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Abstract

Background The Centers for Disease Control and Prevention identify antibiotic prescribing

stewardship as the most important action to combat increasing antibiotic resistance. Clin-

icians balance broad empiric antibiotic coverage vs. precision coverage targeting only the

most likely pathogens. We investigate the utility of machine learning-based clinical decision

support for antibiotic prescribing stewardship.

Methods In this retrospective multi-site study, we developed machine learning models that

predict antibiotic susceptibility patterns (personalized antibiograms) using electronic health

record data of 8342 infections from Stanford emergency departments and 15,806 uncom-

plicated urinary tract infections from Massachusetts General Hospital and Brigham &

Women’s Hospital in Boston. We assessed the trade-off between broad-spectrum and

precise antibiotic prescribing using linear programming.

Results We find in Stanford data that personalized antibiograms reallocate clinician anti-

biotic selections with a coverage rate (fraction of infections covered by treatment) of 85.9%;

similar to clinician performance (84.3% p= 0.11). In the Boston dataset, the personalized

antibiograms coverage rate is 90.4%; a significant improvement over clinicians (88.1%

p < 0.0001). Personalized antibiograms achieve similar coverage to the clinician benchmark

with narrower antibiotics. With Stanford data, personalized antibiograms maintain clinician

coverage rates while narrowing 69% of empiric vancomycin+piperacillin/tazobactam pre-

scriptions to piperacillin/tazobactam. In the Boston dataset, personalized antibiograms

maintain clinician coverage rates while narrowing 48% of ciprofloxacin to trimethoprim/

sulfamethoxazole.

Conclusions Precision empiric antibiotic prescribing with personalized antibiograms could

improve patient safety and antibiotic stewardship by reducing unnecessary use of broad-

spectrum antibiotics that breed a growing tide of resistant organisms.
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Plain language summary
Antibiotic resistance is an increasing

threat to public health. The World

Health Organization estimates that

700,000 people die annually due to

antibiotic resistant infection. By 2050

the annual death toll is expected to

reach 10 million. The Centers for

Disease Control and Prevention list

the importance of appropriate pre-

scribing of antibiotics as the number

one action advised to reduce the

spread of resistant bacteria. When

selecting appropriate antibiotics,

clinicians aim to maximize the like-

lihood that individual patients will

respond whilst limiting the use of

options that have action against a

large number of different bacteria.

Overuse of valuable wide acting

antibiotics can increase the rate at

which bacteria develop resistance to

them. Here we show that machine

learning models that predict anti-

biotic susceptibility have the potential

to guide clinicians when choosing

antibiotics in a way that maintains or

improves patient safety while redu-

cing the overall use of wide acting

antibiotics.
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The World Health Organization (WHO) estimates that
700,000 people already die annually due to antibiotic
resistant infections, and expects this number to exceed 10

million per year by 20501. Increasing antibiotic resistance is a
natural and inevitable consequence of regular antibiotic use,
raising the looming threat of a post-antibiotic era that could
cripple routine medical care with higher infection-related mor-
tality and costs of care2–5.

The Centers for Disease Control and Prevention (CDC)
identify improving antibiotic prescribing through antibiotic
stewardship as the most important action to combat the spread of
antibiotic resistant bacteria6. For example, sixty percent of hos-
pitalized patients receive antibiotics despite the fact that half of
antibiotic treatments are inappropriate—meaning antibiotic use
was unwarranted, the wrong antibiotic was given, or the anti-
biotic was delivered with wrong dose or duration7. A key chal-
lenge is that antibiotics must often be prescribed empirically,
before the identity of the infecting organism and antibiotic sus-
ceptibilities are known. Microbial cultures are the definitive
diagnostic tests for this information, but may take days to confirm
final results, far too long to delay initial therapy8.

Broad-spectrum antibiotics help ensure coverage of a range of
organisms that would lead to rapid clinical deterioration if left
untreated9,10. Yet, it is precisely the excessive use of antibiotics
that increases drug resistant organisms11. Overuse of broad-
spectrum antibiotics can thus have severe immediate and indirect
consequences ranging from increasing antibiotic resistance to
drug-specific toxicities and secondary infections such as Clos-
tridioides difficile colitis12–14.

Existing standards of care for selecting empiric antibiotics
involve referring to clinical practice guidelines combined with
knowledge of institution-specific antibiograms—an annual report
from an institution’s microbiology lab that tracks the most com-
mon organisms isolated by microbial cultures and the percentages
that were found susceptible to different antibiotics15–17. An
institution’s antibiogram might report for example that 1000
Escherechia Coli were isolated in the prior year, and that 98% were
susceptible to meropenem, while only 89% were susceptible to
ceftriaxone. These approaches may not consider many or any
patient-specific features. Microbial culture results found within the
electronic health record can be used to objectively measure not
only whether chosen antibiotics were appropriate, but if alter-
natives would have sufficed. Here we hypothesize that the stan-
dard of care may benefit from machine learning-based clinical
decision support for personalized treatment recommendations.

The development of computerized clinical decision support for
antibiotic prescribing stems back decades to the likes of MYCIN
and Evans et al.—rule-based systems that guide clinicians through
empiric antibiotic selection18,19. Though promising, neither sys-
tem was widely adopted by clinicians as they were not easily
integrated into their medical workflow or adaptable to constantly
evolving local antibiotic resistance patterns20. With modern day
hospital IT and electronic medical record software it is now
possible to integrate clinical decision support into medical
workflows and dynamically train models with real world clinical
data streams21.

Literature concerning modern day data-driven approaches to
antibiotic decision support fall into two distinct categories. One
category of studies predict infection status at the time microbial
cultures were ordered, offering promising consideration for when
antibiotics are needed at all22–24. Limitations in most of these
prior studies is that positive microbial culture results were used as
a proxy for the outcome of infection, despite their being both false
positive and false negative microbial cultures with respect to an
actual clinical infection. Moreover, these studies do not address
the question of which antibiotics should have been administered.

The second category of studies predict antibiotic susceptibility
results for positive microbial cultures25–28. These studies address
the challenge of selecting the right antibiotic. Antibiotic pre-
scribing policies that leverage machine learning predictions were
simulated and benchmarked against retrospective clinician pre-
scribing and suggested improved performance. Optimizing
patient coverage rates, however, is only one important objective
that could be naively addressed by prescribing maximally broad
antibiotics to all patients without consideration for adverse effects
on the individual or population. Further critical research needs to
systematically evaluate the trade-off between maximizing anti-
biotic coverage across a population of patients and minimizing
broad-spectrum antibiotic use.

In a previous work we demonstrated that machine learning
models could predict antibiotic susceptibility results when con-
ditioned on microbial species29. We examined precision-recall
curves of these models and highlighted thresholds that separated
subgroups of patients with probability of coverage with narrower-
spectrum antibiotics equal to antibiogram values of broader-
spectrum antibiotics. Here we substantially extend our work on
personalized antibiograms to generalize beyond species identity,
introduce a linear programming optimization framework to
simulate optimal antibiotic allocations across a set of patients,
conduct a sensitivity analysis to estimate model performance on
patients with negative microbial cultures, and assess the gen-
eralizability of our findings with data from an external site.
Specifically, our objective in this study is the following.

We (1) train and evaluate personalized antibiograms—machine
learning models that use electronic health record data to predict
antibiotic susceptibility results; (2) evaluate the performance of
antibiotic selections informed by personalized antibiograms
relative to selections made by clinicians; and (3) systematically
evaluate the trade-off in performance when fewer broad-spectrum
antibiotics are selected across a population of patients. We
complete this objective using a cohort of patients who presented
to Stanford emergency departments between 2009 and 2019 and
then replicate our process on an external cohort of patients who
presented to the Massachusetts General Hospital and Brigham &
Women’s Hospital in Boston between 2007 and 2016.

In our Stanford cohort we find that personalized antibiograms
are able to reallocate antibiotic selections made by clinicians with
a coverage rate (defined as the fraction of infections covered by
the antibiotic selection) of 85.9%, similar to the clinician coverage
rate (84.3%, p= 0.11). We find in the Boston data that perso-
nalized antibiograms reallocate antibiotic selections with coverage
rate of of 90.4%—significantly higher than the coverage rate
clinicians achieve (88.1% p < 0.0001). In the Stanford data we find
that antibiotic selections guided by personalized antibiograms
achieve a coverage rate as good as the real world clinician pre-
scribing rates while narrowing 69% of the vancomycin+
piperacillin/tazobactam selections to piperacillin/tazobactam,
40% of piperacillin/tazobactam prescriptions to cefazolin, and
21% of ceftriaxone prescriptions to ampicillin. In the Boston data
we find that personalized antibiograms can replace 93% of the
total ciprofloxacin prescriptions with nitrofurantoin without
falling below the real world coverage rate. Similarly 48% of the
total ciprofloxacin and 62% of nitrofurantoin prescriptions can be
exchanged with trimethoprim/sulfamethoxazole.

Methods
Data sources. We used the STAnford Research Repository
(STARR) clinical data warehouse to extract de-identified patient
medical records30. STARR contains electronic health record data
collected from over 2.4 million unique patients spanning
2009–2021 who have visited Stanford Hospital (academic medical
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center in Palo Alto, California), ValleyCare hospital (community
hospital in Pleasanton, California) and Stanford University
Healthcare Alliance affiliated ambulatory clinics. We included
patient encounters from both the Stanford and ValleyCare
emergency departments. Structured electronic health record data
include patient demographics, comorbidities, procedures, medi-
cations, labs, vital signs, and microbiology data.

STARR microbiology data contain information about micro-
bial cultures ordered within the hospital, emergency departments,
and outpatient clinics. Our microbiology data included source of
culture, order timestamp, and result timestamp. Microbial culture
data also included resulting organism name and antibiotic
susceptibility pattern, which indicated whether each organism
was either susceptible, intermediate, or resistant to a set of tested
antibiotics. Microbiology data collected from ValleyCare and
Stanford emergency departments were analyzed at separate
microbiology labs. Both follow standardized national procedures
to measure antibiotic susceptibility as defined by the Clinical &
Laboratory Standards Institute (CLSI)31. Our study was approved
by the institutional review board of the Stanford University
School of Medicine. Project-specific informed consent was not
required because the study was restricted to secondary analysis of
existing clinical data.

We replicated the analysis on electronic medical record data of
patients from Massachusetts General Hospital and the Brigham
and Women’s Hospital in Boston, MA—a dataset made available
through Physionet28,32.

Cohort definitions. The unit of observation in this analysis was a
patient-infection. In the Stanford data, analysis was restricted to
patients who presented to the emergency department with
infection between January 2009 and December 2019. We included
patients 18 years or older and patients who required hospital
admission. We further restricted the cohort to patients where an
order for at least one positive blood, urine, cerebral spinal fluid or
fluid microbial culture; and, at least one order for intravenous or
intramuscular antibiotics were placed in the first 24 h after pre-
sentation to the emergency department. We excluded observa-
tions where antibiotics or microbial cultures had been ordered
within the 2 weeks prior to the presentation to the emergency
department. We incorporated admissions with negative cultures
in a sensitivity analysis. Figure 1 illustrates the flow diagram of
patient evaluation, reasons for exclusions and number included in
our study tabulating both the number infections and number of
unique patients. In the Boston dataset the unit of observation was
similarly a patient-infection. Analysis was restricted to uncom-
plicated urinary tract infections, as described in Kanjilal et al.28.

Observations between the years 2007 and 2016 were included in
the study.

Labelling infections for personalized antibiogram models.
Using Stanford data we trained 12 binary machine learning
models to estimate the probability that common antibiotic selec-
tions would provide activity against infections at the point in time
empiric antibiotics were chosen. An antibiotic selection was said to
provide activity against a patient’s infection if all microbial
organisms that grew in the patient’s microbial cultures were listed
as susceptible to at least one of the antibiotics in the selection.
While microbial cultures growing Coagulase-Negative Staphylo-
cocci sometimes represent true infections warranting antibiotic
treatment, we excluded Coagulase-Negative Staphylococci cases as
they frequently represent non-infectious contaminants. We
trained models for eight commonly administered single antibiotic
choices (vancomycin, piperacillin/tazobactam, cefepime, ceftriax-
one, cefazolin, ciprofloxacin, ampicillin and meropenem) and four
combination therapies (vancomycin+ piperacillin/tazobactam,
vancomycin+ cefepime, vancomycin+ ceftriaxone, and vanco-
mycin+meropenem). We defined our prediction time to be the
time at which the first intravenous or intramuscular antibiotic was
ordered for the patient following admission to the emergency
department. Using Boston data, we similarly trained personalized
antibiogram models that predicted whether four antibiotics
commonly administered for urinary tract infection (trimethoprim/
sulfamethoxazole, nitrofurantoin, ciprofloxacin, and levofloxacin)
would provide activity against the target infection.

Not all antibiotics were tested against all organisms in the
microbiology lab which resulted in missing labels for some of our
observations. Antibiotics are only tested if they could plausibly be
active against a specific organism. We received consultation from
the Stanford microbiology lab to generate a set of rules to impute
missing labels. For example, our imputation rule assumed that
Pseudomonas aeruginosa would be resistant to ceftriaxone and
cefazolin; Gram negative rods would be resistant to vancomycin;
and Streptococcus agalactiae is susceptible to cephalosporins33–35.
Antibiotic susceptibility was also inferred from observed results
of related antibiotics. For example, if an organism was susceptible
to a first-generation cephalosporin, it was assumed that it
would also be susceptible to a second, third or fourth-generation
cephalosporin36.

Feature engineering. Using Stanford data, a feature matrix was
constructed with data in the EHR with timestamps up until the
prediction time. Though observations were restricted to infections
that required hospital admission, features were constructed based

Fig. 1 Study cohort selection. a 119,840 hospital admissions corresponding to 69,069 unique adult patients admitted from Stanford emergency rooms
between 2009 and 2019 were initially examined for inclusion. b 42,448 admissions had a microbial culture and intravenous or intramuscular empiric
antibiotic order placed within the first 24 h of the encounter. c Admissions were excluded if microbial cultures had been ordered in the 2 weeks leading up
to the encounter. d Admissions resulting in negative microbial cultures were excluded in the primary analysis, leaving 8342 infections from 6920 unique
patients.
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on data from all forms of available medical encounters (including
ex: prior primary care visits). We used a bag of words featur-
ization technique similar to Rajkomar et al. to construct our
feature matrix37. Categorical features included diagnosis codes
(ICD9 and ICD10 codes), procedure orders, lab orders (including
microbiology lab orders), medication orders, imaging orders and
orders for respiratory care. For prior microbial culture results,
categorical features were constructed based on the antibiotic
susceptibility pattern of extracted isolates. Bag of words feature
representations for each admission were generated such that the
value in each column was the number of times that feature was
present in the patient’s record during a pre-set look back window.
For diagnosis codes, the look back window was defined as the
entire medical history. For other categorical features, the look
back window was defined as the year leading up until prediction
time. If a feature was not present for a patient (for example a
diagnosis code was never assigned or a lab test was never
ordered), the value in the corresponding column was zero. This
allowed us to implicitly encode missing values into our repre-
sentation without having to impute our data.

Numeric features included lab results and vital signs from
flowsheet data. We binned the values of each unique numerical
feature into categorical buckets based on the decile cutoffs of their
distributions in the training set. We used the training set to
identify thresholds for each decile in a feature’s distribution and
then applied these thresholds to patients in our validation and test
set to prevent information leakage. To create the bag of words
representation, we created columns in our feature matrix where
the corresponding value represented the number of times the
feature with a value in a particular decile was observed within a
look back window. For lab results and vital signs, the look back
window was 14 days prior to prediction time. Features were not
standardized, and rather left as counts.

In addition to these categorical and numeric features, we
included patient demographics (age in years, sex, race, and
ethnicity), insurance information, and institution (Stanford or
ValleyCare). Sex, race, ethnicity, insurance payer, and institution
were one-hot encoded. In total, the sparse feature matrix
contained 43,220 columns.

With Boston data, a feature matrix was generated as in Kanjilal
et al.28 Features included prior microbiology data, antibiotic
exposures, comorbidities, procedures, lab results and patient
demographics. The total number of features used in this portion
of the analysis was 788.

Training and model selection procedure. With Stanford data we
split the cohort by year into training (2009–2017), validation
(2018), and test (2019) sets to mimic distributional shifts that
occur with deployment38. This is particularly important so that
we can take into consideration changes in the data generating
process (resistance patterns and medical practice) that occur over
time when estimating model performance. We did not re-weigh
or re-sample our training data according to class balance in an
attempt to preserve model calibration on our test set39.

We selected from four model classes: L1 (lasso) and L2 (ridge)
logistic regressions, random forests, and gradient boosted trees.
These were specifically chosen so that we could search over model
classes with different biases and variances. The L1 and L2
penalized logistic regressions assume the outcome is a linear
function of the features, are less flexible, but also less prone to
overfitting the data. The random forests and gradient boosted
trees can model nonlinear interactions between features and
outcomes, are more flexible, but more prone to overfitting.
Random forests perform inference by averaging predictions from
a collection of trees, and gradient boosted trees perform inference

by summing the predictions of a collection of trees that each fit
the residuals at the prior boosting round40.

The training and model selection procedure we used for the
logistic regressions and random forest is as follows. First,
hyperparameters for each model class were selected by perform-
ing a stratified k= 5 fold cross validation grid search over the
training set. Hyperparameters that led to the highest mean area
under the receiver operating characteristic curve (AUROC) were
selected for each model class. We then fit the final model for each
model class using the entire training set and evaluated each on the
validation set. The best model class was chosen by selecting the
model with the highest AUROC in the validation set. After
choosing the best model class, hyperparameters were re-tuned on
the combined training and validation set using a stratified k= 5
fold cross validation grid search.

The training procedure was altered for the gradient boosted
tree models so that we could regularize with early stopping. The
training procedure was as above except that for each model fit, 5%
of each training fold was held out and used as an additional
validation set for early stopping. We set the maximum number of
boosting iterations to 1000 and a tolerance of ten boosting rounds
for the early stopping criteria.

The final model was then trained using the combined training
and validation set and final performance was evaluated on the test
set. The logistic regressions and random forest models were fit
using the sci-kit learn python package41. The gradient boosted
tree models were fit using the lightgbm python package42. We
computed the area under the receiver operating characteristics
curve (AUROC) and average precision, with 95% confidence
intervals estimated by bootstrapping the test set 1000 times43. We
list all tested hyperparameter configurations in Supplementary
Note 1.

The Boston data was split into training (2007–2013) and test
(2014–2016) sets by time (as in Kanjilal et al.). The optimal model
class and hyperparameter setting for each of the four binary
models was chosen with a k= 5 fold cross validation grid search
over the training set28.

Optimizing antibiotic selection with personalized anti-
biograms. We used the out of sample predicted probabilities
from each of our binary classifiers to optimize antibiotic selec-
tions across patients in the test set and benchmarked against: (1)
random antibiotic selections and (2) the observed clinician
selections. Clinician performance was measured by extracting
which antibiotics were administered to patients using information
stored in the medication administration records. In the Stanford
data, we restricted this analysis to admissions in the test set where
one of the twelve antibiotic selections we trained models for were
administered. In the Boston data, analysis was similarly restricted
to patients who were prescribed one of the four antibiotics we
trained personalized antibiogram models for.

The optimized antibiotic selections were generated by solving a
constrained optimization formulation using linear programming 44.
For each admission we selected an antibiotic option that maximized
the predicted probability of choosing an antibiotic listed as
susceptible subject to the constraints that (1) only one antibiotic
option could be selected for a given patient infection and (2) the
total number of times certain antibiotic options were selected across
patients matched a fixed budget. In the initial simulation, this
budget was defined to be the number of times particular antibiotic
choices were actually administered by clinicians in the real-world
data. Thus, if ceftriaxone was allocated 100 times in the data, the
optimizer was similarly forced to allocate ceftriaxone 100 times. In
further simulations, these budget constraints were perturbed to
empirically estimate the trade-off between maximally selecting
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antibiotics with activity against a patient’s infection and reducing
the use of broad-spectrum antibiotics. An illustrative example of
how patient feature vectors are converted into antibiotic assign-
ments is shown in Fig. 2.

In technical detail, let N be the number of admissions in our
held out test set and M be the total number of antibiotic
selections. Let S∈ RN×M be a matrix of binary variables indicating
antibiotic options, where sij= 1 represents that the jth antibiotic
option is allocated to the patient in the ith admission. Let
Φ∈ RN×M be a matrix of out of sample probability estimates from
our machine learning models, specifically ϕij represents the
predicted probability that the patient in the ith admission would
be covered by antibiotic option j. Finally, let Kj be the total
number of times the jth antibiotic must be used over the set of
our N admissions (the budget parameters). For our initial
simulation we let the budget parameters match the number of
times clinicians actually allocated the jth antibiotic selection over
the set of N admissions. Our problem formulation specified below
was implemented using the PuLP python package and solved
with the CBC solver45 [Eq. 1].

maximize S ∑N
i¼1 ∑

M
j¼1 ϕijsij

subject to ∑M
j¼1 sij ¼ 1 i ¼ 1; :::;N

∑N
i¼1 sij ¼ Kj j ¼ 1; :::;M

ð1Þ

Sensitivity analysis. We performed a sensitivity analysis to esti-
mate model performance on the full deployment population,
including patients with negative microbial culture results. This is
a important because at prediction time, whether a microbial
culture will return positive is unknown. Further, negative
microbial cultures do not preclude infection at a site not tested.
Some patients with negative microbial cultures will have a latent
undetected infection with an antibiotic susceptibility profile (set
of labels) that goes unobserved. This can skew model perfor-
mance estimates if patients with censored labels have a covariate
distribution different from those with observed labels. To address
this, we (1) constructed an electronic phenotype to identify
patients with negative microbial cultures that truly lacked infec-
tion, (2) re-trained a new set of personalized antibiogram pre-
diction models that include patients flagged by the electronic
phenotype and (3) used inverse probability weighted estimates of
AUROC to evaluate performance on the deployment population,

the union of patient admissions with positive and negative
microbial cultures.

Electronic phenotype. We created a rule based electronic pheno-
type that when applied to the set of patients in our cohort with
negative microbial cultures attempted to extract instances where
patients were truly uninfected. We created a strict phenotype,
prioritizing positive predictive value over sensitivity. Patients
were labelled as uninfected during the admission in question if
the following was all true. None of the microbial cultures ordered
within 2 weeks of the admission returned positive. As in the prior
labelling scheme microbial cultures that grew only Coagulase-
negative Staphylococci were considered negative. Antibiotics were
either never administered, or they were stopped within 24 h of
them starting. Antibiotics were not restarted for an additional
2 weeks if they were stopped. No ICD codes related to bacterial
infection were associated with the hospital admission (see Sup-
plementary Note 2). The patient did not die during the
admission.

Updated labelling schema. Applying the above electronic phe-
notype to patients with negative microbial cultures resulted in a
cohort of patient admissions broken down into three distinct
buckets. Bucket 1 included patient microbial cultures that
returned positive. Antibiotic susceptibility testing was performed
and we observed their class label. This bucket is the set of patient
infections included in our primary analysis. Bucket 2 included
admissions whose microbial cultures returned negative and were
flagged by our electronic phenotype indicating lack of infection.
We observed these class labels, which we define as positive for
each prediction task because lack of infection indicates the patient
would have been covered by any antibiotic selection. Bucket 3
included admissions whose microbial cultures were negative and
were not flagged by our electronic phenotype. Patients in this
bucket may or may not have been infected. We did not observe
their class labels. These three buckets are illustrated in Fig. 3.

We included patients in bucket 2 into our model training and
evaluation procedure by adopting the following altered labelling
schema. The labelling schema was as before except all patients in
bucket 2 were assigned a positive label for every antibiotic.
Specifically, for each of the twelve antibiotic options, a positive
label was assigned if the admission resulted in a positive microbial
culture (bucket 1) and the resulting organism(s) was susceptible

Fig. 2 Optimizing antibiotic selections with linear programming. Patient feature vectors are ingested by personalized antibiogram models (a) to produce
antibiotic efficacy estimates (b). Each patient in the test set receives a predicted probability of efficacy for each antibiotic. In this illustration, pentagons
refer to one antibiotic option and triangles refer to another. Green indicates the antibiotic option is likely to cover the patient, orange indicates the antibiotic
is unlikely to cover the patient. A linear programming objective function is specified with a set of constraints that limit how frequently certain antibiotics
can be used. Here the objective function specifies to maximize the total predicted antibiotic efficacy (green) across the two patients subject to the
constraint that each antibiotic option is only used once. c Depicts all possible antibiotic allocations color coded by patient specific antibiotic efficacy
estimates produced by personalized antibiograms. Antibiotics allocations are only considered (d) if they meet the constraints of the linear programming
formulation. The antibiotic allocation that maximizes the total predicted efficacy across the set of patients (e) is chosen.
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to the antibiotic, or the admission resulted in negative cultures
and was flagged by the electronic phenotype (bucket 2). A
negative label was assigned if the admission resulted in a positive
microbial culture (bucket 1) and a resulting organism(s) was not
susceptible to to the antibiotic.

Models were trained using patient admissions in buckets 1 and
2. The covariate distribution of patient admissions in bucket 3
was used to estimate model performance on the full deployment
population (patients in buckets 1, 2, and 3) using inverse
probability weighting.

Inverse probability weighting to estimate model performance
on the deployment population. We used inverse probability
weighting to account for patient admissions whose class labels we
did not observe (bucket 3) in our estimates of model performance
(AUROC). In a theoretical deployment scenario, we would deploy
our model on a population of patient admissions that include the
union of buckets 1, 2, and 3. If the covariate distribution of
patients admissions in buckets 1 and 2 differs from the covariate
distribution of patient admissions in bucket 3 and our models
perform better or worse in regions of this covariate distribution
that are more common for patient admissions in buckets 1 and 2,
then we run the risk of over or underestimating how well our
models would perform in deployment.

To estimate performance on a population of patients that
includes a set of patients whose labels we do not observe, we
weigh each patient admission whose label we do observe (bucket
1 and 2) by the inverse probability of observing it. We obtain this
probability by fitting a binary random forest classifier (using the
same feature matrix and index time as the personalized
antibiogram models) to predict whether the patient admission
would land in bucket 1 and 2, or bucket 3. The inverse probability
weighted estimates of sensitivity and specificity for each of our 12
models are shown below. f̂ ðxiÞ is the predicted probability from a

personalized antibiogram model for patient admission i,
P̂ðObsi ¼ 1jX ¼ xiÞ is the predicted probability of observing
patient admission i’s class label, and t is the probability cut-off
threshold to map predicted probability to a predicted class label.
The inverse probability weighted ROC curve and area under it
can be estimated by varying the probability cut-off thresholds of
these estimators [Eqs. 2–3].

dSensitivityIPW ¼ 1
WP

∑
i:Yi¼1

1½f̂ ðxiÞ≥ t�
P̂ðObsi ¼ 1jX ¼ xiÞ ;

WP ¼ ∑
i:Yi¼1

1

P̂ðObsi ¼ 1jX ¼ xiÞ

ð2Þ

dSpecificityIPW ¼ 1
WP

∑
i:Yi¼0

1½f̂ ðxiÞ< t�
P̂ðObsi ¼ 1jX ¼ xiÞ ;

WP ¼ ∑
i:Yi¼0

1

P̂ðObsi ¼ 1jX ¼ xiÞ

ð3Þ

Statistics and reproducibility. Coverage rates of random anti-
biotic selection in the two cohorts were statistically compared to
coverage rates achieved with personalized antibiograms with one-
sided permutation tests46. Specifically, an empirical distribution
of random coverage rates was created by repeatedly randomly re-
assigning antibiotic selections to different patient-infections
10,000 times. A pvalue was calculated by taking the fraction of
coverage rates in this empirical distribution that equaled or
exceeded the coverage rate achieved with personalized anti-
biograms. If no value in the empirical distribution equaled or
exceeded the observed value, the pvalue was reported as
p < 0.0001. The clinician coverage rate was compared to the
personalized antibiogram coverage rate using a similar procedure,
except that the empirical distribution of clinician coverage rates

Fig. 3 Three buckets of observations in the deployment population. a The deployment population is the set of patients that would trigger personalized
antibiogram model predictions in a deployment scenario. b Prediction time is defined as the time the empiric antibiotic order is placed. c After prediction
time cultures can go on to have a positive or negative result. d If cultures are positive, antibiotic susceptibility testing is performed. If negative, our
electronic phenotype flags patients who with high likelihood lacked a clinical infection that warranted antibiotics. e Three buckets of observations. Patients
landing in Bucket 1 or 2 have observed labels in the labelling scheme defined in the sensitivity analysis. Patients landing in Bucket 3 have labels that go
unobserved.
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was generated by performing a stratified bootstrap (stratified by
antibiotic selection) 10,000 times.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Cohort description. The Stanford cohort includes N= 8342
infections from 6920 adult patients who presented to the Stanford
(academic medical center) emergency department or ValleyCare
(affiliated community hospital) emergency department in Plea-
santon, California between 2009 and 2019 and were subsequently
admitted to the hospital for an infection. Some patients in our
dataset have multiple instances of infection spanning their
medical records. We include patients with multiple infections to
mimic the deployment scenario where models would perform
inference on patients with new infections who had prior infec-
tions seen during training. Demographic information is listed in
Table 1, stratified by whether the infection is part of the training
or test set. Table 2 demonstrates the most frequently isolated
organisms stratified by anatomical source of the microbial
culture.

Personalized antibiograms. We train binary machine learning
models (personalized antibiograms) using structured electronic
health record data to estimate the probability that infections
would be susceptible to 12 common empiric antibiotics choices
(four of which were combination therapies). Labels are derived
from the antibiotic susceptibility reports of the microbial cultures.
Observations are assigned a positive label when organisms
isolated are deemed susceptible (not intermediate or resistant) to
the respectively tested antibiotics based on microbiology lab
standards.

Our dataset is split by time into training, validation and test
sets containing Ntrain= 5804 patient-infections from 2009 to

2017, Nval= 1218 patient-infections from 2018, and Ntest= 1320
patient-infections from 2019. In Table 3 we report the antibiotic
susceptibility classifier performance in the test set and specifically
show the best prediction model class (lasso, ridge, random forest,
or gradient boosted tree), prevalence (fraction of patient-
infections to which the antibiotic was listed as susceptible in
the test set), average precision and the area under the receiver
operating characteristics curve (AUROC) for each of the 12
antibiotic options40. Best model class refers to the model type that
performed best in the validation set and was thus used in the final
evaluation and downstream personalized antibiotic selection. The
positive class prevalence (equivalent to normal antibiogram
values and indicative of class balance) ranged from 0.23
(vancomycin) to 0.98 (vancomycin and meropenem). Average
precision ranged from 0.46 to 0.99. AUROC ranged from 0.61
to 0.73.

In Supplementary Fig. 1 we show precision-recall curves for
each classifier. In Supplementary Table 1 we show validation set
performance of the best model for each model class and the
chosen hyperparameters. In the Supplementary Table 2 we show
number of features stratified by feature type. In Supplementary
Table 3 we show the five most important features of each of the
final 12 models. The cohort contained repeated observations per
patient. In Supplementary Table 4 we show model performance

Table 1 Stanford cohort demographics grouped by train
test split.

Dataset

Description Category Test (2019) Train+Validation
(2009–2018)

n Total 1320 7022
Emergency
department, n (%)

Stanford ED 855 (64.8) 6669 (95.0)

Valley Care ED 465 (35.2) 353 (5.0)
Age, mean (SD) 70.4 (17.2) 67.5 (17.3)
Sex, n (%) Female 793 (60.1) 4171 (59.4)

Male 527 (39.9) 2851 (40.6)
Race, n (%) White 757 (57.3) 3937 (56.1)

Other 251 (19.0) 1411 (20.1)
Asian 201 (15.2) 937 (13.3)
Black 69 (5.2) 464 (6.6)
Pacific Islander 30 (2.3) 206 (2.9)
Unknown 7 (0.5) 40 (0.6)
Native
American

5 (0.4) 27 (0.4)

Ethnicity, n (%) Non-Hispanic 1117 (84.6) 5823 (82.9)
Hispanic/Latino 195 (14.8) 1169 (16.6)
Unknown 8 (0.6) 30 (0.4)

Language, n (%) English 1112 (84.2) 5743 (81.8)
Non-English 208 (15.8) 1279 (18.2)

Insurance
Payer, n (%)

Medicare 651 (49.3) 3805 (54.2)
Other 615 (46.6) 2987 (42.5)
Medi-Cal 54 (4.1) 230 (3.3)

Table 2 Most frequently isolated species grouped by
microbial culture type and emergency department.

Emergency
department

Culture type Organism Infections

Stanford ED Blood culture Escherichia coli 1031
Staphylococcus aureus 585
Klebsiella pneumoniae 318
Enterococcus faecalis 159
Streptococcus agalactiae
(group b)

131

Urine culture Escherichia coli 2927
Enterococcus species 877
Klebsiella pneumoniae 653
Proteus mirabilis 299
Pseudomonas aeruginosa 268

Other fluid
culture

Staphylococcus aureus 127
Escherichia coli 83
Streptococcus
anginosus group

56

Klebsiella pneumoniae 45
Enterococcus faecium 28

Valley
care ED

Blood culture Escherichia coli 98
Staphylococcus aureus 49
Klebsiella pneumoniae 29
Proteus mirabilis 15
Pseudomonas aeruginosa 9

Urine culture Escherichia coli 361
Proteus mirabilis 90
Klebsiella pneumoniae 84
Enterococcus faecalis 59
Pseudomonas aeruginosa 43

Other fluid
culture

Escherichia coli 13
Staphylococcus aureus 11
Klebsiella pneumoniae 5
Streptococcus
anginosus group

4

Enterococcus faecium 2

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-022-00094-8 ARTICLE

COMMUNICATIONS MEDICINE |            (2022) 2:38 | https://doi.org/10.1038/s43856-022-00094-8 | www.nature.com/commsmed 7

www.nature.com/commsmed
www.nature.com/commsmed


on the test set stratified by whether the patient had an observation
in the combined training and validation set. In Supplementary
Tables 5–16 we show model performance stratified by demo-
graphic data including age, race, sex, and ethnicity as well as
insurance payer and whether the admission occurred at the
Stanford or ValleyCare emergency departments.

Personalized antibiogram guided antibiotic selection. To esti-
mate the potential clinical impact of prescribing guided by
personalized antibiograms, we employ a linear programming
based optimization procedure to simulate reassigning antibiotic
selections to patients in our held out test set using personalized
antibiogram estimates. We track the coverage rate (fraction of
infections covered by the antibiotic selection) achieved by per-
sonalized antibigorams and compare to coverage rate achieved
by clinician and random selections. The personalized antibiogram
guided treatment selection and random selection are constrained
such that the frequencies at which specific antibiotics are
assigned to patients match the frequencies used by clinicians. We
call these budget constraints. Without such a constraints,
assignment of the broadest spectrum antibiotics possible would
result in the highest coverage rate. We restrict this analysis to the
subset of infections in our test set where one of the 12 antibiotic
selections were administered. This results in a total of N= 770
observations. Antibiotic selection guided by personalized anti-
biograms in the Stanford data demonstrates a coverage rate of
85.9%; significantly better than random treatment selection
(79.2% p < 0.0001) and comparable to clinician performance
(84.3% p= 0.11). In Supplementary Fig. 2 we show the clinician
coverage rate by antibiotic selection, and in Supplementary
Table 17 we show the infections most frequently missed by
clinicians.

Promoting antibiotic stewardship with reduced broad-
spectrum antibiotic use. To assess the potential for reducing
broad-spectrum antibiotics with personalized antibiograms, we
sort antibiotic selections according to their antibiogram value
(fraction of infections listed as susceptible) and repeat the linear
programming based optimization simulations under revised
constraints where the personalized antibiogram based treatment
selection is forced to use fewer broad-spectrum (higher anti-
biogram value) antibiotics in place of more narrower-spectrum
(lower antibiogram value) antibiotics. We track the point at
which the coverage rate of the personalized antibiogram based
antibiotic selections matched the real world coverage rate, and the
point at which it matched the coverage rate of a random anti-
biotic selection. Results of these simulations are shown in Fig. 4.

Simulations for all pairs of broader and narrower antibiotic
selections are shown in Supplementary Fig. 3.

We find that antibiotic selections guided by personalized
antibiograms can achieve a coverage rate as good as the real world
clinician prescribing rate while narrowing 69% of the vancomy-
cin+ piperacillin/tazobactam selections to piperacillin/tazobac-
tam, 40% of piperacillin/tazobactam prescriptions to cefazolin,
and 21% of ceftriaxone prescriptions to ampicillin.

Replication on an external site. We replicate our experiments
on a held out dataset consisting of N= 15,806 uncomplicated
urinary tract infections from 13,862 unique female patients who
presented to Massachusetts General Hospital and Brigham &
Women’s Hospital in Boston between 2007 and 201647. Mean age
for the cohort is 34.0 ± 10.9 years, and 63.6% of infections were
from Caucasian women. Further information on the exact cohort
definition can be found in Kanjilal et al.28.

We use the training and test set split used in Kanjilal et al. to
train and evaluate personalized antibiogram models. The training
set contained Ntrain= 11,865 patient-infections while the test
contained Ntest= 3941. We train personalized antibiogram
models to predict the probability that four antibiotics adminis-
tered to patients in this dataset with urinary tract infection would
go on to be listed as susceptible for the patient’s underlying
infection. As in Kanjilal et al. the four antibiotic options are
ciprofloxacin, levofloxacin, trimethoprim/sulfamethoxazole, and
nitrofurantoin. Table 4 shows performance of our personalized
antibiogram models listing the final model class, antibiogram
value (mean susceptibility across infections), average precision
and AUROC. In Supplementary Fig. 4 we show precision-recall
curves for each classifier.

In Fig. 5 we show the results of the personalized antibiogram
based treatment selection and show how the coverage rate
changes as fewer broad-spectrum antibiotics are used across
patients in the test set. Without changing the frequency at which
antibiotics are used by actual clinicians in this dataset,
personalized antibiogram based treatment selection achieve a
coverage rate of 90.4%, significantly greater than both a random
antibiotic selection (87.5% p < 0.0001) and real world clinician
prescribing (88.1% p < 0.0001). Replications with varying linear
programming budget parameters demonstrate that 93% of the
total ciprofloxacin prescriptions could have been exchanged with
nitrofurantoin without falling below the real world coverage rate.
Similarly we show that 48% of the total ciprofloxacin and 62% of
nitrofurantoin prescriptions could have been exchanged with
trimethoprim/sulfamethoxazole.

Table 3 Antibiotic susceptibility classifier performance.

Antibiotic selection Best model class Prevalence Average precision AUROC

Vancomycin Gradient Boosted Tree 0.23 0.46 [0.40, 0.52] 0.72 [0.68, 0.75]
Ampicillin Gradient Boosted Tree 0.43 0.54 [0.49, 0.58] 0.62 [0.59, 0.65]
Cefazolin Gradient Boosted Tree 0.59 0.72 [0.68, 0.76] 0.67 [0.64, 0.70]
Ciprofloxacin Random Forest 0.63 0.73 [0.70, 0.76] 0.61 [0.58, 0.64]
Ceftriaxone Gradient Boosted Tree 0.66 0.79 [0.77, 0.82] 0.69 [0.66, 0.72]
Cefepime Random Forest 0.80 0.87 [0.84, 0.89] 0.65 [0.61, 0.69]
Vancomycin+ Ceftriaxone Gradient Boosted Tree 0.81 0.87 [0.84, 0.89] 0.67 [0.63, 0.71]
Meropenem Gradient Boosted Tree 0.82 0.90 [0.88, 0.92] 0.69 [0.65, 0.72]
Pip-Tazo Random Forest 0.90 0.94 [0.92, 0.95] 0.64 [0.59, 0.69]
Vancomycin+ Pip-Tazo Random Forest 0.96 0.98 [0.97, 0.99] 0.70 [0.62, 0.77]
Vancomycin+ Cefepime Random Forest 0.97 0.98 [0.98, 0.99] 0.70 [0.62, 0.78]
Vancomycin+Meropenem Gradient Boosted Tree 0.98 0.99 [0.99, 0.99] 0.73 [0.65, 0.81]

Pip-Tazo= piperacillin/tazobactam.
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Fig. 4 Personalized antibiogram coverage rate as a function of the antibiotic budget parameters. a Held out Stanford test set of emergency hospital
admissions treated with one of the twelve most common empiric IV/IM antibiotic selections. b Antibiotic sweep simulations showing the trade off between
coverage rate and broad-spectrum antibiotic use when antibiotic selection is optimized with personalized antibiograms. For example, the plot titled “Vanc/
Pip-Tazo - Pip-Tazo” illustrates the change in coverage rate as more historical prescriptions for Vancomycin+ Piperacillin-Tazobactam (Vanc/Pip-Tazo)
are exchanged for Pip-Tazo, prioritized by personalized antibiogram predictions. On the far left of the plot, starting with 0 change in the actual amount of
antibiotics prescribed, the figure illustrates the green region where personalized antibiograms could potentially have achieved an even better antibiotic
coverage rate than the actual prescriptions by clinicians (represented by the dark dashed line) with equal or fewer Vanc/Pip-Tazo.
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Sensitivity analysis. We conduct a sensitivity analysis with the
Stanford cohort to incorporate patients with negative microbial
culture results into our model performance estimates. This is
done by (1) constructing an electronic phenotype to flag patients
with negative microbial cultures that lacked infection, (2) training
twelve new personalized antibiogram models (sensitivity analysis
models) that include patients with negative cultures, and (3) using
inverse probability weighting model performance estimates48.

In Table 5 we compare performance (as measured by AUROC)
of the sensitivity analysis models with our original 12 persona-
lized antibiogram models in the Stanford data. Specifically, we
show performance of (1) the personalized antibiogram models
trained and evaluated only on patients with positive microbial

cultures, (2) performance of the sensitivity analysis models
trained and evaluated on patients including those flagged by the
electronic phenotype and (3) estimates of the sensitivity analysis
model performances on the entire deployment population. Model
performance increases when we incorporate patients with
negative microbial cultures into the analysis. Model performance
remains stable when incorporating the inverse probability weights
into the estimation of AUROC.

Discussion
Antibiotic susceptibility classifiers (personalized antibiograms)
demonstrated modest to moderate discriminatory power in terms
of AUROC, consistent with prior state-of-the-art literature.

Table 4 Boston Model Performances.

Antibiotic selection Best model class Prevalence Average precision AUROC

Trime/Sulf Gradient Boosted Tree 0.80 0.85 [0.84, 0.87] 0.60 [0.58, 0.62]
Nitrofurantoin Gradient Boosted Tree 0.89 0.91 [0.90, 0.92] 0.57 [0.54, 0.61]
Ciprofloxacin Lasso 0.94 0.95 [0.95, 0.96] 0.64 [0.60, 0.68]
Levofloxacin Lasso 0.94 0.96 [0.95, 0.96] 0.64 [0.60, 0.67]

Trime/Sulf= trimethoprim/sulfamethoxazole.

Fig. 5 Personalized antibiogram coverage rate as a function of the antibiotic budget parameters in the Boston dataset. a Held out Boston test set of
uncomplicated urinary tract infection cases treated with one of the four antibiotics in the dataset. b Antibiotic sweep simulations showing the trade off
between miss rate and broad-spectrum antibiotic use when antibiotic selection is optimized with personalized antibiograms.
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AUROC alone however is not a good determinant of clinical
utility49. Our optimization simulations demonstrate that even
with modest AUROCs, antibiotic selection informed by perso-
nalized antibiograms can match or exceed clinician performance.
Furthermore, antibiotic selection guided by personalized anti-
biograms achieved similar coverage rates to those seen in the real
world with fewer broad-spectrum antibiotics, an ongoing and
vital antibiotic stewardship challenge50–52. An example of which
is the goal to reduce empiric vancomycin utilization. While
vancomycin provides effective Gram positive coverage including
methicillin resistant Staphylococcus aureus (MRSA), reducing
unnecessary empiric vancomycin reduces antimicrobial resistance
pressure and toxicities including ototoxicity and renal
toxicity52,53. In 2019, the proportion of Staphylococcus aureus
classifying as MRSA was 22% at Stanford, which likely explains
the high frequency of vancomcyin+ piperacillin/tazobactam
empiric antibiotic use in the emergency department54 in our test
set. We demonstrated that personalized antibiogram guided
antibiotic selection could reduce vancomycin+ piperacillin/
tazobactam use in favor of piperacillin/tazobactam monotherapy
by 69% without falling below the coverage rate achieved by
clinicians. Another antibiotic stewardship goal is to reduce use of
fluoroquinolones for treatment of urinary tract infection55.
Despite criteria outlined in the Infectious Disease Society of
America guidelines, fluoroquinolone use across the United States
remains high at 40.3% to treat cases of uncomplicated urinary
tract infection56. In the Boston test set, flouroquinolone was used
by clinicians across 33.6% of cases. We demonstrated that per-
sonalized antibiogram guided antibiotic selection could reduce
ciprofloxacin use by up to 48% in favor of trimethoprim/sulfa-
methoxazole while maintaining the real world coverage rate.
These results point toward the broader vision and impact of this
work. The CDC identifies antibiotic stewardship as the most
important intervention to combat the larger ecological costs of
increasing microbial resistance6. In this study we empirically
addressed the double-edged sword of ensuring patients receive
immediate value in the clinical care they receive while minimizing
overexposure of excessive broad-spectrum antibiotics. Our results
indicate that personalized antibiograms could simultaneously
promote antibiotic stewardship goals while ensuring, if not
improving, patient safety.

Clinician performance however is not the only baseline worth
benchmarking against. In additional experiments outlined in
Supplementary Notes 1 and 2 we (1) compare the performance of
our personalized antibiogram approach to a linear programming
based antibiotic allocation that uses normal antibiogram values

and (2) compare to a rule based algorithm on a subgroup of our
cohort designed to mimic institutional guidelines for treating
patients hospitalized with urinary tract infection.

The normal antibiogram approach, which also used our linear
programming optimization procedure, outperformed the perso-
nalized antibiogram approach—though we note the comparison
was not apples-to-apples as the normal antibiogram leveraged
information about species identity to generate probability esti-
mates of antibiotic susceptibility. At the time empiric antibiotic
selection, the species is only suspected but not known. This
analysis nevertheless demonstrates the utility of our linear pro-
gramming based optimization framework in the advent of rapid
diagnostic technology that can more quickly determine gram
stain and species identity.

The personalized antibiogram approach outperformed the
guideline based approach on the sub-population of patients in
our cohort hospitalized with urinary tract infection. In the same
subset, the guideline based approach outperformed clinician
performance. We note however the comparison of guidelines to
clinicians was also not apples-to-apples because in the subgroup
of patients with urinary tract infection clinicians used a different
set of antibiotics than what the guideline based approach allowed.
This is likely due to the fact that at the point in time clinicians
ordered empiric antibiotics, the exact syndrome, to which
guidelines are tailored, was only suspected and not known. This
further demonstrates the need for technology to enable guided
antibiotic selection that models the uncertainty of the pathogen
and syndrome—like our personalized antibiograms.

The success of clinical decision support relies heavily on
whether it can be successfully implemented into existing clinical
workflows. Systems need to be designed such that the “right
information needed to make the right decision for the right
patient at the right time.” is conveyed appropriately57. We’ve
designed personalized antibiograms to fit in with existing clinical
workflows. When a patient presents with potential infection,
clinicians first order a set of microbial cultures and provide
empiric therapy based upon personal experience, clinical practice
guidelines, or institutional standards58,59. Personalized anti-
biograms are designed to provide individualized antibiotic sus-
ceptibility predictions at the point in time clinicians are already
seeking external support in the existing workflow. Prediction
models could be embedded in electronic health records, such as
through Epic cognitive compute environments, and in real time
gather patient specific features, compute and display a suscept-
ibility probability score for each antibiotic considered21 A key
direction for future research is thus to prospectively evaluate the

Table 5 Personalized antibiogram sensitivity analysis with and without inverse probability weights: Pip-Tazo= piperacillin/
tazobactam.

Antibiotic selection Original classifiers Sensitivity analysis

AUROC AUROC AUROCIPW

Vancomycin 0.72 [0.68, 0.75] 0.74 [0.71, 0.76] 0.75 [0.72, 0.77]
Ampicillin 0.62 [0.59, 0.65] 0.69 [0.66, 0.71] 0.69 [0.66, 0.71]
Cefazolin 0.67 [0.64, 0.70] 0.71 [0.68, 0.73] 0.70 [0.67, 0.73]
Ceftriaxone 0.69 [0.66, 0.72] 0.72 [0.69, 0.75] 0.72 [0.69, 0.74]
Cefepime 0.65 [0.61, 0.69] 0.64 [0.60, 0.68] 0.62 [0.58, 0.66]
Pip-Tazo 0.64 [0.59, 0.69] 0.65 [0.59, 0.70] 0.62 [0.56, 0.68]
Ciprofloxacin 0.61 [0.58, 0.64] 0.64 [0.62, 0.68] 0.64 [0.61, 0.67]
Meropenem 0.69 [0.65, 0.72] 0.71 [0.68, 0.74] 0.70 [0.67, 0.74]
Vancomycin+Meropenem 0.73 [0.65, 0.81] 0.76 [0.67, 0.84] 0.74 [0.65, 0.84]
Vancomycin+ Pip-Tazo 0.70 [0.62, 0.77] 0.71 [0.63, 0.78] 0.70 [0.62, 0.78]
Vancomycin+ Cefepime 0.70 [0.62, 0.78] 0.68 [0.60, 0.77] 0.67 [0.59, 0.76]
Vancomycin+ Ceftriaxone 0.67 [0.63, 0.71] 0.71 [0.68, 0.75] 0.70 [0.66, 0.74]
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effect of personalized antibiogram based decision support on
successful antibiotic selection.

Our linear programming based optimization procedure
requires a specified fixed “budget” of each antibiotic choice across
an entire population. In practice, patients present with infection
sequentially one at a time. The optimization procedure simulated
and presented here is thus not explicitly a decision algorithm
intended for direct sequential use. Nevertheless, once solved with
a particular set of constraints, the solution space is broken into
regions that would allow antibiotic recommendations for future
patients in a sequential manner.

We acknowledge limitations associated with the retrospective
nature of our analysis, which leveraged electronic medical record
data collected in an observational manner. Though the Stanford
cohort is derived from a dataset representing a comprehensive
primary/secondary healthcare system, we note that there still
exists a possibility that patients included in this study had medical
encounters elsewhere that went unobserved. We note however
that our model performance estimates reflect any error that may
be induced by this phenomenon.

Not all microbial cultures return positive, and those that are
negative do not always indicate lack of bacterial infection. We
attempted to address potential selection bias in our model per-
formance estimates induced by this phenomenon in a sensitivity
analysis estimating model performance on the full population
(patients with both positive and negative microbial cultures)
using inverse probability weighting. We acknowledge that this
analysis relied on diagnosis codes to rule in possible infection,
and requires assumptions about lack of unmeasured confounders.
Nevertheless, the results of this analysis reassuringly revealed no
considerable change in performance between the two settings,
within the constraints of the observed data.

We acknowledge limitations associated with the use of
microbial cultures as a gold standard. Positive microbial cultures
do not always indicate a true clinical infection. Coagulase-
Negative Staphylococci is a common contaminant in blood cul-
tures which we handled by excluding them from our set of
infections. Enterococcus is sometimes considered a colonizer in
urine cultures, especially when patients lack symptoms. To
address this limitation, we only included in our analysis patient
encounters where prescribers clinically determined hospitaliza-
tion and empiric antibiotic treatment was needed based on
patient presentation. We also acknowledge that microbial culture
results can yield imperfect labels due to the presence of
ESCHAPPM organisms60. In-vitro these organisms may appear
susceptible to cephalosporins but in-vivo can induce resistance.

By the nature of differing antibiotic susceptibility patterns across
institutions, individual models are likely not robust to distributional
shifts. We expect model performance could degrade if applied to
different patient populations, though many of the risk factors for
drug resistant organism infection are likely transferable to different
settings (e.g., previous hospitalization and exposure to antibiotics
and resistant infections). Specifically, we would expect our models
trained on Stanford data to perform worse on Boston data and vice-
versa. Future work could characterize the degree to which model
performance decays across sites and the utility of retraining. Here
however we demonstrate that the process of training personalized
antibiogram models and using them to inform antibiotic selection is
generalizable by repeating our analysis on held out data from an
external site. We would also expect model performance to naturally
degrade over time, which is why we separated our training and test
sets by time to offer a more realistic appraisal of their potential
future performance.

In the Stanford cohort, antibiotic selection guided by perso-
nalized antibiograms achieved coverage rates similar to clinicians,
while in the Boston dataset coverage rates increased. It should be

noted that in the Boston dataset, clinician performance is closer
to random chance. In the Stanford cohort the diversity of anti-
biotics commonly ordered was much greater as there was more
variation in the types of cases presented as opposed to the more
narrow uncomplicated urinary tract infection case in the Boston
cohort. Analysis results can be sensitive to the details of any
cohort definition. Nevertheless, personalized antibiograms
demonstrate promise in multiple settings.

Lastly, not all infections present the same risk to patients if
treated with an inappropriate antibiotic regimen. Future work
may benefit from leveraging the idea that some infections are
more critical to treat than others.

Conclusion
Machine learning classifiers trained using electronic health record
data can predict antibiotic susceptibility for patients with positive
microbial cultures. Antibiotic selection policies guided by perso-
nalized antibiograms could maintain or improve infection cov-
erage rates while using fewer broad-spectrum antibiotics than are
seen in real-world practice. Machine learning driven antibiotic
selection could improve antibiotic stewardship without sacrifi-
cing, and potentially even improving, patient safety.

Data availability
The Stanford data is made available through STARR, STAnford medicine Research data
Repository30. The data can be accessed for research purposes after Institutional Review
Board approval via the Stanford Research Informatics Center. The Boston cohort has
been made available through Physionet for credentialed users who sign the specified data
usage agreement32. The source data for Figs. 4 and 5 have been provided alongside this
article as Supplementary Data 1 and Supplementary Data 2.

Code availability
Code developed for this study has been made available on GitHub and deposited in a
DOI minting repository using Zenodo61.
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