definition.
The Core Causal Chain is a causal chain that appears

in all patients that have the disease.
Derived Causal Chains are causal chains that are ob-

tained by tracing general disease chains upstream or
downstream from the core causal chain. Upstream chains
imply possible causes of the disease, whereas downstream
chains imply possible symptoms in a patient suffering
from the disease.
The core causal chain represents a stable definition of

the disease. That is, it defines only such causal chains
that appear in all patients. On the other hand, the gen-
eral causal chains and derived causal chains are not part
of the definition but possible causal chains which might
not appear in some patients. That is, the general causal
chains and derived causal chains represents possibilities
how causal chains could be extended.

Figure 1 shows how the main types of diabetes are
composed of corresponding types of causal chains. The
figure shows that diabetes subtypes are defined by
extending the disease’s core causal chain according to its
derived causal chains (upstream or downstream).
Note that it is obviously difficult to define all general

causal chains in advance, because it is impossible to
know all possible states in the human body and their
causal relationships. To overcome this difficulty, we de-
fine general causal chains by generalizing the core/de-
rived causal chains of every disease defined by clinicians
using a bottom-up approach. We asked clinicians to
define only core causal chains and typical derived causal
chains of each disease according to their existing know-
ledge and information that can be found in textbooks.
General causal chains are then defined by generalizing
these definitions.

The scope of the model for disease
In this section, we discuss the scope of the proposed
model of diseases. This paper focuses on how to capture
diseases and the implementation of diseases as causal
chains based on the RFM. As mentioned in Definition of
a Disease section, we assume that ontological definitions
of causal chains, diseases, and abnormalities (disorders)
etc. are out of the scope of this paper since they are dis-
cussed in our previous papers [4, 5].
At first, we have to distinguish the following two prob-

lems when we represent a disease.

1) How we can represent causal chains of diseases as a
computational model

2) How far the current medical knowledge reveals the
causal mechanism of diseases?

Fig. 1 Types of diabetes composed of causal chains
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This paper focuses on the former and the latter prob-
lem is out of scope. That is, we discuss how the model
capture the current medical knowledge about diseases
based on the RFM.
We here classify difficulties for defining diseases as

causal chains into the following two types;

1) Problems of grain size to describe causal chains.
2) How far we can follow causes of diseases.

For the former, we use the Abnormality Ontology we
proposed in our previous work [7]. It supports multi
levels representations of abnormal states according to
their grain size.
For the latter, we carefully investigated how we should

represent causal chains of diseases through discussions
with medical experts including clinicians. As the result,
we introduced a flexible representation model which we
can describe causal chains according to a range of given
knowledge even if some causes of the disease are un-
known. When causes of an abnormal state is unknown,
we represent it “unknown node” in the causal chain. It
means that the model can represent causal chains
according to how far we can follow causes of diseases.
On the other hand, when we know that an abnormal
state has several causes, we can also represent it using
multiple chains. Please note that multiple chains can be
represented using AND/OR graphs which is a simple
and basic knowledge representation. Although represen-
tations of AND/OR in OWL are somewhat complicated,
this is why we publish causal chains of diseases as not
OWL but simple RDF graph as discussed in Disease
ontology as linked data section.

Implementing the Disease Ontology
We developed the disease ontology using Hozo.
Although Hozo is based on an ontological theory of
roles and has its own ontology representation model, we
show an OWL representation of the ontology to aid
understandability. Note that we use a simplified OWL
representation of the disease ontology to provide an
overview; however, it does not support the full semantics
of Hozo. The detailed semantics of Hozo are discussed
in the literature [12].
Figure 2 shows an OWL representation of angina pec-

toris, whose causal chain is shown in Fig. 3. Abnormal
states that appear in the disease are listed using the
owl:Restriction properties on the hasCoreState/hasDerives-
State properties. The former represents abnormal states in
its core causal chain, and the latter represents those in its
derived causal chain as defined by a clinician. The causal
relationships among them are represented by hasCause/
hasResult properties. If the probability of the causal rela-
tionship is high, hasProbableCause/hasProbableResult

properties are used instead. However, how this probability
is determined is beyond the scope of this paper. Causal
chains (states and causal relationships among them) in
core causal chains are necessary (Definition 3); therefore,
the owl:someValuesFrom properties are used. On the other
hand, because causal chains in derived causal chains are
possible, owl:allValuesFrom properties are used to repre-
sent the possible causes/results. If there are more than
two possible causes/results, owl:unionOf is used to list
them. The definitions of diseases refer to the definitions of
abnormal states, which represent the possible causes
and results, as shown in Fig. 4. General disease chains
are represented as an aggregation of the definitions of
abnormal states.
Our disease ontology has been developed in collabor-

ation with clinicians from 13 fields, such as cardiology,

Fig. 2 Class definition of angina pectoris in OWL

Fig. 3 Causal chain of angina pectoris
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neurosurgery, and allergology. As of May 11, 2013, it con-
tained approximately 6302 disease concepts and 21,669
disorder (abnormal state) concepts with the causal rela-
tionships that exist among them. We keep to revise them
mainly focusing on major diseases.

Disease ontology as linked data
Basic policy to publish the disease ontologies as linked data
The standard format for linked data is RDF; thus, one
might consider it easy to publish ontologies in RDF
formats using OWL or RDF(S) as linked data. However,
ontology languages, such as OWL, are primarily designed
for class descriptions, and there is an assumption that the
language will be used for reasoning based on logic. In
contrast, for linked data, finding and tracing connections
between instances is the primary task. Therefore, for con-
venience or efficiency, OWL and RDF(S) are not always
appropriate for linked data because of their complicated
graph structures.
For example, when we obtain a general disease chain,

which is probably caused by myocardial_ischemia, we
must repeat SPARQL queries to obtain RDF graphs,
which include blank nodes, such as those shown in Fig. 5.
Furthermore, when we obtain the definitions of a
disease, we must perform more complicated queries to

obtain graphs that correspond to OWL descriptions,
such as those shown in Fig. 3, with restrictions inherited
from the disease’s super classes. These queries and graph
patterns are intuitively very different from the disease
chains we want to produce. It is due to restrictions from
the super classes.
This is problematic, especially when the conceptual

structures of the ontology are intended for use as a
knowledge base with rich semantics. Consequently, we
have designed an RDF data model in order to publish
our disease ontology as linked data [13].

RDF model for causal chains of diseases
Once the disease ontology was constructed, information
about the causal chains of diseases was extracted and
converted into RDF format as linked data. We call this
dataset Disease Chain-LD, and it consists of diseases,
abnormal states, and the relationships among them. Ab-
normal states are represented by instances of the Abnor-
mal_State type, and the causal relationships between
them are represented by hasCause and hasResult, which
are inverse properties. The abnormal states connected by
these properties are a possible cause/result; therefore, gen-
eral disease chains can be obtained by collecting all abnor-
mal states according to these connections.
Diseases are represented by instances of Disease type.

Abnormal states that constitute a core causal chain and
a derived causal chain of a disease are represented by
hasCoreState and hasDerivedState properties, respect-
ively. Is-a (sub-class-of ) relationships between diseases
and abnormal states are represented by subDiseaseOf/
subStateOf properties rather than rdfs:subClassOf be-
cause the diseases and abnormal states are represented
as RDF resources, whereas rdfs:subClassOf is a property
between rdfs:Classes.
Figure 6 shows an example of an RDF representation of

diseases. It represents disease A and its sub-disease disease
B, whose causal chains are shown in Fig. 7. Note that the
causal chains consist of abnormal states and the causal
relationships among them. Therefore, when we obtain a
disease’s core causal chain or derived causal chain, we
must obtain both the abnormal states connected to the
disease by hasCoreState/hasDerivedState properties and
the causal relationships among them. Although causal re-
lationships are described without determining whether
they are included in the causal chains of certain diseases,
we can identify the difference of abnormal states which
diseases include by assessing whether the abnormal states
at both ends of hasCause/hasResult properties are con-
nected to the same disease by hasCoreState/hasDerived-
State properties. Furthermore, for a disease that has a
super disease, such as disease B in Fig. 7, in addition to
obtaining the causal chain directly connected with the

Fig. 4 Class definition of myocardial ischemia in OWL

Fig. 5 RDF graph of a general disease chain in OWL
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disease, we must also obtain the causal chains of the super
disease, and these chains must be aggregated.
We have published the disease ontology as linked data

based on our RDF model. It includes the definitions of
1.554 diseases and 7080 abnormal states in six major clin-
ical areas, which were extracted from the disease ontology
on June 24, 2014. At this point, the dataset contains
61,473 triples. Although the disease ontology includes the
definitions of diseases in 13 clinical areas, we have pub-
lished only those parts that were well reviewed by clini-
cians. A SPARQL endpoint to access the disease ontology
is published at http://lodc.med-ontology.jp/. The users
can find concrete examples of causal chains of diseases in
RDF through this endpoint using SPARQL queries as dis-
cussed in the next section. Furthermore, we also provide
user friendly navigation system for causal chains of disease
as discussed in Development of Disease Compass section.

Example Queries
The processing is not complicated; it requires only sim-
ple procedural reasoning. We can obtain the causal

chains that define a disease through several SPARQL
queries to the dataset [13].
Figure 8 shows example queries to obtain an abnor-

mal state in the dataset. Because all abnormal states
are defined as individual resources of the Abnormal_State
type, we can obtain them using the query shown in (a1).
When we want to obtain the causes/result of a se-
lected abnormal state, we can follow the hasCause/
hasResult properties. For example, (a2) is a query to
obtain all causes of the selected abnormal state. Fur-
thermore, we can obtain a general disease chain that
includes the abnormal state using the query shown in
(a3). This query means to follow all of the hasCause/
hasResult properties recursively from the selected
abnormal state.
On the other hand, Fig. 9 shows example queries to

obtain the definitions of diseases. We can obtain all
diseases in the dataset using query (d1), which is
similar to query (a1). When we want to obtain all
super diseases (super class) of a selected disease, we
can use the query show in (d2). To obtain the core
causal chains or derived causal chains of a selected
disease, we can use query (d3) or (d4), respectively.
By combining queries (d2), (d3), and (d4), we can ob-
tain all causal chains that appear in the definitions of
the disease using the query shown in (d5). Further-
more, when we want to obtain a list of causal rela-
tionships that appear in the causal chain of the
definition of the diseases rather than a list of abnor-
mal states, we can use the query shown in (d6). This
query finds all properties among all abnormal states
that appear in the definition of the selected disease.
We believe that all of the above queries are easy to

understand and intuitive for many people. This is a
significant advantage of our RDF model compared to
our original OWL disease ontology.

Fig. 7 Causal chains of diseases shown in Fig. 2

Fig. 8 Example queries. Here, “dont:” represents a prefix of the Disease
Chain-LD and < abn_id > and < dis_id > represent the id of a selected
abnormal state and disease, respectively

Fig. 6 RDF representation of disease
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Integration of biomedical abnormal states

Mapping to Other Resources As illustrated in the pre-
vious section, our ontology provides three levels of
abnormal states, from generic to disease-specific.
Level 1 in our ontology defines generic concepts that
correspond to the PATO concepts [14], and those con-
cepts can be mapped to related PATO concepts (Fig. 10).
The lower Level 2 concepts are human anatomical
structure-dependent abnormal states that correspond to
Human Phenotype Ontology (HPO) concepts [15]. By
creating links between Level 2 concepts and HPO con-
cepts, it becomes possible to navigate from the HPO
concepts to the upper generic PATO concepts. Level 3
provides disease-specific abnormal states, such as “myo-
cardial ischemia in ischemic heart disease” and “chest
pain in angina pectoris.” In the revised version 11 of the
International Classification of Diseases (ICD), diseases
contain “causal properties” information [16]; therefore,
we plan to map our Level 3 concepts to the correspond-
ing ICD concepts. Level 3 abnormal states are described

in the causal chains of diseases [4]. By mapping our dis-
ease concepts of disease ontology to the ICD, ICD users
can understand the causal relationships of the abnormal
states in diseases. Our ontology also allows users to navi-
gate related concepts in other resources, such as HPO
and PATO.
Mapping our ontology to other resources in order to

integrate various data related to abnormalities will also
provide benefits to the users of other resources. First,
one can find concepts from generic to specialized terms
easily by referring to the single is-a tree in our abnor-
mality ontology. For example, although HPO does not
consider consistent is-a relationships in terms of “sten-
osis,” by referring to “arterial stenosis” at Level 2 in our
ontology through mapping, HPO users can obtain the fol-
lowing is-a relationships: “arterial stenosis is-a vascular
stenosis is-a narrowing tube is-a small in area.”1 Since
“small area” is linked to a PATO concept, via our ontol-
ogy, users might find orthologous concepts of other spe-
cies. In particular, human phenotypes can be linked to the
phenotypes of model organisms, e.g., mouse and rat, if the
set composed of Attribute (A) and Value (V) are identical
and the Object (O) has structural similarity. PATO2YA-
MATO attempts to integrate phenotype descriptions res-
iding in differently structured comparison contexts [17].
By applying PATO2YAMATO, mapping concepts across
species and integrating knowledge from various species
may be possible.
We also plan to link the components of the <Object

(O), Attribute (A), Value (V) > representation of abnormal
states to other resources. For example, we suppose that
Object (O) can be linked to concepts in the Foundational
Model of Anatomy (FMA) ontology [18]. By mapping
medical terminologies, such as SNOMED-CT[19] and
MeSH terms [20], it will be possible to retrieve biomedical
articles related to abnormal states or diseases. It will be
also useful for the users of these terms to understand how
their research subjects are involved in various abnormal
states in the human body relative to diseases.

Trial integration In order to assess the feasibility of
the above approach, we conducted a trial integration of
some examples taken from the three-level ontology of
abnormal states, the disease ontology, and some typical
external resources, in which we used 386 abnormal
states consisting of 279 abnormal states that are super
classes of 107 states that are the bottom level classes
appearing in 12 typical diseases from three medical spe-
cializations, i.e., cardiovascular medicine, neurology, and
gastroenterology. Mapping an abnormal state defined in
the abnormal state ontology to related concepts in exter-
nal resources was performed manually after detecting
candidates using a perfect string match algorithm.

Fig. 9 Example queries to obtain definitions of diseases. In this
figure “dont:” represents a prefix of the Disease Chain LOD, and <
dis_id > represents the id of a selected disease

Kozaki et al. Journal of Biomedical Semantics  (2017) 8:22 Page 10 of 18



Table 1 shows the mapping results for PATO, HPO,
MeSH, and SNOMED-CT for each level of abnormal
states. As can be seen in the table, 52 abnormal states in
PATO are mapped to those among 134 states at Level 1
of the abnormal ontology, none in HPO, two in MeSH,
and none in SNOMED-CT. No abnormal state is found
among the 107 states at Level 3 in the four external
sources because they are disease-specific abnormal
states. It is interesting to find that abnormal states at Level
2 have more corresponding states in external resources
than those at other levels. This is because those at Level 1
are too abstract and those at Level 3 are too specific. Some
examples of mapping results are shown in Table 2.
Another interesting finding is that our abnormal

ontology can fill the conceptual gap between abstract
PATO concepts and organ-specific HPO concepts. For
example, mitral valve insufficiency in HPO, which means
an imperfect state of the closure function of the mitral
valve, corresponds to mitral incompetence at Level 2 of

our abnormal state ontology. On the other hand, PATO’s
insufficient corresponds to dysfunction at Level 1 of our
abnormal state ontology. Then, these two are connected
via valve incompetence in our ontology. In addition, the
fact that valve incompetence subsumes tricuspid incom-
petence demonstrates that the concepts at Level 2 of our
abnormal state ontology can help find hidden subsump-
tion relations between concepts in PATO and HPO.

Abnormality Ontology as Linked Data
While causal chains of abnormal states are published as
linked data based on the RDF model for the causal
chains of diseases, we export the is-a hierarchy of abnor-
mal states in the abnormality ontology in OWL format
using the OWL export function in Hozo [12] and dir-
ectly publish it as linked data because it does not have
particularly complicated conceptual structures.

Development of Disease Compass
Disease Compass
To exploit the value of a disease ontology as a know-
ledge source for advanced medical information systems,
it is important that the users can navigate the ontology
easily and intuitively according to their interests. Med-
ical experts may not find it easy to use SPARQL queries
to obtain information about disease chains. Therefore,
we have developed Disease Compass as a navigation
system to explore the disease ontology. We designed
the system so that users without experience with

Fig. 10 Integration of abnormal states in biomedicine

Table 1 Mapping between abnormal state ontology and
external resources. Some examples of mapping results are
shown in Table 2

Concepts Our Ontology PATO HPO MeSH SNOMED–CT

Level 1 134 52 0 2 0

Level 2 145 2 27 28 17

Level 3 107 0 0 0 0

Total 386 54 27 30 17
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ontologies or linked data can easily explore disease
knowledge and related information.
It is available at http://lodc.med-ontology.jp/ (demo

movies are also available as attached files).

System architecture
Figure 11 shows the Disease Compass system architec-
ture. The system obtains disease knowledge from Dis-
ease Chain-LD, which is converted from the disease
ontology. It also has mapping information with other
Linked Open Data (LOD) and web services, and it can
obtain related information through these mappings. Al-
though the system currently has mappings to only
DBpedia and BodyPart3D, it will be possible to extend
mappings to other LOD sources using existing ap-
proaches [21] to generate such linkages.
Technically, the system uses two methods to access

these mapped datasets, i.e., SPARQL queries for linked

data and an API for web services. If related resources
(ontologies and other datasets) are published as LOD,
the system can be extended easily to link such related
information using SPARQL, which is the major benefit
of using linked data techniques. In addition, many
linked datasets include links to other data. For example,
DBpedia includes links to major medical codes, such as
ICD10 and MeSH; thus, the system can follow these
links through mappings between Disease Chain-LD and
DBpedia.
Disease Compass is a web service that is supported on

PCs, tablets, and smartphones. It is implemented using
Virtuoso as its RDF database and HTML 5 for
visualization of disease chains and other information. All
modules of the system provide APIs for other web ser-
vices. This allows other web services to use all the func-
tions of Disease Compass so that their modules will
work with other related services.

Table 2 Some examples of mapping results between abnormal state ontology and external resources. Blank cells mean that
abnormal states defined in our ontology are not existent in other resources

Concepts Our Ontology PATO HPO MeSH SNOMED–CT

Level 1 structural abnormality

Level 1 material degeneration PATO:0002037
degeneration

Level 1 hardening PATO:0000386
hard

Level 1 size abnormality

Level 1 large in size PATO:0000586
increased size

Level 1 hyperfunction PATO:0001625
increased
functionality

Level 1 dysfunction

Level 1 movement abnormality D009069
Movement
Disorders

Level 2 narrowed cross-sectional area of tube

Level 2 hardening of wall

Level 2 cellular tissue necrosis PATO:0000647
necrotic

D009336
Necrosis

Level 2 conoronary artery stenosis HP:0005145
Coronary artery
stenosis

D023921
Coronary Stenosis

233970002
Coronary artery
stenosis

Level 2 arterial occlusion 2929001
Occlusion of artery

Level 2 coronary artery occlusion D054059
Coronary Occlusion

63739005
Coronary occlusion

Level 2 chest pain HP:0100749
Chest pain

D002637
Chest pain

29857009
Chest pain

Level 3 coronary artert stenosis in
arteriosclerosis

Level 3 esophagel stenosis in esophagitis
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User interface for navigation
Disease Compass supports the following types of naviga-
tion of the disease ontology.

1. Navigation for definition of disease based on the
RFM of a disease: navigating definitions of diseases
based on causal chains with links to other systems/
datasets

2. Navigation for general causal chains in a human
body: browsing possible causal chains of abnormal
states (disorder) in the human body

3. Navigation for definition of abnormal state
(clinical disorder): browsing the is-a hierarchy of
abnormal state (clinical disorder) ontology with
mappings to other resources

The above are related, i.e., the user can freely access
other systems.

Navigation for definition of disease
Figure 12 shows the Disease Compass user interface for
navigating the definition of a disease. Users select a dis-
ease according to the is-a hierarchy of diseases, or they
search a disease chain by disease name or the abnormal
state included in the disease. The system visualizes the
disease chains of the selected diseases in a user-friendly
representation in the center of the window. The system
also obtains and displays information related to the
selected disease and abnormal state from the linked web
services, such as general information from linked data
(DBpedia) and 3D images of anatomies.
DBpedia is a linked open dataset extracted from Wiki-

pedia [22]. We use DBpedia English (http://dbpedia.org)
and Japanese (http://ja.dbpedia.org). DBpedia provides
general information about diseases; however, medical
experts have not approved this content. Nevertheless, we
suggest that the content is sufficiently valuable to pro-
vide an overview of various diseases. In addition,

DBpedia also provides links to major medical termin-
ology and codes, such as ICD10 and MeSH, which
allows users to gather specialized information about a
given disease. This technology, with which related infor-
mation from other web resources (e.g., ontologies, medical
codes, and datasets) can be obtained through mappings, is
easy to apply to other linked data. We plan to extend the
target linked data in the near future.
A web service named BodyPart3D/Anatomography [23]

is employed to generate 3D images of anatomies. The tar-
get area of the image is decided by Disease Compass,
which combines all targets of abnormal states appearing
in the definition (causal chains) of the selected disease
chain. Subsequently, the system highlights the part of the
3D image that is the target of the selected abnormal state
in the disease chain.
The functionality of Disease Compass is enabled because

of the successful combination of our disease ontology and
other web resources based on linked data technologies. As
a result, Disease Compass allows users to explore disease
knowledge and related information through various web
resources.
An additional movie file shows a demonstration of navi-

gation for definition of disease [see Additional file 1]’.

Navigation for general causal chains
When viewing the definition of a disease, the user selects
a target abnormal state and can use the click menu to
trace the causes and/or effects that form the selected
abnormal state. Then, a view for navigating general
causal chains is shown. In this view, users can browse
the possible causal chains of abnormal states (disorders)
in the human body through different diseases.
Figure 13 shows an example of navigation for general

causal chains whose starting point is heart failure. The
red node represents the starting point, purple nodes are
effects, and green nodes are causes. By right clicking,
diseases that include the selected abnormal state are

Fig. 11 Disease Compass system architecture
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listed, and the system shows the definition of the
selected disease when its name is clicked in the list. Note
that some abnormal states shown in the view appear in
different diseases when they are linked to the same
chain. In particular, it is important that the user can ob-
tain both the derived causal chains defined by the clin-
ician directly and the causal chains derived by tracing
the general causal chains through all clinical areas.
An additional movie file shows a demonstration of navi-

gation for general causal chains [see Additional file 2]’.

Navigation for definition of abnormal state (clinical disorder)
As discussed in Development of Disease Compass sec-
tion, we investigated the differences in the hierarchical

structure of biomedical resources and conducted a trial
integration of our abnormality ontology and related
resources, such as PATO, HPO, and MeSH, based on
ontological theory [9]. As a result, we developed a proto-
type of the abnormality ontology as linked data with a
browsing system. By mapping information from other
resources, users can access disease knowledge through
our abnormality ontology and through other open
resources (Fig. 14).
For example, ID of PATO shown in the definition of

low force/decrease in force is used to jump into the
Ontobee browser, which allows users to see various re-
lated information defined by PATO. Similarly, clicking a
MeSH ID shown in the definition pane leads users to

Fig. 12 Disease Compass user interface

Fig. 13 View for navigating general causal chains
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the corresponding terms defined in PubMed. For
example, myocardial ischemia in the ontology of abnor-
mal states is mapped to the corresponding MeSH term,
i.e., myocardial ischemia (MeSH ID: D17202), from
which users can retrieve all relevant information anno-
tated by myocardial ischemia in NCBI.

Discussion
The primary feature of the RFM of disease is a disease
model based on the causal chains of clinical disorders. It
is an appealing alternative representation of existing dis-
ease ontology, such as the DOID and the OGMS. The
model captures the possibilities of clinical disorders
(abnormal states) as causal chains and represents dis-
eases by overlapping them. It can intuitively represent
the causes of diseases, disease progression, and the
downstream consequences of diseases to medical ex-
perts. Through these representations, the RFM of a dis-
ease can provide a broad picture of disease-associated
processes in a way that fits well with the clinical under-
standings of diseases.
Publishing the disease ontology based on the RFM

as linked data allows users to access rich knowledge/
information in the disease ontology through a stand-
ard API. Furthermore, Disease Compass provides a
well-organized graphical navigation function for the
disease ontology as linked data with related web re-
sources by mapping information.
In fact, Disease Compass, which allows users to navi-

gate disease definitions with the help of abnormal states,
enables users to learn whether an abnormal state is a
disease cause or effect by identifying its position in the
causal chain of the disease. For example, in the case of

hypertension, users can easily find diseases that are
caused by hypertension, including hypertension disease in
cardiovascular medicine, and those that cause hyperten-
sion as a symptom. For example, the user may find that
chronic kidney disease, in which hypertension appears in
the upper stream of its causal chain, causes various
inflammation, whereas, for Liddle Syndrome, hyperten-
sion appears in the lower stream of its causal chain as a
result of hyperactivity of the epithelial Na channel of
amiloride-sensitive. Thus, users can learn that an abnor-
mal state can be a cause or an effect (symptom) of dis-
eases thanks to the causal chain model of diseases in
Disease Compass.
Disease Compass also allows users to compare multiple

diseases to find unexpected commonalities. For example,
in the case of ischemia, for myocardial infarction in car-
diovascular medicine and ischemic cerebrovascular disease
in neurology, although the locations where the corre-
sponding abnormal states occur differ, both causal chains
share a similar path up to ischemia (Fig. 15). In fact, both
causal chains have structural disorders, such as stenosis
and occlusion, or ischemia is caused by a spasm via
decreased blood flow, and eventually necrosis occurs in
either case. After necrosis occurs, succeeding symptoms
are quite different according to myocardial necrosis or ne-
crosis of brain cells, as shown in Fig. 15 (a)), in which
symptoms (e.g., ventricular wall motion abnormalities)
occur in the cardiovascular system, and in Fig. 15 (b), in
which different symptoms (e.g., paralysis) are caused in
locations governed by the nervous system, thereby reflect-
ing the differences between respective organs.
Disease Compass helps users uncover hidden relations

between different diseases across divisions (Fig. 16). It

Fig. 14 Browsing system for the abnormality ontology as linked data
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can be done through general causal chains which include
common abnormal states between different diseases
across medical divisions. For example, while heart fail-
ure is a typical disease in cardiovascular internal medi-
cine, Disease Compass can show that it can be caused by
autoimmunity in systemic scleroderma in allergology and
rheumatology. Another disease that causes heart failure
in different medical fields is renal arteriovenous fistula
(aneurysmal type) whose abnormal state, i.e., renal
arteriovenous shunt, can also cause heart failure, which
would be informative for novices because not all text-
books mention this rare fact.
In summary, the benefits of abnormal states organized in

terms of the subsumption relation between states are signifi-
cant. This helps users fill conceptual gaps between concepts

in external resources and reveal hidden commonality be-
tween diseases in different medical fields. This can be real-
ized because all diseases are described in terms of the causal
chains of abnormal states and are organized in an ontology.

Conclusions
This paper has discussed a navigation system for disease
knowledge based on a disease ontology and linked data
technologies. Our ontology defines diseases based on the
causal chains of abnormal states (disorders), and a
browsing system allows users to explore the definitions
of diseases with related information obtained from
linked data. We believe that this system will allow users
to gain a broader understanding of diseases according to
their interests and intentions.

(a)

(b)
Fig. 15 Interaction between abnormal ontology and Disease Compass
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The following list shows the summary of our contribution
to clinicians and information scientists;

1. For clinicians
� They can access the basic information of diseases

with causal chains through navigation using the
Disease Compass. That is, they can know possible
causes and/or effects of the disease of interest.

� They can find (retrieve) diseases according to
causes or effects.

� They can access related resources through
mapping information.

2. For information scientists
� 6302 diseases and 21,699 abnormal states are

defined by clinicians as a fact repository causal
chains of diseases based on the RFM. It shows that
the RFM was applicable to a variety of diseases.

� 1554 diseases and 7080 abnormal states in six
major clinical areas, which are extracted from the
above RFM-diseases, are published as linked data
(RDF) with SPARQL endpoint (accessible API).
We call the linked data Disease Chain LD. Infor-
mation scientists can access it using friendly
SPARQL queries through a RDF model we de-
signed for causal chain of diseases.

� A navigation system for disease knowledge using
the Disease Chain LD, called Disease Compass, is
developed. It provides navigating functions for
causal chain of diseases and related information
through links to other resources with GUI. It
shows how the Disease Chain LD can be used for
developing information systems.

The system was evaluated informally by medical ex-
perts in several meetings and workshops, and positive
comments were received. A full-scale user evaluation is
to be conducted in future.

Future work will also include extending the related
resources using linked data and development of more
practical applications using the Disease Chain-LD.
The system is also subject to continuous improve-
ment, including bug fixes and development of new
functions. There remain a few topics on diseases to
explore. One is a notion of an imbalance model that
models pre-clinical manifestation based on the dis-
turbance of homeostasis and roughly corresponds to
OGMS’ disposition [1]. Another topic is identity
tracking of a disease to capture its progression [24].
We must consider these significant topics and their
computational models.
The latest version of Disease Compass is available at

http://lodc.med-ontology.jp/.

Endnotes
1Though the type 1 and type 2 diseases are not med-

ical terms, we use these terms only in this paper to men-
tion two kinds of diseases.2We defined “small in area” as
a property that an area is smaller than a given threshold.
On the other hand, “narrowing tube” is defined that a
cross section of a tube is smaller than a given threshold.
In the same ways, definitions of “arterial/vascular sten-
osis” are “the cross section of an artery/blood vessel is
smaller than a given threshold.” Considering these defi-
nitions, we consider that “arterial stenosis is-a vascular
stenosis is-a narrowing tube is-a small in area.”

Additional files

Additional file 1: A demonstration of navigation for definition of
disease using Disease Compass. (MP4 28362 kb)

Additional file 2: A demonstration of navigation for general causal
chains of disease using Disease Compass. (MP4 45031 kb)

Fig. 16 Causal relationships of heart failure
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