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A B S T R A C T   

Background: Although extensive discussions on the influence of maternal educational attainment on offspring 
birthweight, the conclusion remains controversial, and it is challenging to comprehensively assess the causal 
association between them. 
Methods: To estimate effect of maternal educational attainment on the birthweight of first child, we first con-
ducted an individual-level analysis with UK Biobank participants of white ancestry (n = 208,162). We then 
implemented Mendelian randomization (MR) methods including inverse variance weighted (IVW) MR and 
multivariable MR to assess the causal relation between maternal education and maternal-specific birthweight. 
Finally, using the UK Biobank parent-offspring trio data (n = 618), we performed a polygenic score based MR to 
simultaneously adjust for confounding effects of fetal-specific birthweight and paternal educational attainment. 
We also conducted simulations for power evaluation and sensitivity analyses for horizontal pleiotropy of 
instruments. 
Results: We observed that birthweight of first child was positively influenced by maternal education, with 7 years 
of maternal education as the reference, adjusted effect = 44.8 (95%CIs 38.0–51.6, P = 6.15 × 10− 38), 54.9 (95% 
CIs 47.6–62.2, P = 4.21 × 10− 128), and 89.4 (95%CIs 82.1–96.7, P = 4.28 × 10− 34) for 10, 15 and 20 years of 
maternal educational attainment, respectively. A causal relation between maternal education and offspring 
birthweight was revealed by IVW MR (estimated effect = 0.074 for one standard deviation increase in maternal 
education years, 95%CIs 0.054–0.093, P = 2.56 × 10− 13) and by complementary MR methods. This connection 
was not substantially affected by paternal education or horizontal pleiotropy. Further, we found a positive but 
insignificant causal association (adjusted effect = 24.0, 95%CIs − 150.1–198.1, P = 0.787) between maternal 
education and offspring birthweight after simultaneously controlling for fetal genome and paternal education; 
this null causality was largely due to limited power of small sample sizes of parent-offspring trios. 
Conclusion: This study offers supportive evidence for a causal association between maternal education and 
offspring birthweight, highlighting the significance of enhancing maternal education to prevent low birthweight.   

1. Introduction 

Birthweight is an indicator of cumulative fetal growth, which is 

directly related to health outcomes in later life and can indirectly reflect 
living conditions of the population (Dai, et al., 2022; Khera et al., 2016). 
Birthweight is affected by many factors including fetal and maternal 
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genetics (Warrington et al., 2019), maternal health and nutrition (Buck, 
et al., 2019), and placental function (Zhang, et al., 2022). Low birth-
weight generally indicates intrauterine growth restriction (Gil-Kulik, 
et al., 2022), while high birthweight is sometimes related to maternal 
conditions like gestational diabetes (Araya, Padilla, Garmendia, Atalah, 
& Uauy, 2014) or excessive weight gain during pregnancy (Pereda, 
Bove, & Pineyro, 2020). In both developing and developed countries, it 
is frequently observed that newborns with low birthweight are more 
likely to experience short-term adverse birth outcomes (e.g., stillbirth 
and neonatal death (Hediger, et al., 1999; Spittle et al., 2014; Spittle, 
Orton, Anderson, Boyd, & Doyle, 2015)) as well as long-term adverse 
health events (e.g., cancers (O’Neill, et al., 2015), stroke (Wang, et al., 
2020), type II diabetes (T2D) (Harder, Rodekamp, Schellong, Duden-
hausen, & Plagemann, 2007), and coronary heart disease (Wang, et al., 
2014; Zeng & Zhou, 2019a, 2019b)). In addition, the relationship be-
tween offspring birthweight and maternal age was U-shaped. Specif-
ically, young mothers, especially those who are underage (≤16 years), 
are associated with intrauterine growth restriction, low birthweight, 
preterm birth, child mortality, delayed child development, and maternal 
anemia during pregnancy (Gibbs, Wendt, Peters, & Hogue, 2012; 
Workicho et al., 2020); meanwhile, advanced maternal age (>35 years) 
is also associated with an increased risk of adverse pregnancy outcomes, 
such as low birthweight and preterm birth (Aradhya, et al., 2023). 
Consequently, understanding which maternal factors causally affect 
offspring birthweight is imperative to elucidate the mechanisms un-
derlying these associations and to potentially pave the way for inter-
vening abnormal birthweight. 

Among numerous possible determinants influencing offspring 
birthweight (e.g., gestation length, maternal smoking, maternal drink-
ing, maternal nutrition, prenatal health care, maternal stress, and ge-
netic factors) (Brito Nunes, et al., 2023; Decina et al., 2023; Hwang, 
Lawlor, Freathy, Evans, & Warrington, 2019; Moen et al., 2020; Yajnik 
et al., 2014), parental educational attainment, as an important measure 
of socioeconomic status, has been shown to significantly associate with 
offspring health outcomes (Balaj, et al., 2021; Johnson et al., 2022; Kong 
et al., 2018; Lu et al., 2023; Noghanibehambari, Salari, & Tavassoli, 
2022). Particularly, maternal educational attainment is closely related 
to the birthweight of offspring by modifying intrauterine environments 
(e.g., maternal nutrition and maternal health) and taking health care 
behaviors (Godah, et al., 2021; Silvestrin et al., 2013). Educational 
attainment plays a vital role in influencing the intrauterine environment 
in a variety of ways, including, but not limited to, the following: edu-
cation empowers pregnant women to adopt a healthy lifestyle, including 
proper nutrition and diet (Biasini, Rosi, Menozzi, & Scazzina, 2021), and 
education promotes the mental health of pregnant women and equips 

them with effective stress management skills (Thygesen, et al., 2021). 
Additionally, education informs pregnant women of the importance of 
avoiding the use of harmful substances in order to safeguard the health 
and safety of the mother and the fetus (Bigsby, et al., 1999). 

Although there have been extensive discourses surrounding the 
impact of maternal educational attainment on birthweight (Godah, 
et al., 2021; Silvestrin et al., 2013), the conclusion is still controversial 
and a comprehensive assessment of the causal association between them 
is challenging (Fig. 1). First, previous studies have tended to overlook 
paternal educational attainment, which is correlated with maternal 
educational attainment as implied by educational assortative mating 
(Domingue, Fletcher, Conley, & Boardman, 2014; Noghanibehambari 
et al., 2022) and is also relevant to offspring outcomes including birth-
weight (Alio, Salihu, Kornosky, Richman, & Marty, 2010; Balaj et al., 
2021; Guarnizo-Herreño, Torres, & Buitrago, 2021; Shapiro et al., 
2017). As a result, it is difficult to distinguish the independently 
maternal role from the parental impacts. Second, prior findings were 
primarily generated from traditional observational studies, which pre-
sented much great vulnerability to pre-existing maternal, familial, social 
and environmental confounders such as maternal health condition, 
maternal behaviors and lifestyles, household income and geographical 
area of residence (Decina, et al., 2023). Third, methodological limita-
tions of observational research (e.g., recall bias and residual confound-
ing) can lead to a deep concern when interpreting those relations as 
causality. 

To efficiently overcome possible confounding effects, we here per-
formed a Mendelian randomization (MR) study to investigate the causal 
association of maternal educational attainment with offspring birth-
weight. Compared to traditional epidemiological methods, MR employs 
single nucleotide polymorphisms (SNP) as instrumental variables for the 
exposure (e.g., maternal educational attainment) to examine its causal 
effect on the outcome (e.g., birthweight of offspring) (Angrist, Imbens, & 
Rubin, 1996; Davey Smith & Hemani, 2014; Greenland, 2000; Sheehan, 
Didelez, Burton, & Tobin, 2008). Because the two alleles of a SNP are 
segregated during gamete formation and conception randomly under 
Mendel’s law and such segregation is uncorrelated with confounders, 
the results of MR are less susceptible to confounding factors (Davey 
Smith & Ebrahim, 2003). Further, due to the wide availability of sum-
mary statistics from large-scale genome-wide association studies 
(GWAS) (Abdellaoui, Yengo, Verweij, & Visscher, 2023; Loos, 2020; 
Pasaniuc & Price, 2016), MR avoids the need to record and control for all 
potential confounding factors present in one single study, and has 
become a cost-effective causal inference approach in observational 
studies (Brion, Shakhbazov, & Visscher, 2013; Evans, Moen, Hwang, 
Lawlor, & Warrington, 2019; Moen, Hemani, Warrington, & Evans, 

Fig. 1. A diagram demonstrating how various factors affect the birthweight of offspring. Environmentally, offspring birthweight is directly affected by in utero 
exposures which are in turn influenced not only by the parental educational attainment but also by other maternal, social and environmental factors. Genetically, 
offspring birthweight is influenced by both fetal and maternal genotypes, which cannot be directly adjusted for in the traditional observational study. Our aim is to 
examine whether there presents a causal relation between maternal educational attainment and offspring birthweight. 
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2019; Warrington, Freathy, Neale, & Evans, 2018; Yu, Yuan, et al., 2020; 
Zeng, Wang, Zheng, & Zhou, 2019; Zeng & Zhou, 2019a, 2019b). 

To fill the knowledge gap mentioned above, in the present study we 
aimed to examine the causal relation between maternal education and 
offspring birthweight, as well as to ascertain whether maternal educa-
tion functioned as an independent protective factor against low birth-
weight. To this goal, we first conducted an individual-level analysis to 
estimate the effect of maternal educational attainment on the birth-
weight of first child in the UK Biobank cohort (Sudlow, et al., 2015). 
Then, we implemented several two-sample MR approaches including 
inverse-variance weighted MR and multivariable MR to assess the causal 
relation between them using summary statistics of educational attain-
ment from (Okbay, et al., 2022) and summary statistics of offspring 
birthweight from (Warrington et al., 2019). Finally, we performed a 
polygenic score (PGS)-based MR analysis to simultaneously adjust for 
the confounding effects of fetal-specific birthweight and paternal 
educational attainment. Meanwhile, we performed simulations for 
power evaluation and a range of sensitivity analyses for horizontal 
pleiotropy of instruments to strengthen the reliability of our results. 

2. Methods 

2.1. Individual-level analysis in the UK Biobank cohort 

2.1.1. Offspring birthweight 
The individual-level data of maternal educational attainment and 

offspring birthweight were obtained from the UK Biobank cohort 
(Sudlow, et al., 2015). The birthweight of first child was obtained by 
asking the question: “What was the birthweight of your first child in 
pounds?” The answers were reported solely by the mothers. We 
analyzed the association between maternal educational attainment and 
offspring birthweight, consistently converting the birthweight from 
pounds to grams during our analyses. 

2.1.2. Maternal educational attainment 
Maternal educational attainment was measured by the question: 

“Which of the following credentials do you possess?” We transformed 
the answered credential into educational attainment according to In-
ternational Standard Classification of Education (ISCED) categories 
(Hill, et al., 2018; Lee et al., 2018). The first three response categories 
were: (i) no qualifications = 7 years of education; (ii) CSEs (Certificate of 
Secondary Education) or equivalent, or O levels/GCSEs (Ordinary level 
exams/General Certificate of Secondary Education) or equivalent = 10 
years of education; (iii) college or university degree = 20 years of 
education. 

As it has already demonstrated that the participants with NVQ (Na-
tional Vocational Qualification), or HND (Higher National Diploma), or 
HNC (Higher National Certificate) equivalent qualifications previously 
coded as having 19 years of education would inflate the average edu-
cation years in the UK Biobank data (Okbay, et al., 2022), we thus 
combined A (Advanced level general certificate of education) or AS 
(Advanced Subsidiary level general certificate of education) levels or 
equivalent, other professional qualifications, and NVQ or HNC or 
equivalent into the fourth category with 15 years of education (an in-
termediate point between 10 and 20 years of education). We excluded 
participants who had missing (and unknown) values in offspring birth-
weight and maternal educational attainment, resulting in a final sample 
of 208,162 individuals of white ancestry. 

2.1.3. Calculate the effect of maternal educational attainment on offspring 
birthweight 

We first performed a multiple linear regression to estimate the effect 
of maternal educational attainment (X) on the birthweight of first child 
(Y) in the individual-level UK Biobank data 

Y = β0 + X × β + Z × w + e (1)  

where β is the effect of interest, Z is the design matrix of covariates with 
w the effect vector, β0 is the intercept, and e is the residual vector. 

We included maternal age at first live birth as one covariate in the 
main analysis. As a sensitivity analysis assessing the robustness of our 
results against the confounding influences of other mother’s conditions, 
we attempted to incorporate additional covariates such as Townsend 
deprivation index (TDI), body mass index (BMI), income, and physical 
activity (Table 1). However, we had to utilize measurements obtained at 
the time of completing the questionnaire as proxy measures for these 
mothers’ covariates, as the UK Biobank cohort did not collect accurate 
maternal covariates at the time of delivery. 

Since increasing or advanced maternal age is widely recognized as a 
risk factor of preterm delivery and intrauterine growth restriction (Fall 
et al., 2015; Hart, 2016), we thus implemented a sub-group analysis in 
terms of the maternal age at first live birth to evaluate whether the ef-
fects of maternal educational attainment on offspring birthweight were 
heterogeneous. Specifically, based on the maternal age at first live birth 
(non-advanced maternal age ≤35 years and advanced maternal age >35 
years) (Smithson, Greene, & Esakoff, 2022), we carried out the same 
linear regression in each maternal age group. 

Summary-level analysis with summary statistics data via two-sample 
MR methods. 

2.2. Summary statistics of educational attainment 

We obtained the summary statistics of educational attainment of 
European individuals (n = ~3 millions) from (Okbay, et al., 2022), 
where educational attainment was constructed by mapping each major 
educational qualification identified from the cohort’s survey measure to 
an ISCED category and imputing a years-of-education equivalent for 
each ISCED category (Lee, et al., 2018), consistent with our treatments 
described before. More importantly, although both male and female 
individuals were analyzed, this GWAS offered convincing evidence that 
the genetic effects of attainment education were almost identical be-
tween males and females (Okbay, et al., 2022), with the estimated ge-
netic correlation as high as 0.98 (se = 0.03) (Okbay, et al., 2016). 

The above finding is also supported by well-known educational as-
sortative mating (e.g., the contingency coefficient of education between 
couples in the UK Biobank parent-offspring trio data (see the Section of 
Parent-offspring trios) is 0.225, P = 1.34 × 10− 4) (Domingue, et al., 
2014), which can result in a high genetic similarity between couples. 
Since all the interaction terms were null (P < 0.05/1,465, ranging from 

Table 1 
Descriptive statistics and participant characteristics for the used UK Biobank 
cohort data.  

Variables n or mean (±sd) 

Birthweight of first child (g) 3184.8 ± 542.6 
Low birthweight (<2,500g) 16,657 
Normal birthweight (2500~3,999g) 173,094 
High birthweight (≥4000g) 18,411 
Age at first live birth (years) 25.4 ± 4.6 
TDI − 1.6 ± 2.9 
BMI (kg/m2) 27.1 ± 5.1 
Income 
<£18,000 

52,843 

£18,000~£30,999 54,445 
£31,000~£51,999 52,389 
£52,000~£100,000 38,256 
>£100,000 10,229 
Years of education (years)  
7 41,367 
10 61,904 
15 46,189 
20 58,702 
Physical activity (low/moderate/high) 38,563/88,832/80,767 

Note: BMI: body mass index; TDI: Townsend deprivation index; n: the sample 
size of diverse variables; sd: standard deviation. 
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2.6 × 10− 4 to 0.99), we concluded that there did not exist any SNP-sex 
interaction effects on educational attainment for significant SNPs 
(Fig. S1), which also indicated the absence of sex difference in genetic 
influences (Supplementary Note). Hence, it is reasonable to utilize this 
mixed-sex summary statistics dataset as a proxy for maternal-only 
educational attainment; actually, analogous treatments were widely 
employed in previous work when investigating maternal exposures on 
offspring outcome events (Brito Nunes, et al., 2023; Decina et al., 2023; 
Hwang et al., 2019; Moen et al., 2020). 

2.3. Summary statistics of birthweight 

We yielded the summary statistics of birthweight from (Warrington 
et al., 2019a, 2019b). Based on 297,356 European individuals with their 
own birthweight and 210,248 European individuals with offspring 
birthweight, the maternal-specific SNP effect on birthweight after 
considering offspring genotypes and the fetal-specific SNP effect on 
birthweight after explaining mother genotypes were generated. For 
convenience, we next referred to birthweight influenced by genotypes 
after adjusting for the offspring’s effect as maternal-specific birthweight 
and birthweight affected by genotypes after adjusting for the mother’s 
effect as fetal-specific birthweight (Jin, et al., 2023). More detailed 
description of the summary statistics can be found in the Supplementary 
Note. 

2.4. Estimate causal effect of maternal educational attainment on 
offspring birthweight via MR methods 

We obtained 3952 independent significant SNPs (r2 < 0.1 and P < 5 
× 10− 8) from (Okbay, et al., 2022) to serve as the instrumental variables 
of maternal educational attainment. Among these SNP instruments, 
these were 3919 SNPs that were common to the summary statistics of 
offspring birthweight (Warrington et al., 2019). 

To estimate the causal influence of maternal educational attainment 
on offspring birthweight, we primarily implemented the two-sample 
inverse variance weighted (IVW) MR method (Burgess, Butterworth, & 
Thompson, 2013; Lawlor, 2016). Denote the effect of the jth SNP in-
strument as α̂X

j for maternal educational attainment, and the 

maternal-specific effect and variance of the same instrument as α̂Y
j and 

var(α̂Y
j ) for birthweight. Then, with the K selected instruments, the IVW 

effect estimate was calculated as 

β̂ =

∑K
j=1var

(
α̂Y

j

)− 1
α̂Y

j α̂X
j

∑K
j=1var

(
α̂Y

j

)− 1( α̂X
j

)2
(2) 

Along with IVW, we additionally performed three complementary 
methods: (i) the maximum likelihood method (Burgess, et al., 2013); (ii) 
the weighted median-based method (Bowden, Davey Smith, Haycock, & 
Burgess, 2016); (iii) the MR-Egger regression to evaluate the directional 
pleiotropy of instruments (Bowden, Davey Smith, & Burgess, 2015). 

We also conducted the multivariable MR (MVMR) method (Burgess 
& Thompson, 2015; Rees, Wood, & Burgess, 2017; Sanderson, Davey 
Smith, Windmeijer, & Bowden, 2019) to determine the causal relation 
between maternal educational attainment and offspring birthweight 
while adjusting for the influence of paternal educational attainment 

α̂Y = α̂XM × β+ α̂F × b + e, e ∼ N
(
0,σ2 × var

(
α̂Y)) (3)  

where α̂XM is the marginal effect vector of SNP instruments of maternal 
educational attainment with the effect β as our interest, and α̂F is the 
marginal effect vector of these instruments for paternal educational 
attainment with the confounding effect b, e is the residual vector with σ2 

the variance. 
To carry out the MVMR analysis, we required both paternal and 

maternal summary statistics of educational attainment (i.e., α̂XM and 

α̂F). To this aim, we conducted the single-marker analysis for each SNP 
instrument in the UK Biobank cohort with only male (n = 137,683) or 
female (n = 169,346) participants of white ancestry. More detailed in-
formation regarding genotyping, imputation, and quality control in the 
UK Biobank study can be found elsewhere (Bycroft, et al., 2018) and was 
also described in the Supplementary Note. 

2.5. PGS-based MR analysis in the UK Biobank parent-offspring trio data 

2.5.1. Parent-offspring trios 
Besides the two-sample MR and MVMR analyses described above, we 

further conducted a polygenic score (PGS)-based MR study with parent- 
offspring trio data available from the UK Biobank cohort. Technical 
details regarding how to determine parent-offspring trios could be found 
in our previous work (Jin, et al., 2023). After excluding participants with 
missing values in offspring birthweight, we retained 618 
parent-offspring trios of white ancestry. 

2.5.2. Polygenic score based MR analysis 
We sought to examine the association between maternal educational 

attainment and offspring birthweight while controlling for the con-
founding effects of fetal-specific birthweight and paternal educational 
attainment. To this aim, we first calculated the PGS of maternal 
educational attainment (Kullo, et al., 2022): PGSM

education =
∑m

j=1gj α̂j, 
here m was the number of available SNP instruments, α̂j was the mar-
ginal effect obtained from (Okbay, et al., 2022), and gj was the maternal 
genotype of the SNP instrument (coded as 0, 1, or 2 indicating the 
number of effect alleles) in parent-offspring trios. We next employed 64 
fetal-only birthweight-associated SNPs (Warrington et al., 2019) to 
produce a PGS for fetal-specific birthweight of offspring: PGSFB =
∑64

j=1gFB
j α̂FB

j
, here gFB

j denoted the offspring genotype, and α̂FB
j was the 

fetal-specific effect on birthweight. We also generated a PGS for paternal 
educational attainment: PGSF

education =
∑m

j=1gj α̂F
j , here α̂F

j denoted the 
paternal effect of instrument estimated from the UK Biobank cohort as 
described before, and gj was the paternal genotype of the instrument. 

Using these PGSs, we performed the following linear regression 

Y = β0 + PGSM
education × β + PGSF

education × bF + PGSFB × bFB + e (5)  

where Y is the offspring birthweight in parent-offspring trios and was 
derived from the question: “participants were asked to enter their own 
birthweight”, β is the effect of maternal educational attainment on 
offspring birthweight, bF is the effect of paternal educational attainment, 
and bFB is the effect of offspring fetal-specific birthweight. 

2.6. Evaluate the influence of horizontal pleiotropy 

To assess the influence of potential horizontal pleiotropy (Bowden, 
et al., 2015; Qi & Chatterjee, 2019), we excluded SNP instruments that 
were highly correlated (P < 5 × 10− 8) with smoking, alcohol con-
sumption, BMI, T2D, glucose, and hypertension (Table S1), leaving a 
final total of 3686 SNPs as instrumental variables for maternal educa-
tional attainment. We employed these remaining SNP instruments to 
conduct the similar MR analyses demonstrated above. 

2.7. Statistical software and significance 

The overall flow chart of our statistical analyses is illustrated in 
Fig. 2. In the individual-level study, the imputation of missing values of 
covariates was implemented with the R mice (version 4.1.1) package 
(van Buuren & Groothuis-Oudshoorn, 2011). In the summary-level 
study, the MR analyses were conducted with the R MendelianRandom-
ization (version 0.3.0) package (Yavorska & Burgess, 2017). All other 
analyses were also performed under the R software computing envi-
ronment. The P value was two-sided and the significance level was set to 
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0.05. 

3. Results 

3.1. Estimated effect of educational attainment on offspring birthweight 

3.1.1. Estimated effect in the full UK Biobank cohort 
The average (standard deviation (sd)) birthweight of first child is 

3184.8 (542.6) across all analyzed UK Biobank participants; approxi-
mately 28.2% of mothers had 20-year educational attainment, whereas 
19.9% of mothers did not have any qualifications. Summary information 
for all considered covariates is displayed in Table 1. We first analyzed 
maternal educational attainment as a continuous variable. With 
maternal age at first live birth as an adjusted covariate, we observed that 
maternal educational attainment was positively related to the birth-
weight of first child (β̂ = 5.8, 95%CIs 5.3–6.3, P = 2.76 × 10− 114). When 
incorporating additional covariates (e.g., BMI, TDI, income, and phys-
ical activity), we found a slight decrease in the estimated effect (β̂ = 4.8, 
95%CIs 4.3–5.4, P = 2.24 × 10− 71). 

We also constructed four dummy variables for maternal educational 
attainment. With 7 years of maternal educational attainment (i.e., no 
qualifications) as the reference, we discovered a significantly positive 
connection between various maternal qualifications and the birthweight 
of first child after controlling for available covariates (e.g., maternal age 
at first live birth), with β̂ = 44.8 (95%CIs 38.0–51.6, P = 6.15 × 10− 38), 
54.9 (95%CIs 47.6–62.2, P = 4.21 × 10− 128), and 89.4 (95%CIs 
82.1–96.7, P = 4.28 × 10− 34) for 10, 15 and 20 years of maternal 
educational attainment (Fig. 3A), respectively. 

After adjusting for more covariates (e.g., BMI, TDI, income, and 
physical activity), we identified slightly reduced effects (Fig. 3B), with β̂ 
= 34.1 (95%CIs 27.1–41.0, P = 5.47 × 10− 22), 41.9 (95%CIs 34.4–49.3, 
P = 5.14 × 10− 28), and 74.2 (95%CIs 66.5–81.9, P = 9.71 × 10− 79) for 
10, 15, and 20 years of maternal educational attainment, respectively. 

Further, compared to the mothers without any qualifications (i.e., 7 
years of maternal educational attainment), the birthweight of first child 
was higher for those with qualifications (i.e., >7 years of maternal 
educational attainment) (β̂ = 60.2, 95%CIs 54.1–66.2, P = 1.50 ×

Fig. 2. Statistical flow chart to evaluate the causal association between maternal educational attainment and offspring birthweight using observational studies as 
well as various MR analyses. 

Fig. 3. Estimated effect of maternal educational attainment (with 7 years of educational attainment as the reference) on the birthweight of first child in the full UK 
Biobank cohort. (A) Effect of maternal educational attainment on the birthweight of first child adjusting for only maternal age at first live birth in the full UK Biobank 
cohort; (B) Effect of maternal educational attainment on the birthweight of first child adjusting for more adult covariates (e.g., BMI, TDI, income, and physical 
activity) in the full UK Biobank cohort; (C) Effect of maternal educational attainment on the birthweight of first child while adjusting for several adult covariates (e.g., 
BMI, TDI, income, and physical activity) in the non-advanced maternal age group; (D) Effect of maternal educational attainment on the birthweight of first child 
while adjusting for several adult covariates (e.g., BMI, TDI, income, and physical activity) in the advanced maternal age group. The red trend line in each panel is 
determined by the least squares method. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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10− 84). 

3.1.2. Estimated effect in the two groups of maternal age at first live birth in 
the UK Biobank cohort 

We here conducted a stratified analysis by age at first live birth with 
maternal educational attainment as a continuous variable. We found 
that maternal educational attainment was positively relevant to 
offspring birthweight (β̂ = 4.8, 95%CIs 4.2–5.3, P = 2.40 × 10− 67) in the 
non-advanced maternal age group (n = 203,145). In the advanced 
maternal age group (n = 5017), we saw an increased effect compared to 
that in the non-advanced maternal age group (β̂ = 7.0, 95%CIs 3.2–10.8, 
P = 2.89 × 10− 4). However, the effect difference between the two 
groups was non-significant (P = 0.870) in terms of an approximate 
normal test (Altman & Bland, 2003). 

When maternal educational attainment was analyzed as a categorical 
variable, there existed a significantly positive effect of 10, 15, or 20 
years of maternal educational attainment on the birthweight of first 
child among participants with non-advanced maternal age (Table 2); for 
instance, ̂β = 83.2 (95%CIs 75.6–90.7, P = 2.00 × 10− 102) for 20 years of 
maternal educational attainment (Fig. 3C). However, except for partic-
ipants with 20 years of educational attainment in the advanced maternal 
age group (P = 0.027), the estimated effects for other levels of educa-
tional attainment were non-significant (Fig. 3D), which was likely a 
direct consequence of small sample sizes as only 5017 participants were 
analyzed. 

Causal effects of maternal educational attainment on offspring 
birthweight estimated via the two-sample MR. 

3.1.3. Estimated causal effect via two-sample MR 
These chosen SNP instruments explained approximately 7.0% of the 

phenotypic variation in educational attainment. The minimum F-sta-
tistic was more than 10 (ranging from 29.71 to 635.69), implying the 
absence of weak instrumental bias. Through the random-effects IVW 
method (Pheterogeneity = 8.57 × 10− 27 in terms of the Cochran’s Q test), 
we detected a statistically significant association between maternal 
educational attainment and maternal-specific offspring birthweight (β̂ 
= 0.074 for 1sd increase in maternal education years, 95%CIs 
0.054–0.093, P = 2.56 × 10− 13) (Fig. 4). Other complementary MR 
methods (e.g., MR-Egger, maximum likelihood method, and weighted 
median method) also produced very similar causal estimates (Table 3), 
offering supportive evidence for such a causal connection between 
maternal educational attainment and offspring birthweight. Further-
more, the intercept of MR-Egger regression did not significantly deviate 
from zero (intercept = 5.39 × 10− 5 and P = 0.850), indicating the 
minimal impact of horizontal pleiotropy. 

3.1.4. Estimated causal effect via multivariable MR 
With parental summary statistics of educational attainment esti-

mated from the UK Biobank cohort and summary statistics of maternal- 
specific birthweight, we performed MVMR to control for the con-

founding impact of paternal educational attainment. It was shown that 
maternal educational attainment remained positively associated with 
offspring birthweight (β̂ = 0.037, 95%CIs 0.013–0.061, P = 2.26 ×
10− 3). 

Causal effects of maternal educational attainment on offspring 
birthweight estimated via the PGS-based MR. 

We leveraged parent-offspring trios from the UK Biobank cohort to 
simultaneously adjust for the confounding effects of fetal-specific 
birthweight and paternal educational attainment. We identified a posi-
tive but insignificant effect of maternal educational attainment on 
offspring birthweight (β̂ = 24.0, 95%CIs − 150.1–198.1, P = 0.787). 

The non-significant association discovered above was possibly due to 
limited sample sizes in parent-offspring trios. We conducted simulations 
to validate this conjecture (Supplementary Note), and found that there 
was only a power of 5.8% under the setting of current effect estimate and 
sample size. We would need approximately 65,000 parent-offspring 
trios to achieve an expected power of 80.0% if the causal effect was 
set to 24 (Fig. S2), and we had an expected power of 15.3% when β = 80 
and 618 trios. 

4. Results of sensitivity analysis for horizontal pleiotropy 

Finally, after the removal of SNP instruments with potential hori-
zontal pleiotropy, we employed the remaining genetic instrumental 
variables to investigate the causal relationship between maternal 
educational attainment and maternal-specific birthweight. We still 
observed significantly positive associations between maternal educa-
tional attainment and offspring birthweight in terms of various two- 
sample MR methods (Table S2). For example, we discovered a signifi-
cant association between maternal educational attainment and 
maternal-specific birthweight (β̂ = 0.069, 95%CIs 0.048–0.089, P =
4.83 × 10− 11) according to the random-effects IVW MR method. The 
results of other complementary MR approaches were given in the Sup-
plementary Note. 

In the PGS-based MR analyses for parent-offspring trio data in the UK 
Biobank cohort, we also observed a positive association between 

Table 2 
Subgroup analysis of the maternal age at first live birth that was categorized into 
advanced age (>35 years) and non-advanced age (≤35 years).  

Educational 
attainment (years) 

maternal age at first live 
birth (≤35) (n = 203,145)  

maternal age at first live 
birth (>35) (n = 5017) 

β (95%CIs) P  β (95%CIs) P 

10 37.6 
(30.7–44.6) 

1.48 ×
10− 26  

24.3 
(− 59.8–108.4) 

0.571 

15 46.9 
(39.4–54.3) 

7.02 ×
10− 35  

40.3 
(− 43.9–124.5) 

0.348 

20 83.2 
(75.6–90.7) 

2.00 ×
10− 102  

91.0 
(10.4–171.5) 

0.027 

Note: These estimate results were obtained with 7 years of maternal educational 
attainment as the reference. 

Fig. 4. Forest plot showing estimated causal effects of maternal educational 
attainment on offspring birthweight using various two-sample MR methods. 

Table 3 
Causal effect estimates of maternal educational attainment on offspring birth-
weight using various two-sample MR methods.  

Methods Estimated causal effect SE P 

IVW 0.074 0.010 2.56 × 10− 13 

MR Egger 0.069 0.031 0.026 
Maxlik 0.074 0.010 4.94 × 10− 13 

Median 0.082 0.014 1.56 × 10− 8 

Note: SNP: single-nucleotide polymorphism; SE: standard error. IVW: random- 
effects IVW method; MR Egger: MR-Egger regression; Maxlik: maximum likeli-
hood method; Median: weighted median method. 
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maternal educational attainment and offspring birthweight, although 
the effect was not statistically significant again largely due to limited 
power (Supplementary Note). Finally, we highlighted that our MR an-
alyses were conducted under the guidelines of STROBE-MR (Skri-
vankova, et al., 2021), with the checklist provided in Table S3. 

5. Discussion 

5.1. Summary of our results 

In the present study, we have revealed a significant association be-
tween maternal educational attainment and the birthweight of 
offspring. Such an association was consistently observed in both 
individual-level observational studies and summary-level causal infer-
ence analyses. Specifically, in the individual-level analyses, we found 
that the birthweight of first child for mothers with a higher educational 
attainment trended to be heavier. In the summary-level analyses, we 
discovered that maternal educational attainment had a causal influence 
on offspring birthweight in terms of distinct two-sample MR studies. We 
further conducted a PGS-based MR analysis in parent-offspring trios and 
also observed a positive causal association between maternal educa-
tional attainment and offspring birthweight although this relation was 
insignificant due to limited power. Overall, our study implied that 
higher maternal educational attainment was an independent protective 
factor against low birthweight. 

Indeed, it has shown that mothers with higher educational attain-
ment generally have better resources and more health investments for 
prenatal care, nutrition, prenatal consultations, and living/working 
conditions, all of which could potentially affect birthweight (Noghani-
behambari, et al., 2022; Silvestrin, Hirakata, da Silva, & Goldani, 2020). 
In addition, maternal education can also directly and indirectly affect 
offspring outcomes including birthweight through choosing more 
promising partner, suitable timing of fertility and number of offspring, 
improving marriage prospects, and stopping unhealthy behaviors (e.g., 
smoking and drinking) before and during pregnancy (Guarnizo-Herreño, 
et al., 2021), which ultimately reduce the possibility of low birthweight. 

5.2. Comparison to previous studies 

As mentioned before, exploring the causal relation between maternal 
educational attainment and the birthweight of offspring is exceptionally 
challenging. Several prior studies were based on traditional epidemio-
logical designs (Godah, et al., 2021; Guarnizo-Herreño, et al., 2021; 
Shapiro et al., 2017); however, they are vulnerable to confounding 
factors such as social and environmental influences, selective mating, as 
well as fetal genotypes, all of which are difficult to adjust for through a 
conventional manner. 

In contrast, our study employed MR methods to examine the causal 
association between maternal education and offspring birthweight; 
methodologically, MR approaches are robust against confounders and 
thus can provide a more credible assessment of causality (Angrist, et al., 
1996; Brion et al., 2013; Davey Smith & Hemani, 2014; Evans et al., 
2019; Greenland, 2000; Moen et al., 2019; Sheehan et al., 2008; War-
rington et al., 2018; Yu, Yuan, et al., 2020; Zeng et al., 2019; Zeng & 
Zhou, 2019a, 2019b). Compared to existing studies, one of our greatest 
advantages is that we can explain the confounding effects of 
fetal-specific birthweight and paternal educational attainment by 
leveraging novel MR methods in two-sample analyses and 
parent-offspring trios. 

A recent two-sample MR study also explored the causal influence of 
maternal educational attainment on offspring birthweight and indicated 
the existence of causal association (Liu, et al., 2022); however, this work 
did not sufficiently take into account the effect of fetal genome. Since 
birthweight is affected by both maternal and fetal genotypes, previous 
MR studies have demonstrated that resolving the genetic effect of 
birthweight into fetal-specific and maternal-specific components holds 

the key when elucidating the association between maternal exposures 
and offspring birthweight (Brito Nunes, et al., 2023; Decina et al., 2023; 
Hwang et al., 2019; Jin et al., 2023; Moen et al., 2020; Yu, Yuan, et al., 
2020). Note that, our objective is to examine whether maternal educa-
tional attainment would exert an immediate causal influence on 
offspring birthweight, which requires the utilization of maternal-specific 
birthweight when implementing MR analyses. 

5.3. Limitations of our work 

There are some limitations of this study. First, there may be an 
inaccurate classification of qualifications and years of education. Spe-
cifically, even though there is a clear classification (based on ISCED 
category definitions), it has been found that NVQ or HNC or equivalent 
qualifications coded as having 19 years of education would exaggerate 
their average years of education in the UK Biobank (Hill, et al., 2018; Lee 
et al., 2018; Okbay et al., 2022). We are not sure whether this will be the 
case for other classifications. 

Second, previous research has demonstrated a positive correlation 
between education level and physical activity (Donnelly, et al., 2016), 
indicating that individuals with higher levels of education would also 
engage in high levels of physical activity. It is worth noting that high 
levels of physical activity are typically associated with a normal BMI 
(Koolhaas, et al., 2017), and maternal BMI has been shown to have a 
positive impact on fetal development and birthweight (Goldstein, et al., 
2017). However, because of data unavailability from the UK Biobank 
cohort, we did not have those important covariates (e.g., maternal BMI 
and physical activity) at the time of the maternal first birth. Addition-
ally, in the maternal age stratification analysis, we found that mothers 
with 20 years of education in the advanced maternal age group had a 
significant effect on the birthweight of the first child (P = 0.027). The 
possible reason for this finding is that mothers with higher educational 
attainment may have a higher level of psychological maturity (Suzuki, 
et al., 2015), which may enable them to provide a better emotional 
environment during pregnancy. In this case, the educational attainment 
may be only an indirect indicator, while psychological maturity is likely 
a more important factor. Therefore, our study cannot completely elim-
inate the effect of potential confounders, which possibly biased the true 
relation between maternal educational attainment and offspring birth-
weight in the individual-level analyses. 

Third, 2qin our PGS-based MR analysis, we had very limited power 
due to the scarcity of parent-offspring trios; thus, it is necessary to 
validate our findings further with larger sample sizes of parent-offspring 
trios. 

5.4. Public health implications of our findings 

Low birthweight is a significant public health issue in both devel-
oping and developed countries, and is the primary risk factor for early 
neonatal mortality and morbidity (Assefa, Berhane, & Worku, 2012; Dai 
et al., 2022; de Chrisman et al., 2016; Khera et al., 2016; Rezen). Regions 
with the highest prevalence of low birthweight, such as sub-Saharan 
Africa and southern Asia, contribute to almost three-quarters of global 
live births with low birthweight (Blencowe, et al., 2019). One factor 
contributing to this phenomenon is the potential insufficient maternal 
educational attainment (Mahumud, Sultana, & Sarker, 2017). Previous 
studies have shown that lower levels of educational attainment among 
both mothers and fathers are significant risk factors for infant mortality, 
regardless of wealth or income status, or the sex of the child (Balaj, et al., 
2021). Therefore, our findings suggest that increasing maternal educa-
tional attainment can improve economic conditions, health knowledge 
and awareness, hygiene practices and living environments, as well as 
social status and autonomy, thus contributing to lowering the risk of low 
birthweight as well as improving health and long-term outcomes of 
offspring. 

Indeed, increasing the access to quality education not only has 
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substantial returns for current generations and next generations, but also 
is beneficial for previous generations (e.g., more longevity) (Lu, et al., 
2023); it is also one of the most cost-effective ways to alleviate socio-
economic and health inequalities around the world especially in low and 
middle-income countries (Godah, et al., 2021; Graetz et al., 2020; 
Guarnizo-Herreño, et al., 2021; Ye et al., 2023). 

6. Conclusion 

This study provides supportive evidence for a significantly causal 
association of maternal educational attainment on offspring birthweight 
via both observational studies and various Mendelian randomization 
analyses. The findings reveal that higher maternal educational attain-
ment is an independent protective factor against low birthweight and 
possess the potential to encourage improving educational attainment 
among non-pregnant female adults. 
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