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Abstract: The management of hard-to-heal wounds is a significant clinical challenge. Acellular
dermal matrices (ADMs) have been successfully introduced to enhance the healing process. Here,
we aimed to develop protocol for the preparation of novel ADMs from abdominoplasty skin. We
used three different decellularization protocols for skin processing, namely, 1M NaCl and sodium
dodecyl sulfate (SDS, in ADM1); 2M NaCl and sodium dodecyl sulfate (SDS, in ADM1); and a
combination of recombinant trypsin and Triton X-100 (in hADM 3). We assessed the effectiveness
of decellularization and ADM’s structure by using histochemical and immunochemical staining.
In addition, we evaluated the therapeutic potential of novel ADMs in a murine model of wound
healing. Furthermore, targeted transcriptomic profiling of genes associated with wound healing was
performed. First, we found that all three proposed methods of decellularization effectively removed
cellular components from abdominoplasty skin. We showed, however, significant differences in the
presence of class I human leukocyte antigen (HLA class I ABC), Talin 1/2, and chondroitin sulfate
proteoglycan (NG2). In addition, we found that protocols, when utilized differentially, influenced
the preservation of types I, III, IV, and VII collagens. Finally, we showed that abdominoplasty
skin-derived ADMs might serve as an effective and safe option for deep wound treatment. More
importantly, our novel dressing (ADM1) improves the kinetics of wound closure and scar maturation
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in the proliferative and remodeling phases of wound healing. In conclusion, we developed a protocol
for abdominoplasty skin decellularization suitable for the preparation of biological dressings. We
showed that different decellularization methods affect the purity, structure, and therapeutic properties
of ADMs.

Keywords: skin substitutes; human acellular dermal matrices; hADMs; wound healing; dermal grafts

1. Introduction

Despite the development of new surgical techniques, dressings, and experimental
therapies, the treatment of full-thickness wounds and non-healing ulcers remains challeng-
ing [1–3]. To date, the general procedure of treatment includes surgical wound preparation
and its subsequent closure [4]. However, the preparation of wounds that involve all skin
layers (when damage extends below the epidermis and dermis) requires a more complex
approach. Consequently, in many cases, a full- or split-thickness skin autograft represents
a beneficial therapeutic option [5]. Despite this, limitations in regard to both the quantity
of available autologous skin as well as the subsequent complications associated with the
invasive nature of skin autograft harvest constitute significant problems with this method.

Currently, acellular grafts—namely, allogenic acellular dermal matrices (ADMs)—are
considered safe and abundant alternatives to autologous skin grafts for the therapeutic
treatment of extensive wounds [6]. ADMs are a processed dermal biomaterial derived from
skin fragments that have been chemically and/or enzymatically processed to remove all
epidermal and dermal cellular components while preserving three-dimensional structures
containing collagen, elastin, and bioactive proteins, among others [6]. Currently, com-
mercially available ADMs, such as Integra, DermACELL, Apligraf, and Alloderm, have
been tested mainly for their ability to treat burns, ulcers, and deep wounds, and they have
also been used in reconstructive surgery with great success [7,8]. Despite the beneficial
therapeutic effects induced by ADM application, the direct effects of different dermal
matrixes on wound healing kinetics remain elusive. However, it is well established that
both allo- and xenogeneic ADMs support the healing process by covering the wound, de-
creasing the frequency of wound infections, acting as a scaffold for various regenerative cell
types during the wound healing proliferation phase and supporting the re-vascularization
process [8–10]. Notably, xenogeneic ADMs (mostly derived from bovine or porcine bladder
and intestine) possess limited application in patients due to allergic reactions to xenogeneic
collagens as well as religious considerations [11]. Therefore, there exists a need to develop
novel ADMs which may simultaneously increase the effectiveness of therapeutic support
in the wound healing process while minimizing the chance of allergic reactions and patient
concern.

Notably, the principal limitation of ADM generation is reliant upon accessibility to skin
suitable for ADM preparation. Currently, the utilization of human cadaver-derived skin
represents the principal ethically acceptable source of therapeutically applied ADMs [6].
Here, we proposed an alternative approach of using skin from abdominoplasty for the
development of a novel human ADMs. Abdominoplasty (also known as a tummy tuck)
is a popular cosmetic surgery procedure applied to remove the excess skin and adipose
tissue around the abdomen. Given the ubiquity of abdominoplastic surgery in the general
population, resected skin folds represent a readily available source of ADMs. Therefore,
here we aimed to develop a protocol for the preparation of novel ADMs from abdomino-
plasty skin. Furthermore, given the differential healing effect that can be induced by the
ADM preparation method, we compared different decellularization protocols and analyzed
the effectiveness of each process, effects on collagen structure, and therapeutic potential
in vivo [8,12].
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2. Materials and Methods
2.1. Skin Collection and Biobanking

Skin fragments were collected from post-bariatric surgery patients classified to an
abdominoplasty. Before surgery, patients were examined, and those who met the criteria for
a full abdominoplasty with umbilical transposition (type IV by Matarasso) were included
in the study. All procedures were undertaken with systemic anesthesia. The surgeries were
performed by the same operator and two assistants, as previously described [13]. Briefly,
an incision was made from hip to hip, above the pubic area. Then, the abdominal flap was
dissected in a preaponeurotic plane to the level of the subcostal margin. The navel was
dissected. The dissection was performed with a diathermocoagulation device. Two Redon
drains were used in all patients, one on each side of the lower abdomen. The excised skin
fold was removed, and skin grafts were collected immediately using an electric dermatome
(Aesculap Acculan 3Ti, Braun, Frankfurt, Germany). Finally, the samples were sealed in
double foil bags and biobanked in −80 ◦C for further processing.

All skin fragments were collected after receiving approval from the Ethics Committee
at the Medical University of Bialystok. Study participants gave written informed consent,
and the study was conducted following the provisions of the Helsinki Declaration.

2.2. Decellularization Procedures

To find the most effective ADM preparation method from abdominoplasty skin, three
different decellularization methods (Table 1) were used. They are here referred to as Human
Acellular Dermal Matrix-1 (ADM1–1M NaCl + SDS), -2 (ADM2–2M NaCl + SDS), and -3
(ADM3–TrypLE Select + Triton X-100).

Briefly, skin fragments were thawed in prewarmed saline (Biomed Lublin, Lublin,
Poland) and washed two times. Next, skin was immersed in 1M NaCl (Sigma, ADM1,
St. Louis, MO, USA), 2M NaCl (Sigma, ADM2), or TrypLE Select (Thermofisher, ADM3,
Waltham, MA, USA) and incubated for 24 h at 37 ◦C with gentle agitation. Next, the
epidermis was removed by tweezers (ADM1 and ADM2). After trypsinization (ADM3),
the epidermis was detached and cleaved without mechanical removal. Next, the grafts were
washed in buffered saline (PBS without magnesium and calcium ions, Corning, Corning,
NY, USA) supplemented with antibiotics and subjected to the second step procedure.
ADM1 and ADM2 were incubated for 24 h in buffered 0.5% sodium dodecyl sulfate (SDS,
Sigma) at 37 ◦C, while ADM3 was incubated in 3% Triton X-100 (Sigma) for 24 h at 37 ◦C.
Next, matrices were washed for five days in sterile ddH2O with daily water changes.
Finally, all ADM were freeze-dried for 12–24 h, sealed in double foil bags and subsequently
irradiated in electron accelerator with a dose of 35 kG at the Institute of Nuclear Chemistry
and Technology Warsaw. The sterilized ADMs were stored at −80 ◦C for later usage.

2.3. Histochemical and Immunohistochemical Staining

The presence of different cellular components and composition of different colla-
gen structures was assessed by histochemical staining Six-millimeter biopsy-punched
lyophilized and irradiated scaffold fragments were rehydrated in PBS (Corning) for 24 h.
The scaffolds were then fixed in 4% paraformaldehyde and paraffin-embedded using a
tissue processor (Xpress Sakura). Then, 4 µm microtome slices were placed on glass slides
(ThermoScientific, Waltham, MA, USA) and stained with hematoxylin-eosin to assess the
decellularization process’s effectiveness. For whole collagen structure visualization, Mas-
son’s Trichrome staining was used. A detailed scaffold structure analysis was performed
based on immunohistochemical staining, as described previously. For detailed information
on the antibodies used, please see Supplementary Table S1.
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Table 1. Decellularization procedures of abdominoplasty skin.

Decellularization
Protocol

Phase 1 Phase 2 Washing Storage

Reagents Time
(h)

Temp.
(◦C) RPM Epidermis

Removal Reagents Time
(h)

Temp.
(◦C) RPM Washing/Quantity Time

(h) (RPM) Lyophilization/Temp
(◦C)

ADM1 1M NaCl +
antibiotic mix 24 37 40 Mechanical SDS 0.1% +

Antibiotic Mix 24 37 40 H2O/5 24 60 YES/−70

ADM2 2M NaCl 24 37 40 Mechanical SDS 0.1% +
Antibiotic Mix 24 37 40 H2O/5 24 60 YES/−70

ADM3 TrypLE Select +
antibiotic mix 24 37 40 Not

Applicable

3% Triton X-100
in PBS +

Antibiotic Mix
24 37 40 H2O/5 24 60 YES/−70

NaCl—sodium chloride; SDS—sodium dodecyl sulfate; PBS—phosphate-buffered saline, H2O—distilled deionized water, 5—five days washing step with daily H2O change.
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2.4. Quantification of Immunohistochemical Staining

The presence of particular components of the extracellular matrix was quantified
using ImageJ software (NIH). Three different values were assessed in all microscopic slides.
To measure the surface area of tissue and collagen surface color, a threshold tool was used.
The slider in the brightness panel was adequately adjusted to cover all tissue areas. The
default thresholding method and the HSB model for color space were selected to perform
the analysis. Additionally, a slider for the hue panel was acquired to incorporate the range
of orange–red colors. For tissue surface measurements, the values in the hue and saturation
panels were selected, as dedicated initially by the software. Finally, the total microscopic
slide area was measured. All values were saved in the results window and exported to an
Excel file. The presented data are the measurements in the scaffold area.

2.5. Peripheral Blood Mononuclear Cells Isolation

Allogenic peripheral blood mononuclear cells (PBMCs) from freshly obtained EDTA-
anticoagulated blood were isolated by density-gradient centrifugation with Histopaque-
1077 (Sigma-Aldrich). Cells were subsequently washed and quantified using a Bürker
chamber slide. The material was collected after receiving approval from the Bioethical
Committee of the Medical University of Bialystok. Each participant was familiarized with
the objectives of the study and expressed written consent for material collection.

2.6. Proliferation Assay

To assess ADM immunogenicity, a CFSE-stained T cell proliferation assay was used.
Briefly, two million freshly isolated PBMCs were labeled with CFSE and incubated in 2 mL
of RPMI1640 medium with stable glutamine (PAN Biotec, Aidenbach, Germany) supple-
mented with 10% FBS (PAN Biotec) and gentamycin (Thermofiher), in the presence of full
human unprocessed skin (positive control), ADM1, ADM2, ADM3, phytohemagglutinin
(PHA, proliferation control, R&D Biosystem) or the vehicle alone (negative control). After
a seven-day incubation at 37 ◦C and 5% CO2, the cells were washed and subsequently
stained with anti-CD4 PerCP-conjugated monoclonal antibodies (clone MEM-241, Becton
Dickinson Bioscience, Franklin Lakes, NJ, USA) for 30 min at room temperature in the
dark. Finally, samples were analyzed on FACSCalibur flow cytometer (Becton Dickin-
son Bioscience). Data analysis was performed using FlowJo software (TreeStar, Ashland,
OR, USA).

2.7. Murine Model of Wound Healing

Twelve healthy 8-week-old female Balb/ccmdb SPF mice were used in this study.
Animals were obtained from the Centre for Experimental Medicine of the Medical Uni-
versity of Bialystok. The mice were maintained in a temperature-controlled environment
(22 +/−1 ◦C), controlled humidity (45–55%), with a 12 h light–dark cycle beginning at
7 a.m., and were housed in polycarbonate cages, with access to water and food (Labofeed
H Standard, Morawski, Poland) available ad libitum. The murine model of wound heal-
ing was applied as previously described [14]. Briefly, one day before surgery, the mouse
dorsum was shaved with an electric razor. Animals were anesthetized with 1% isoflurane.
While anesthetized, two 4 mm full-thickness round cutaneous wounds were created with
a manual biopsy punch. Silicone rings were anchored around wounds using 6-0 nylon
suture (Huaiyin Medical Instruments Co., Ltd., Huaian, China) to prevent wound irritation
and the contribution of murine wound contraction to wound healing kinetics. A 4 mm
PBS-rehydrated ADM was placed directly on the wound within the silicone ring. The
animals were divided into three groups ADM1, ADM2, and ADM3, depending on the
processed ADM applied to the 1st dorsal wound. The 2nd dorsal wound was left without
any intervention as a control (healing by granulation). The rings were covered with trans-
parent Tegaderm film (3M Health Care, Saint Paul, MN, USA), and the mice were placed
in separate cages. Postoperative analgesia was provided with subcutaneous injection of
ketoprofen (Vetaprofen, KELA N.V., Antwerpen, Belgium)—5 mg/kg s.c. once per day.
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Wound measurements (performed based on images of the wound) were performed daily
after brief anesthesia followed by transparent Tegaderm film changes. Quantification
of wound closure was performed using ImageJ software (NIH). On day 14, mice were
sacrificed by isoflurane overdose and subsequent cervical dislocation, followed by scar
tissue acquisition using a 4 mm biopsy punch. Tissue samples were immersed in RNAlater
solution (Thermofisher) and biobanked at −80 ◦C for further analysis. All procedures were
performed under laminar flow with sterile instruments according to the excisional wound
splitting model [15]. The study was approved by the Local Ethical Committee in Olsztyn,
Poland.

2.8. RNA Isolation and Quantitative PCR Assay

The wound scars were homogenized with TissueRuptor (Qiagen, Hilden, Germany)
in lysing buffer. Wound mRNA was purified through the RNeasy Mini kit (QIAGEN),
according to the manufacturer’s instructions. The RNA was quantified on NanoDrop
(Thermofisher), and the integrity was analyzed on a bioanalyzer (Agilent, Santa Clara,
CA, USA). Next, 1 µg of mRNA from each sample was reverse transcribed with a high-
capacity cDNA reverse-transcription kit (Thermofisher) according to the manufacturer’s
instructions. The expression level of 90 genes associated with wound healing was assessed
by using PrimePCR Wound healing assay according to the manufacturer’s instructions
(BioRad, Hercules, CA, USA). The relative expression of 88 genes associated with the
healing process was calculated and normalized to GAPDH expression. All presented data
were normalized to the control by using the 2ˆ-ddCt method and presented as log2FC.

2.9. Statistics

Data analysis was performed with GraphPad Prism v7 software (GraphPad Software).
Differences between analyzed groups were evaluated by using the Student’s t-test. The
differences were considered statistically significant at p < 0.05. The results are presented as
mean ± standard deviation.

3. Results
3.1. Abdominoplasty Skin Is Suitable for Human Acellular Dermal Matrix Preparation

Here, we used three different methods (Table 1) of decellularization for abdomino-
plasty skin processing. The preparation of ADM1 and ADM2 started with the application
of 1M- or 2M NaCl, respectively, to detach the epidermis. Following this, both ADM1
and ADM2 were exposed to a 0.1% SDS solution to induce decellularization. In contrast,
the ADM3 protocol utilized a combination of enzymatic cleavage and chemical washing—
namely, by subsequent incubation periods with recombinant trypsin and 3% Triton X-100.
Next, all ADMs underwent a 5-day washing period with daily H2O change and freeze
drying. Finally, all matrices were subjected to radiation sterilization according to the
optimized protocol.

First, by using H&E staining (Figure 1A), we found that all three methods used for
abdominoplasty skin decellularization allowed cells to be effectively removed from the
collagen structure. Next, the effects of different decellularization protocols were analyzed to
assess their ability to eliminate cellular components which may orchestrate immunogenicity
and influence therapeutic potential (Figure 1A). Interestingly we found that ADM1 and
ADM2 protocols were less efficient in removing HLA Class I group proteins (Figure 1B),
which is especially noticeable in the apical regions and former vein locations. In contrast,
the ADM3 protocol resulted in a significant decrease in the presence of these molecules.
Somewhat surprisingly, we observed that the higher concentration of NaCl, used in the
ADM2 protocol, significantly preserved Talin 1/2 when compared to both ADM1 and
ADM3 (Figure 1B). In contrast, NG2 was highly preserved in ADM1, while the remaining
two matrices presented significantly lower levels of this proteoglycan. Importantly, we
found that ADM1 is less immunogenic when compared to the remaining two matrices
(Supplementary Figure S1).
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Figure 1. Effective decellularization of abdominoplasty skin. (A) Representative histochemical (H&E) and immunohis-
tochemical staining (HLA Class I ABC, Talin 1/2, and NG2 proteoglycan) of ADMs derived from abdominoplasty skin
decellularized with ADM1, ADM2, or ADM3 protocol. Representative pictures of five independent analyses. (B) Summary
of quantification analyses of immunohistochemical staining for HLA Class I ABC, Talin 1/2, and NG2 proteoglycan in
abdominoplasty skin and ADMs derived from abdominoplasty skin decellularized with ADM1, ADM2, or ADM3 protocol
(n = 5). Size bar—500 µm; The Student’s t-test was used. * p < 0.05; *** p < 0.001.

3.2. Decellularization of Abdominoplasty Skin Preserves Collagen III and IV Architecture

Having found that all examined decellularization procedures were suitable for ADM
preparation, we wished to analyze whether applied protocols may affect the extracellular
matrix structure. First, based on visualization of Masson’s Trichrome-stained fragments,
we found that all decellularization protocols preserved characteristic dermal collagen
structure. Furthermore, detailed analysis revealed that the ADM2 retained a higher density
of collagen I fibers, while ADM1 retained a higher collagen III density (Figure 2 and
Supplementary Figure S2). Similarly, to collagen III, collagen IV was highly preserved after
decellularization with the ADM1 protocol. Surprisingly, however, we observed that all
applied decellularizations significantly reduced collagen VII fibers in the apical region of
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ADMs (Figure 2). Finally, we found that all used protocols preserved the abundance of
vitronectin (Figure 2) in the ADM structure, with the highest levels observed in ADM1.
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Figure 2. Different decellularization protocols preserve matrix structure but change the presence of collagen fibers.
Representative histochemical (Masson Trichrome) and immunohistochemical (Collagen I, II, III, IV, VII, and Vitronectin)
staining of ADMs derived from abdominoplasty skin decellularized with ADM1, ADM2, or ADM3 protocol. Representative
pictures of five independent analyses. Size bar—500 µm.

3.3. Abdominoplasty Skin-Derived ADM Accelerates Wound Closure

Having found differences in the composition of extracellular matrix components, we
aimed to assess the therapeutic potential of each ADM. For this purpose, a murine wound
healing model was used (Figure 3A). Wounds were covered immediately with ADMs fol-
lowing wound induction on day one, with subsequent daily wound size measurements for
13 consecutive days (Figure 3B). We found no differences in wound healing kinetics during
the initial inflammatory phase of wound healing (day 1–3) for all analyzed conditions
(Figure 3C). Interestingly, however, we found that wounds treated with ADM1 significantly
resulted in increased wound closure kinetics during the proliferation phase (from day 4
to day 8), while remaining matrices showed normal (comparable to healing by granula-
tion) closure kinetics. The most striking differences were observed at day 7 (before the
release of silicone rings), with 42.2% overall closure for ADM1-covered wounds compared
against 23.3% closure for ADM2- and ADM3-covered wounds, and 16.1% closure in control
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wounds. Interestingly, on day 9, the size of all analyzed wounds was similar, and no
other differences were observed for the remainder of the 13-day study period (remodeling
phase).
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Figure 3. Acellular Dermal Matrix 1 (ADM1) enhances the proliferative phase of wound healing.
(A) Murine model of wound healing. A rehydrated ADM was placed directly on the wound within the
silicone ring. The animals were divided into three groups, depending on the processed ADM applied,
namely, ADM1, ADM2, and ADM3. Untreated wound served as a control. Wound measurements
were performed daily. (B) Representative pictures of wounds at Day 1 (inflammatory phase), Day 2
(onset of proliferation phase), Day 7 (termination of proliferation phase), and Day 14 (maturation
phase). (C) Summary of quantification of wound closure. n = 5; size bar—4 mm (initial wound size);
*—Granulation vs. ADM1 p < 0.05; The Student’s t-test was used.

3.4. ADM1-Treated Wounds Show Slightly Modified Transcriptomic Profiles When Compared to
ADM2- and ADM3-Treated Counterparts

Finally, to better understand the beneficial therapeutic potential associated with ADM1
in regard to its enhanced wound closure ability, we analyzed the influence of novel ADMs
on the expression levels of genes associated with the healing process, namely extracellu-
lar matrix structural components (Figure 4A), extracellular matrix remodeling enzymes
(Figure 4B), cell adhesion molecules (Figure 5A), and inflammatory mediators (cytokines,
chemokines and growth factors, Figure 5B).
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Figure 4. Targeted transcriptomic profiles of extracellular matrix components and remodeling
enzymes in wounds treated with different acellular dermal matrices (ADMs). Summary of gene
expression analyses of (A) extracellular matrix structural components and (B) extracellular matrix
remodeling enzymes in wounds treated with ADM1, ADM2, and ADM3. The data are presented as
log2FC (n = 3). For each presented heat map, a separate color scale legend with values can be found
on the right side.
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Figure 5. Targeted transcriptomic profiles of cell adhesion molecules and different soluble mediators
in wound treated with different acellular dermal matrices (ADMs). Summary of gene expression
analyses of (A) cell adhesion molecules, and (B) cytokines, chemokines, and growth factors in wounds
treated with ADM1, ADM2, and ADM3. The data are presented as log2FC (n = 3). For each presented
heat map, a separate color scale legend with values can be found on the right side.
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First, we found a similar pattern of upregulated genes in all ADM-treated wounds.
However, we observed a trend to decrease in Col1a1, Col5a3, and Col5a2 gene expression
in ADM1-treated wounds, while those treated with ADM3 possessed slightly upregulated
expression (Figure 4A). Next, we found no striking differences in the expression signa-
tures of extracellular matrix remodeling enzymes (Figure 4B). Despite this, differences in
the expression signatures of cell adhesion molecules were observed (Figure 5A). Notably,
ADM1-treated wounds had a slightly downregulated expression of Ifga1, while the same
gene was upregulated in ADM3-treated wounds. Similarly, Itga4 expression was downreg-
ulated in ADM1-treated wounds, in spite of the fact that its expression was upregulated
in ADM2 and ADM3. These differences in ECM and adhesion-related gene expression
aside, we found intriguing differences in cytokine, chemokine, and growth factors gene
expression levels (Figure 5B). Interestingly, expression of Vegfa was upregulated in ADM1-
and ADM2-treated wounds and downregulated in ADM3 counterparts. Moreover, Csf3
was upregulated in ADM1-covered wounds, while it was downregulated in the ADM2
and ADM3 counterparts. Similarly, Ccl7 and Ccl12 genes were downregulated in ADM1
while being simultaneously upregulated in ADM2- and ADM3-covered wounds. We also
observed upregulated expression of Il6 in ADM1-treated wounds with no changes in the
remaining counterparts.

4. Discussion

Here, we demonstrated the capability of abdominoplasty skin to serve as a suitable
material for ADM processing. We compared three different decellularization protocols by
assessing their influence on extracellular matrix components, and immunogenicity. More-
over, by utilizing a murine model of deep wound healing, we evaluated the therapeutic
potential of each of our novel ADMs. Importantly, we have shown that abdominoplasty
skin processed with 1M NaCl and 0.5% SDS followed by washing steps, freeze drying, and
radiation sterilization (ADM1) results in a novel biological dressing that improves wound
closure kinetics.

The development of distinct decellularization methods has allowed organ-derived
tissues to be used for tissue engineering and in successful clinical application [6,16–20]. To
date, numerous differentially sourced mammalian- and plant-based decellularized tissues
have been utilized for the development of biomimetic tissues which supplement the healing
capability of the cardiovascular system, cartilage, bone, and skin [19,20]. Recently, our
group and other groups, have reported the suitability of ADM for tissue reconstruction,
burns, deep, and hard-to-heal wound treatment such as epidermolysis bullosa [12,21–24].
To date, several ADM-based products have been introduced to the market (such as Al-
loderm and GraftJacket); however, in contrast to our solution, all the available human
sources of ADM are manufactured from cadaveric skin [6]. Abdominoplasty skin remains
easily accessible, as the number of bariatric and abdominoplastic surgeries is growing
proportionally with the observed global increase in severe obesity. In fact, the proposed
skin source, similarly to cadaveric ones, may be processed according to the standards
established by the American Association of Tissue Banks and routinely applied as a graft.

The principal role of a wound dressing is to cover the wound, which is essential
for the initiation of the healing process, regardless of wound type. After wounding, the
inflammatory reaction is induced and revealed by the infiltration of inflammatory cells to
clean the wound of debris, damaged cells, and microbes [6]. However, the accumulation of
inflammatory mediators may lead to prolonged inflammation and, consequentially, delayed
wound repair characteristics for chronic wounds and ulcers [25]. Therefore, the ideal
biological dressing should exert immunoregulatory properties to reduce local inflammation
and, consequently, improve wound closure by promoting the proliferation phase. We found
that different methods of abdominoplasty skin processing may affect this ability. In fact, we
showed that our novel ADM1 improves the kinetics of wound closure in the proliferation
phase (days 4–8) of wound healing. This therapeutic potential of ADM1 may be associated
with (i) a limitation of the inflammatory phase, as increased wound closure was already
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observed at day 4, and (ii) the improvement in fibroblast and keratinocyte proliferation,
as increased wound closure was observed in all analyzed time points of the proliferation
phase. Based on our results and previous observations of intact collagen fiber contributions
to wound healing, ADM’s therapeutic potential is heavily reliant on the composition of
the matrix, which directly supports wound closure [26,27]. We found that ADM1 has
a high presence of HLA class I ABC and NG2, as well as a relatively higher density of
collagens III, IV, and vitronectin. Interestingly, the use of ionic and non-ionic detergents
(such as SDS and Triton X-100, respectively) has been shown to be less destructive to
extracellular matrix components when compared to enzymatic decellularization using
enzymes with proteolytic activity (such as recombinant Trypsin, as in hADM3) [28–31].
These observations explain the higher levels of collagen III, IV, VII, and vitronectin observed
in ADM3 compared to ADM1 and ADM2. On the other hand, SDS (an anionic detergent) is
more effective in removing cellular components in the decellularization procedure [32,33].
However, in our study, we showed that the combination of recombinant trypsin and Triton
X-100 was even more effective in removing NG2 and Talin 1/2. Furthermore, we showed
that the use of different concentrations of NaCl in the first stage of the decellularization
process might also affect the preservation of HLA class I ABC, which may be associated
with a more problematic removal of the epidermis in the first stage of the process. HLA
class I antigens are present in the vast majority of nucleated cells, including keratinocytes
and fibroblasts. Interestingly, soluble (cell-released) MHC molecules have been shown to
display immunomodulatory properties in two distinct ways, namely, directly (by binding
physiological ligands and inhibit cytotoxic T-cell responses by TCR receptor blockage
and/or induction of apoptosis [34,35]) or indirectly (phagocytosed by antigen-presenting
cells, such as macrophages and dendritic cells, and presented in the context of MHC class
II molecules to naïve T cells, potentially contributing to graft rejection [36]). However,
the latter process may also induce tolerance to the presented immunogenic fragments
depending on both antigens presenting cell- and HLA-derived peptide potential. HLA
class I may also interact with NK cell receptors and induce NK cell apoptosis [37]. On
the other hand, NG2, which is present in myofibroblasts and pericytes [38], may improve
wound vascularization, serving as a template and guide for infiltrating pro-angiogenic
and anti-inflammatory cells, including pericytes, endothelial cells, M2-macrophages, and
fibroblasts.

Following wound closure, scar formation and remodeling occurs, with collagens,
matrix metalloproteinases, integrins, and soluble mediators playing a central role in this
process [6]. Importantly, ADMs were shown to not only support cell adhesion, wound vas-
cularization, and epithelization, but also to reduce scarring [9]. Collagens are the primary
component of wound scars, with their deposition and extraction being tightly regulated by
myofibroblasts and polarized macrophages, which are, in turn, influenced by the microen-
vironment. Interestingly, we observed the differentially regulated expression of Col1a1,
Col5a3, and Col5a2 in ADM1-treated wounds relative to the remaining ADMs, suggesting
less intensive scar formation when compared to the analyzed counterparts. Notably, type V
collagens were shown to be produced in the initial stage of fibrosis [39]. Importantly, they
co-polymerize with type I collagen fibers and act as a regulator of fibril shape and size [40].
Therefore, the observed downregulation of the abovementioned collagens’ expression in
ADM1-treated wounds may, similarly to the proliferative phase, represent a consequence of
accelerated kinetic of healing. This hypothesis is also supported by the observed differences
in Itga1 (integrin alpha 1 subunit also known as CD49a) and Itga4 (integrin alpha 4, also
known as CD49d) expression. Itga1 is a collagen-binding integrin widely expressed on vas-
cular cells, fibroblasts, stromal cells, as well as immune cells [41]. CD49a was suggested to
preferably bind type I monomeric collagen fibers compared to the fibrillar forms present in
mature connective tissue or scars [42]. Itga4 is a receptor for fibronectin broadly expressed
in vascular and immune cells, except for neutrophils [43]. Therefore, the slightly reduced
expression of the abovementioned integrin subunits in ADM1-treated wounds observed
in this study may be the consequence of a reduced number of immune cells—namely,
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monocytes/macrophages—which are characteristic contributors in later phases of the scar
maturation process [6]. This is also supported by an observed decrease in the expression of
Ccl7 (MCP-3) and Ccl12 (MCP-5) chemotactic factors for monocytes/macrophages.

5. Conclusions

Taken together, we developed a protocol (ADM1) for abdominoplasty skin decellular-
ization suitable for the preparation of biological dressings. Furthermore, we showed that
different decellularization methods affect the purity, structure, and therapeutic properties
of ADMs. Importantly, our novel abdominoplasty skin-derived dressing can improve the
kinetics of wound closure and scar maturation in the proliferative and remodeling phases
of wound healing. Although ADM2 and ADM3 did not improve wound healing kinetics,
no adverse effects were observed, proving the safety of abdominoplasty-derived acellular
grafts. Given these promising results, a clinical trial is warranted to confirm the beneficial
therapeutic effect of our novel dressing in humans. Moreover, further studies are needed
to better understand improved wound healing mechanisms induced after the application
of our novel abdominoplasty skin-derived dressing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13122118/s1, Table S1: Characteristics of antibodies used for immunohistochem-
ical staining’s, Figure S1: Acellular Dermal Matrix 1 (ADM1) and 2 (ADM2) lack immunogenicity,
Figure S2: Quantification of the effects of different methods of decellularization on the structure of
extracellular matrix components.
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