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Abstract: We have derived the fundamental formula of phonon transport in water for the
evaluation of quantum thermal conductance by using a one-dimensional phonon model based
on the nonequilibrium Green’s function method. In our model, phonons are excited as quantum
waves from the left or right reservoir and propagate from left to right of H2O layer or vice versa.
We have assumed these reservoirs as being of periodic structures, whereas we can also model the H2O
sandwiched between these reservoirs as having aperiodic structures of liquid containing N water
molecules. We have extracted the dispersion curves from the experimental absorption spectra of the
OH stretching and intermolecular modes of water molecules, and calculated phonon transmission
function and quantum thermal conductance. In addition, we have simplified the formulation of
the transmission function by employing a case of one water molecule (N=1). From this calculation,
we have obtained the characteristic that the transmission probability is almost unity at the frequency
bands of acoustic and optical modes, and the transmission probability vanishes by the phonon
attenuation reflecting the quantum tunnel effect outside the bands of these two modes. The classical
limit of the thermal conductance calculated by our formula agreed with the literature value (order
of 10−10 W/K) in high temperature regime (>300 K). The present approach is powerful enough
to be applicable to molecular systems containing proteins as well, and to evaluate their thermal
conductive characteristics.
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1. Introduction

In recent years, advances in the fabrication and characterization of nanoscale systems allow
for a better understanding of the heat flow at the microscopic level [1]. Regarding the researches
for inorganic materials, studies on carbon nanotube systems have provided a prototypical example
for nanoscale thermal conduction experimentally [2–6] and theoretically [7,8]. Both theoretical and
experimental progresses have thus been reported extensively in each of these studies [1]. As for other
nanoscale systems, Lervik et al. [9] analyzed via classical molecular dynamics simulations the heat
transfer through nanometer-scale interfaces consisting of n-decane (2–12 nm diameter) droplets in
water. Tanaka et al. [10,11] studied molecular dynamics of water by microwave heating. In contrast to
these classical-mechanics-based approaches, Fisher [12] showed that the Landauer transport formalism
can be applied to the formulations of the quantum thermal conductance of heat flux carried by phonons
between hot and cold reservoirs on the basis of nanoscale models of inorganic materials. Furthermore,
using the Landauer formulation, Rego et al. [13] studied the quantized thermal conductance of
dielectric quantum wires at low temperatures.

On the other hand, attention has recently been focused on the nanoscale thermal conduction
in biological systems as well. Concerning experimental reports on endogenous heat production in
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single cells, Baffou et al. [14] argued that the experimentally observed temperature rise of ∆T (1–2 K)
of a whole cell [15–17] would be much larger than the theoretical ∆T estimated from the relation
∆T = P/κL, where κ is the thermal conductivity, L is the diameter of the heat source and P is the
power. This equation is derived from the macroscopic heat diffusion equation for continuum [18].
Baffou et al. [19] estimated ∆T within a cell to be around 10−5 K. However, the 105 gap issue (the
difference between the measured temperature increase of 1 K in a single cell using cellular thermometry
as compared to the theoretically calculated increase estimate of 10−5 K) may disappear [15] if once
the uncertainties of variable heat sources in stimulated cells (101), length scales (101–102), and micro-
and nanoscale thermal parameters (101–102) are considered. A forthcoming challenge in the series of
debates [14,15] is thus to establish a relevant theoretical framework for thermal conduction by setting
up nanoscale models of biological cells containing liquid water and proteins. Regarding this issue,
Lervik et al. [20] calculated the thermal conductivity at the protein–water interface in terms of classical
molecular dynamics. Pandey and Leitner [21,22] quantum-mechanically evaluated the thermal energy
transport through a trehalose layer between water and protein, and between gold, such as a gold
nanoparticle, and its cellular environment.

In this paper, we aim at constructing a theoretical formulation to describe the quantum thermal
conduction at nanoscale, paying special attention to the roles by water in biological contexts. We here
derive the fundamental formula of phonon transport in water for the first step of evaluations of
quantum thermal conductances in intracellular molecular environment. In the nanoscale space relevant
to intracellular environment, we expect that the quantum characteristics of heat transfer may manifest
themselves, which should be compared to the classical descriptions. The model of this study, which
is given by a novel combination of the Landauer formulation and spectroscopic data, is powerful
enough to be applicable to molecular systems containing proteins, and to quantitatively evaluate the
thermal conductive characteristics in realistic systems, since experimental spectroscopic features are
taken into account in the model. In the present formulation, we have applied the Green’s function
method (GFM) to water with a one-dimensional phonon model. This model then takes into account not
only intramolecular vibration modes but also intermolecular ones. We have extracted the dispersion
curves from experimental absorption spectrum of water and evaluated quantitatively quantum heat
conduction characteristics such as the phonon transmission function and the thermal conductance.
Based on the GFM theoretical framework and the extracted parameters, we have calculated the
quantum thermal conductance and compared it with the literature values quantitatively. We show
detailed mathematical formulations based on equilibrium Green’s functions, non-equilibrium Green’s
functions and phonon transmission function in the Appendix A, and describe simplified formulas
used in the calculations in the following sections of main text.

2. Extraction of Phonon Dispersion Curves of Liquid Water from Experimental Results

Figure 1 illustrates the definitions of displacements, masses, and spring constants of the elements
H2 and O in the present one-dimensional phonon model. Figure 1 gives a background of the theoretical
formulations. The j-th unit cell of water molecule with length lj consists of two elements, H2 and
O, blue and yellow colored circles, which have displacements uj,1 and uj,2, masses Mj,1 and Mj,2,
and spring constants Kj,1 and Kj,2, respectively. By applying the Bloch theorem uj+1,n = exp (iklj)uj,n
to Equations (A1a)–(A2b) in Appendix A, we can obtain a phonon dispersion relation of liquid water
between the frequency ω and the dimensionless wavenumber:

klj = arccos

[
2M−1

j,1 M−1
j,2 Kj,1Kj,2 − (M−1

j,1 + M−1
j,2 )(Kj,1 + Kj,2)ω

2 + ω4

2M−1
j,1 M−1

j,2 Kj,1Kj,2

]
, (1)

where j and n in Kj,n and Mj,n are indices of unit cells and atomic components, respectively. In the
model of Figure 2, j and n take values from (−NL + 1) to (N + NR) and 1, 2, respectively, where NL,
NR, and N represent the number of unit cells in the left and right reservoirs and the water, respectively,
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and n = 1, 2 mean two-hydrogen (H2) and one-oxygen (O), respectively. The phonon dispersion
relation (1) has corresponding dispersion curves with real k branches of acoustic and optical modes.
Hereafter, assuming that Mj,1 and Mj,2 do not depend on j, we have approximated them by M1 and
M2, respectively, and similarly, Kj,1 and Kj,2 were also approximated by K1 and K2, respectively. If we
assume the acoustic and optical modes have angular frequency bands of 0≤ ω ≤ ωr and ωq ≤ ω ≤ ωp,
respectively, we can obtain equations for K1, K2 and ωp as follows:

K1 =
1
2

M1M2(ω
2
q + ω2

r )

M1 + M2
+

√√√√[M1M2(ω2
q + ω2

r )

M1 + M2

]2

−M1M2ω2
qω2

r

 , (2a)

K2 =
1
2

M1M2(ω
2
q + ω2

r )

M1 + M2
−

√√√√[M1M2(ω2
q + ω2

r )

M1 + M2

]2

−M1M2ω2
qω2

r

 , (2b)

ωp =
√

M−1
1 K1 + M−1

1 K2 + M−1
2 K1 + M−1

2 K2. (2c)

Figure 1. Definitions of displacements, masses, and spring constants of the elements H2 (blue) and O
(yellow) in the one-dimensional phonon model.

Figure 2. One-dimensional phonon model of reservoir-water-reservoir structure. Each unit cell
j has length lj, (j = −NL + 1,−NL + 2, · · ·N + NR) along the x-direction and temperature θj,
(j = 0, 1, 2, · · ·N + 1), where θ−NL+1 = θ−NL+2 = · · · = θ0 and θN+1 = θN+2 = · · · = θN+NR [23].

As illustrated in Figure 2, we have assumed the model in which phonons are excited as quantum
waves from the left or right reservoir and propagate from left to right of water layers or vice versa.
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These reservoirs have periodic structures of solid in the red and blue areas of Figure 2, whereas
water may have an aperiodic structure of liquid in the rainbow colored area of Figure 2; the reason
for employing the aperiodic structure is to generally describe disordered liquid water. We have
assumed a one-dimensional phonon model with intervals of water molecule as lj in the j-th unit
cell, where j = 1, 2, · · ·N as shown in Figure 2. Each unit cell of water is modelled to consist of
two components, H2 and O. The present model takes into account not only intramolecular vibration
modes but also intermolecular ones. Phonon has two kinds of modes, acoustic and optical modes.
The components of water molecules at acoustic and optical modes vibrate with the same and inverse
directions, respectively. We have extracted the dispersion curves from the experimental absorption
spectrum of H2O in the liquid phase [24] by the following procedure:

1. Extracting wave numbers kb and ke at yellow and red broken lines of absorbance maxima in the
experimental absorption spectrum of water in the liquid phase shown in Figure 3.

2. Calculating angular frequencies ωq and ωr as 2πkbc and 2πkec, respectively, with c being the light
velocity, so that the one-dimensional phonon model is consistent with the experimental spectrum.

3. Calculating spring constants K1 and K2 by using Equations (2a) and (2b) above.
4. Calculating angular frequency ωp by using Equation (2c) above.
5. Calculating the wave number k of phonon by using the dispersion relation Equation (1) above.
6. Obtaining dispersion curves in the upper part of Figure 4 below with the frequency on the

abscissa and the normalized wave number klj/π on the ordinate.

Figure 3. Absorption spectrum of water in the liquid phase [24]. Yellow and red broken lines represent
the vibration modes (b) and (e), respectively.

Figure 5 shows liquid-phase water motions [25,26] of (a) anti-symmetric stretching, (b) symmetric
stretching, (c) bending, (d) libration, and (e) intermolecular vibration, respectively. In step 1,
we determined wave numbers kb and ke as modes (b) and (e) from the maximum value of the
experimental absorption spectrum shown in Figure 3, where we selected kb as maximum value of
intramolecular vibration in the experimental spectrum because the absorbance of mode (b) was higher
than that of mode (a) [27]. It is also noted that some other modes such as those associated with hydrogen
bond stretch may be contained in the "libration" region (d) in Figure 3, while they are supposed to play
an insignificant role in the present simplified model. This procedure is applicable not only to liquid
water, but also to water in a wide range of solid, liquid, and gas temperatures [28]. Table 1 shows the
wavenumbers and angular frequencies of various molecular vibrational modes of liquid water, where ka,
kb, kc, kd, and ke are wavenumbers of liquid-phase water motions [25,26] of (a)–(e), respectively. Because
of small difference between ka and kb, we have calculated ka as k′a − k′b + kb, where k′a and k′b are wave
numbers of isolated water molecule 3756 cm−1 and 3657 cm−1, respectively [27].
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Figure 4. Complex dispersion curves (upper) and transmission probability spectrum of the phonon
(lower). The upper right inset plots enlarged dispersion curves in the frequency range of 642–645 Trad/s.

Figure 5. Modes of H2O molecular motions of (a) anti-symmetric stretching; (b) symmetric stretching;
(c) bending; (d) libration; and (e) intermolecular vibration.

Table 1. Wavenumbers and angular frequencies for various molecular vibration modes of water (c: light
velocity).

Wave Number Angular Frequency
Mode α kα (cm−1) 2 πkαc (Trad/s)

OH anti-symmetric a 3509 661.4
stretching
OH symmetric b 3410 642.8
stretching
OH bending c 1660 312.9
Binding rotation d 700 131.9
(libration)
Intermolecular e 190 35.8
vibration
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3. Formulation of the phonon transmission function through H2O

To obtain the physical outlook without losing physical essence, we have derived a simple
expression for one H2O molecule on the basis of the formula derived from the equation of the phonon
transmission function for a region consisting of N water molecules, described in Appendix A.

In this section, we derive equations of the phonon transmission function tr(T) for H2 and
O components of one water molecule, that is, the N=1 phonon model of Figure 6 for simplicity,
and perform test calculations using the formula based on the N=1 water layer model without losing
physical essence.

Figure 6. A model of phonon transport through a water molecule between two reservoirs.

We set N = 1 in Equations (A12), (A14c), (A14d), (A15a), (A15b), (A23a), (A23b), (A24), and
obtained the following equations:

tr(T) = ΓL,11ΓR,22 |GD,12|2 , (3a)

GD,12 =
−γ0,2

(ε + iη − ε1,1 − γ1,1γ0,4gL,22)(ε + iη − ε1,2 − γN,4γN+1,1gR,11)− γ1,2γ1,3
, (3b)

ΓL,11 = −2γ1,1γ0,4Im(gL,22), (3c)

ΓR,22 = −2γN,4γN+1,1Im(gR,11), (3d)

gL,22 =
ε + iη − ε1,1 +

ε1,1−ε

1−exp (i(k+L −k−L )l0)(
ε + iη − ε0,1 +

ε0,1−ε

1−exp (i(k+L −k−L )l0)

)
(ε + iη − ε0,2)−

(
γ0,2 −

γ0,2+γ0,1 exp (−ik−L l0)
1−exp (i(k+L −k−L )l0)

)
γ0,3

, (3e)

gR,11 =
ε + iη − εN,2 +

εN,2−ε

1−exp (i(k+R−k−R )lN)(
ε + iη − εN,2 +

εN,2−ε

1−exp (i(k+R−k−R )lN)

)
(ε + iη − εN,1)−

(
γN,3 −

γN+1,3+γN+1,4 exp (ik+R lN)

1−exp (i(k+R−k−R )lN)

)
γN,2

, (3f)

where tr means trace of matrix; ΓL,jn, ΓR,jn, GD,jn, gL,jn and gR,jn (j, n = 1, 2) are jn elements of matrices
ΓL, ΓR, GD, gL and gR, respectively; ε, ε j,n and γj,n (n = 1–4) represent ω2, squared on-site energy
and squared hopping energy, respectively, as defined in Equations (A2c)–(A2i) and (A6a)–(A6c) in
Appendix A; Im(Z) is the imaginary part of complex number Z, and η is the imaginary part of the
energy, which is a positive infinitesimal. T represents the transmission matrix:

T = ΓLGDΓRG†
D, (4)

as defined in Equation (A24) in Appendix A. The complex dispersion curves shown in the upper part
of Figure 4 has three modes of ( I ) acoustic wave, (II) attenuation and (III) optical wave as shown in
Table 2. In this study, we have employed an interval of water molecule l1 as 0.319 nm [29] in Figure 2.
We can calculate the transmission function by Equation (3a), and ( I ), (II) and (III) modes have the
transmission probabilities of approximately 1, 0, 1 over angular frequency ranges of 0 < ω < ωr,
ωr < ω < ωq, and ωq < ω < ωp, respectively, as shown in Table 2. Then we can depict the frequency
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characteristics of the transmission probability as shown in the lower part of Figure 4. The transmission
probability takes not only discrete values of 0 or 1, but continuous values between 0 and 1 near the
boundary angular frequencies of ωr and ωq.

Table 2. Each vibrational mode (left), angular frequency range (center) and transmission probability
(right) †.

Mode Angular Frequency Transmission
Range Probability

( I ) acoustic wave 0 < ω < ωr ∼= 1
(II) attenuation ωr < ω < ωq ∼= 0
(III) optical wave ωq < ω < ωp ∼= 1

†: (transmission probability) = tr(T)/(its maximum value over ω) [30].

4. Thermal Conductance in Water

4.1. Validation of Calculated Thermal Conductance

Since phonons are bosons, they accord to the Bose-Einstein distribution as follows:

Nj(ω) =
{

exp (h̄ω/kBθj)− 1
}−1 , (5)

where h̄, ω, kB, θj are reduced Planck constant, angular frequency, Boltzmann constant, and temperature
in the jth unit cell of water molecules in the one-dimensional phonon model of Figure 2. We can thus
formulate the Bose-Einstein distribution function at the unit cell j in one-dimensional phonon model
of reservoir-H2O-reservoir structure shown in Figure 2. Moreover, we can define the heat flow J by the
following equation [1,23,31]:

J =
∞∫

0

dω
h̄ω

2π

2

∑
k=1

N

∑
j=1
{T}j,k;j,k {N0(ω)− NN+1(ω)} , (6)

where the functions N0(ω) and NN+1(ω) are the Bose-Einstein distributions at left and right reservoirs,
respectively. Then, thermal conductance σ is defined by an equation that divides the heat flow J by the
temperature difference θ0 − θN+1 as follows:

σ =
J

θ0 − θN+1
. (7)

Figure 7 shows temperature dependencies of thermal conductances by this calculation with
Equation (7). The temperature dependences show fair agreement with the previous results [32] for
homogeneous and heterogeneous atomic chains, where the mass of a ‘Device’ atom in the homogeneous
case is 4.6 × 10−26 kg (Si atom assumed), and the masses of ‘Device’ atoms in the two heterogeneous
cases are 9.2 and 2.3 × 10−26 kg, respectively. It is observed that the agreement is in particular better
when the temperature difference |θ0 − θN+1| is smaller. It is noted that the conductance curves in
Figure 7 are not so sensitive to the atomic masses employed in the calculations.
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Figure 7. Temperature dependences of thermal conductance calculated by Equation (7). The parameters
1, 2, . . . 10 with unit of degrees Kelvin in the graph mean temperature differences θ0 − θN+1 between
the left and right reservoirs.

4.2. Classical Limit of Thermal Conductance

Because the higher-order terms (h̄ω/kBθj)
2/2! + (h̄ω/kBθj)

3/3! + · · · can be neglected in the
classical limit h̄ω/kBθj � 1, the Bose-Einstein distribution function Nj(ω) of Equation (5) takes the
following limiting form:

Nj(ω) =
{

1 + (h̄ω/kBθj)/1! + (h̄ω/kBθj)
2/2! + · · · − 1

}−1 ∼=
kBθj

h̄ω
. (8)

For example, in a case of temperature θj=300K and angular frequency range ω ≤ ωr, we have
h̄ω/kBθj ≤ 0.912. In this case we may use the approximation of Equation (8). {N0(ω)− NN+1(ω)} of
Equation (6) can then be approximated to (kB/h̄ω)(θ0 − θN+1). The phonon transmission probability
∑2

k=1 ∑N
j=1 {T}j,k;j,k can be approximated to unity in the bands of 0 < ω < ωr and ωq < ω <

ωp, and zero for the other bands of ω according to the lower part of Figure 4. From these two
approximations, the integral with respect to angular frequency of Equation (6) can be approximated by
the following equation,

J =
kB
2π

(
ωr −ωq + ωp

)
(θ0 − θN+1) ∼=

kBωr

2π
(θ0 − θN+1), (9)

where we have transformed the 3rd expression in Equation (9) by using
∣∣−ωq + ωp

∣∣� ωr. Equation (9)
can be used for the quantum heat flux due to phonon propagation at the molecular size in the cell,
which may be formulated according to the actual size of cell biology. In the classical limit, thermal
conductance σ is thus expressed by Equations (7) and (9) as follows:

σ =
kBωr

2π
. (10)

By using Equation (10), we can evaluate the thermal conductance in the classical limit as σ = 7.87×
10−11W/K, which agrees well with the values in the high-temperature limit in Figure 7 showing the
order of 10−10 W/K; this evaluation is also similar to the estimated value of about 100 MW/K/m2 by
Lervik et al. [20] with inclusion of the effective cross section (1 nm)2. The quantum thermal conductance
evaluated in the present study thus agrees with the thermal conductance obtained via classical
molecular dynamics simulation in the high-temperature, classical limit. One of significant results in
the present study is that the magnitude of thermal conductance σ in the classical limit calculated from
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ωr is similar to that by classical molecular dynamics for protein–water system, whereas the former
would give somewhat lower estimate due to the neglect of the contributions from other modes.

Baffou et al. argued [19] that the observed temperature rise of ∆T (1-2 K) of a whole cell [16,17]
would be much larger than the theoretical ∆T estimated from the relation ∆T = P/κL, where L is
the diameter of the heat source, P is power, and κ is thermal conductivity estimated to be around
1 W/K/m [19]. They estimated ∆T within a cell to be around 10−5 K, assuming that the heat source
size is 10 nm and that the average heat production per hour based on glucose production is 100 pW
(360 nJ/h). However, one may expect that once three uncertainties below are supposed, the 105 gap
issue may disappear [15]:

1. variable heat sources in stimulated cells (order 101);
2. length scales (order 101–102);
3. micro- and nanoscale thermal parameters (order 101–102).

Corresponding to these issues, we can make use of analytical model dicussed above. In order to
assess these issues, in this paper, we constructed the following models in the framework of
nonequilibrium Green’s function method:

1. reservoir model representing heat and bath reservoirs;
2. one-dimensional phonon model with water molecules sandwiched between the reservoirs;
3. phonon transports at atomic scale in water.

Thus Equation (7) can provide quantitative suggestions for the discussions on intracellular
temperature distributions [14,15,19,33]. At physiological temperature, our quantum-mechanical
estimation for the thermal conductance above is consistent with the values evaluated through classical
molecular dynamics simulations for protein–water systems [20]. Then, if we would employ the
evaluations of thermal conductivity κ by Lervik et al. [20] as well, the values of κ would fall around
0.1–0.3 W/K/m, which could make the discussions [14,15,19,33] more quantitative in nanoscale
intracellular conditions. Of course, further theoretical investigations would be required to resolve the
gap issue.

5. Conclusions

We have derived the fundamental formula of phonon transport in water for the first step
of evaluations of quantum thermal conductance by using a one-dimensional phonon model.
We have calculated the dispersion curves reproducing OH stretching mode of water molecule and
inter-molecular mode, and reproduced experimental values of the absorption spectra by fitting the
parameters of the phonon modes such as ωr, ωq and so on. We also have formulated the phonon
transmission function of N water molecules connected to the left and right heat baths by using the
non-equilibrium Green’s function method. We have employed a model in which phonons are excited
as quantum waves from the left or right reservoir and propagate from left to right of H2O layer or
vice versa. We have modelled these reservoirs as having periodic structures, whereas we can regard
the water layer part as aperiodic structure of liquid. In this formulation, we have applied the Green’s
function method to H2O with a one-dimensional phonon model. The model of this formulation is
powerful enough to be applicable to molecular system containing proteins, and to evaluate thermal
conductive characteristics thereof.

We have extracted dispersion curves from experimental absorption spectrum of H2O and
quantitatively evaluated quantum heat conduction characteristics such as the phonon transmission
function and the thermal conductance. In addition, we have simplified the formulation of the
transmission function by employing one water molecule (N=1) in the aperiodic layer. From this
calculation, we have obtained the characteristic that the transmission probability is almost unity in
the frequency bands of acoustic and optical modes, whereas the transmission probability vanishes
reflecting the quantum tunnel effect in the frequency band between these two modes. The classical limit
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of the thermal conductance calculated by our formula and the literature value [32] in high temperature
regime (>300 K) have agreed with each other on the order of 10−10W/K. The present model has also
provided the calculated results for thermal conductance that are consistent with those evaluated via
classical molecular dynamics simulations for protein–water systems [20] in the classical limit.

As future issues, in order to extract more information from the experimental results of water
absorption spectra [34], we will expand our one-dimensional phonon model to higher-dimensional
models including other vibration modes [35]. We expect this refinement of our model to provide more
accurate reproduction of heat conduction characteristics. We are aiming at multi-scale heat conduction
analysis by modeling not only water but also intracellular molecules such as proteins. We would like
to apply the present method also to the analysis of heat conduction characteristics of biomolecules
containing surrounding molecules such as flexible sugar chains [36], which would give more insights
into the thermal conductive phenomena in intracellular crowding environments.
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The following abbreviations are used in this manuscript:

GFM Green’s function method
Trad/s unit of tera radians per second
tr trace of matrix
Im imaginary part of complex number

Appendix A. Phonon Transport Equations in a One-Dimensional Chain Model of Water

We perform derivations in Appendix A.1: transport equations of phonon in water, Appendix A.2:
dispersion equations in left and right reservoirs, Appendix A.3: non-equivribrium Green’s functions,
and Appendix A.4: quantum thermal conductance in water in the following.

Appendix A.1. Derivation of Transport Equations of Phonon in Water

We can formulate phonon transport equations in a one-dimensional model of water in terms of
atomic displacements uj,n(t), j = −NL + 1, · · · − 1, 0, 1, · · ·N + NR based on Figure 1 as follows:

Mj,1
d2uj,1(t)

dt2 =− Kj−1,2
[
uj,1(t)− uj−1,2(t)

]
− Kj,1

[
uj,1(t)− uj,2(t)

]
, (A1a)

Mj,2
d2uj,2(t)

dt2 =− Kj,1
[
uj,2(t)− uj,1(t)

]
− Kj,2

[
uj,2(t)− uj+1,1(t)

]
, (A1b)

where n = 1, 2 in uj,n(t) mean two-hydrogen (H2) and one-oxygen (O) atomic components, respectively.
This model can mimic not only intramolecular vibration modes but also intermolecular ones. We can
obtain time-independent equations of Fourier transforms of Equations (A1a) and (A1b) as follows.
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− γj,1ûj−1,2(ω) + ε j,1ûj,1 − γj,2ûj,2(ω) = εûj,1(ω), (A2a)

− γj,3ûj,1(ω) + ε j,2ûj,2 − γj,4ûj+1,1(ω) = εûj,2(ω), (A2b)

ε = ω2, (A2c)

ε j,1 = (Kj−1,2 + Kj,1)/Mj,1, (A2d)

ε j,2 = (Kj,1 + Kj,2)/Mj,2, (A2e)

γj,1 = Kj−1,2/Mj,1, (A2f)

γj,2 = Kj,1/Mj,1, (A2g)

γj,3 = Kj,1/Mj,2, (A2h)

γj,4 = Kj,2/Mj,2, (A2i)

where ûj,n(ω) is the Fourier transform of uj,n(t) formulated as

ûj,n(ω) =
1√
2π

∫
dtuj,n(t) exp (iωt), (A3)

ε j,1 and ε j,2 represent squared on-site energy, and γj,1, γj,2, γj,3 and γj,4 represent squared hopping
energy, respectively. By using Equations (A2a) and (A2b) with the left reservoir j = −NL + 1,−NL +

2, · · · − 1, 0, the H2O array j = 1, 2, · · ·N, and the right reservoir j = N + 1, · · ·N + NR of whole
structure shown in Figure 2, we can obtain phonon transport equations in matrix forms as follows: HL τLD 0

τDL HD τDR
0 τRD HR


 ûL

ûD
ûR

 = ε

 ûL
ûD
ûR

 , (A4a)

HL =


H−NL+1 V−NL+1 0

W−NL+2 H−NL+2
. . .

. . . . . . V−1

0 W0 H0

 , (A4b)

HD =


H1 V1 0

W2 H2
. . .

. . . . . . VN−1

0 WN HN

 , (A4c)

HR =


HN+1 VN+1 0

. . . . . . . . .
WN+NR−1 HN+NR−1 VN+NR−1

0 WN+NR HN+NR

 , (A4d)

τLD =

(
0

V0

)
, (A4e)

τDR =

(
0

VN

)
, (A4f)

τDL =

(
W1

0

)
, (A4g)

τRD =

(
WN+1

0

)
. (A4h)
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Atomic displacement vectors uL, uD, and uR consist of uj of the j-th unit cell of each water
molecule in the left reservoir, the H2O array, and the right reservoir, respectively.

ûL =


û−NL+1

...
û−1

û0

 , (A5a)

ûD =


û1

û2
...

ûN

 , (A5b)

ûR =


ûN+1

ûN+2
...

ûN+NR

 , (A5c)

ûj =

(
ûj,1
ûj,2

)
. (A5d)

The 2 × 2 matrices above consist of on-site energy and hopping energy of atoms in each water
molecule of the j-th unit cell which are defined by following equations:

Hj =

(
ε j,1 −γj,2
−γj,3 ε j,2

)
, (A6a)

Vj =

(
0 0
−γj,4 0

)
, (A6b)

Wj =

(
0 −γj,1
0 0

)
. (A6c)

Appendix A.2. Derivation of Eigenvalue Equations in Left and Right Reservoirs

We define κ and λ as Fourier transforms of atomic displacements of ±x propagation waves in
the left reservoir, and µ and ν as those in the right reservoir, respectively. We assume that the Fourier
transforms of atomic displacements ûj,n are linear combinations of ±x propagating waves in the left
and right reservoirs as follows:

ûj,n =

{
Tjκn + Rjλn, −NL + 1 ≤ j ≤ 0, n = 1, 2
Tjµn + Rjνn, N + 1 ≤ j ≤ N + NR, n = 1, 2

(A7a)

where Tj and Rj (−NL + 1 ≤ j ≤ 0 and N + 1 ≤ j ≤ N + NR) are amplitudes of + and -x propagating
waves, respectively.

Assuming that the phonon wavenumbers in the left and right reservoirs are k±L and k±R ,
respectively, we derive the following equations from the periodic boundary conditions of amplitude
based on Bloch’s theorem for the left and right reservoirs:
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T−1 = exp (−ik+L l0)T0, (A8a)

T1 = exp (ik+L l0)T0, (A8b)

R−1 = exp (−ik−L l0)R0, (A8c)

R1 = exp (ik−L l0)R0, (A8d)

TN+2 = exp (ik+R lN+1)TN+1, (A8e)

TN = exp (−ik+R lN+1)TN+1, (A8f)

RN+2 = exp (+ik−R lN+1)RN+1, (A8g)

RN = exp (−ik−R lN+1)RN+1. (A8h)

In the left reservoir, applying Rj = 0 and Tj = 0 as the condition of no phonon propagating to ∓x
directions, we obtain eigenvalue equations of plane waves of phonon propagating to ±x directions.(

ε0,1 − ε −γ0,2 − γ0,1 exp (−ik+L l0)
−γ0,3 − γ0,4 exp (ik+L l0) ε0,2 − ε

)(
κ1

κ2

)
=

(
0
0

)
, (A9a)(

ε0,1 − ε −γ0,2 − γ0,1 exp (−ik−L l0)
−γ0,3 − γ0,4 exp (ik−L l0) ε0,2 − ε

)(
λ1

λ2

)
=

(
0
0

)
. (A9b)

Similarly, in the right reservoir, applying Rj = 0 and Tj = 0 as the condition of no phonon
propagating to ∓x direction, we obtain eigenvalue equations of plane waves of phonon propagating to
±x directions. (

εN+1,1 − ε −γ+
R1

−γ+
R2 εN,2 − ε

)(
µ1

µ2

)
=

(
0
0

)
, (A10a)(

εN+1,1 − ε −γ−R1
−γ−R2 εN,2 − ε

)(
ν1

ν2

)
=

(
0
0

)
, (A10b)

γ±R1 ≡ γN+1,2 + γN+1,1 exp (−ik±R lN+1), (A10c)

γ±R2 ≡ γN+1,3 + γN+1,4 exp (ik±R lN+1). (A10d)

We can calculate dispersion curves as solutions to the eigenvalue Equations (A9a)–(A10b) in the left
and right reservoirs, respectively, and these dispersion curves are the same as the solutions of the
dispersion relation (1).

Appendix A.3. Non-Equilibrium Green’s Functions

The purpose of this section is to formulate phonon waves propagating in the water excited from
left and right reservoirs, where we use the non-equilibrium Green’s functions defined by arranging
Equation (A4a) [23]:

 GL GLD 0
GDL GD GDR

0 GRD GR

 =

 (ε + iη)I − HL −τLD 0
−τDL (ε + iη)I − HD −τDR

0 −τRD (ε + iη)I − HR


−1

, (A11)

where GL, GD, and GR are retarded Green’s functions in the left reservoir, water molecules, and right
reservoir, respectively; GLD, GDL, GRD, and GDR are retarded Green’s functions at the interfaces
between each reservoir and water. η is the imaginary part of the energy, which is a positive infinitesimal.
Eliminating GL, GR, GLD, GDL, GRD, and GDR from Equation (A11), we can get an expression of GD
as follows:

GD = [(ε + iη)I − HD − ΣL − ΣR]
−1 , (A12)
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where ΣL and ΣR are self-energies defined as

ΣL = τDLgLτLD, (A13a)

ΣR = τDRgRτRD. (A13b)

gL and gR are equilibrium Green’s functions defined as follows:

gL = [(ε + iη)I − HL]
−1 , (A14a)

gR = [(ε + iη)I − HR]
−1 , (A14b)

gL =


g−NL+1,−NL+1 g−NL+1,−NL+2 · · · g−NL+1,0

g−NL+2,−NL+1 g−NL+2,−NL+2 · · · g−NL+2,0
...

. . .
...

g0,−NL+1 g0,−NL+2 · · · g0,0

 , (A14c)

gR =


gN+1,N+1 gN+1,N+2 · · · gN+1,N+NR

gN+2,N+1 gN+2,N+2 · · · gN+2,N+NR
...

. . .
...

gN+NR ,N+1 gN+NR ,N+2 · · · gN+NR ,N+NR

 , (A14d)

gj,j′ =

(
gj,1;j′ ,1 gj,1;j′ ,2
gj,2;j′ ,1 gj,2;j′ ,2

)
, j, j′ = −NL + 1,−NL + 2, · · · , 0, N + 1, N + 2, · · · , N + NR. (A14e)

Substituting Equations (A4e)–(A4h), (A14c) and (A14d) into (A13a) and (A13b), we can obtain the
following equations for the self-energies:

ΣL =

(
W0g0,0V0 0

0 0

)
, (A15a)

ΣR =

(
0 0
0 VN gN+1,N+1WN+1

)
. (A15b)

We can define the equilibrium Green’s function equivalent for each unit cell at each atomic
position (n, n′) in the left and right heat reservoirs as follows:

gL
n,n′ = gj,n;j′ ,n′ , j, j′ = −NL + 1,−NL + 2, · · · , 0, (A16a)

gR
n,n′ = gj,n;j′ ,n′ , j, j′ = N + 1, N + 2, · · · , N + NR. (A16b)

By executing the multiplications (A6c)j=1 g0,0 (A6b)j=0 and (A6b)j=N gN+1,N+1 (A6c)j=N+1,
non-zero components in the right hand side of (A15a) and (A15b) become

W1g0,0V0 =

(
γ1,1gL

2,2γ0,4 0
0 0

)
, (A17a)

VN gN+1,N+1WN+1 =

(
0 0
0 γN,4gR

1,1γN+1,1

)
. (A17b)

Appendix A.4. Quantum Thermal Conductance in Water

Let us formulate equilibrium Green’s functions in reservoir, gL, gR, by the the following procedure
consisting of basis transformations and so on:

1. Transforming wave functions consisting of the tight binding (TB) basis into those consisting of
the plane wave (PW) basis.
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2. Finding the PW basis solutions in semi-infinite (NL, NR→ ∞) heat reservoir at both ends of water
with using the periodic characteristics of the heat reservoir in thermal equilibrium.

3. Inverse transformation from PW basis wave functions to TB basis ones.

Based on the components of the j=1st and Nth unit cells of Equation (A4a), we can obtain the
following equations governing the plane waves propagating to x direction in the left and right heat
reservoirs, respectively:

εu1 = W1ULPLU−1
L u1 + H1u1 + V1u0, (A18a)

εuN = WNuN−1 + HNuN + VNURPRU−1
R uN . (A18b)

We define PL and PR in Equations (A18a) and (A18b) as matrices in which (1,1) and (2,2)
components of the diagonal terms are lined with propagation constants along x direction in the
left and right heat reservoirs, respectively:

PL =

(
exp (−ik+L l0) 0

0 0

)
, (A19a)

PR =

(
0 0
0 exp (ik−R lN+1)

)
. (A19b)

Next, we define the matrices UL and UR in Equations (A18a) and (A18b) as unitary matrices
consisting of the eigenvectors of the eigenvalue Equations (A9a)– (A10b) as follows:

UL =

(
κ1 λ1

κ2 λ2

)
, (A20a)

UR =

(
µ1 ν1

µ2 ν2

)
. (A20b)

We can simplify gL and gR as matrices with the same number of components as the number of
the lattice points connected to the left and right heat reservoirs by using Equations (A18a) and (A18b),
respectively:

gL = g0,0 =
[
(ε + iη)I − H1 −W1ULPLU−1

L

]−1
, (A21a)

gR = gN+1,N+1 =
[
(ε + iη)I − HN −VNURPRU−1

R

]−1
. (A21b)

We can obtain spectral functions AL and AR proportional to local state densities AL/2π,
and AR/2π in left and right reservoirs, respectively:

AL = GDΓLG†
D, (A22a)

AR = GDΓRG†
D. (A22b)

We can obtain functions ΓL and ΓR by the following equations, which are matrices representing
the phonon lifetime in the left and right reservoirs, respectively:

ΓL = i
(

ΣL − Σ†
L

)
, (A23a)

ΓR = i
(

ΣR − Σ†
R

)
. (A23b)
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We can then formulate the transmission matrix T of phonon waves traveling from the left to the
right heat reservoirs via the interfaces of the water as follows [1,23,31]:

T = ΓLGDΓRG†
D. (A24)

We can thus express the heat flow in water J by the following equation by integrating the product
of the transmission function and the Bose-Einstein distribution [32]:

J =
∞∫

0

dω
h̄ω

2π

2

∑
n=1

N

∑
j=1
{T}j,n;j,n [N0(ω)− NN+1(ω)] , (A25)

where
2
∑

n=1

N
∑

j=1
{T}j,n;j,n is the transmission function expressed by the trace of T; N0(ω) and NN+1(ω)

are Bose-Einstein distribution functions at j = 0 and N + 1 expressed as follows [37]:

Nj(ω) =
{

exp (h̄ω/kBθj)− 1
}−1 . (A26)

Thermal conductance in water σ can then be expressed as

σ =
J

θ0 − θN+1
. (A27)
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