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A B S T R A C T   

Virgin olive oil (OO) can be classified into three different categories: extra virgin, virgin and lampante. The 
official method for this classification, based on physicochemical analysis and sensory tasting, is considered useful 
and effective, although it is a costly and time-consuming process. The aim of this study was to assess the potential 
of some analytical techniques for classifying and predicting different OO categories to support official methods 
and to provide olive oil companies with a rapid tool to assess product quality. Thus, mid and near infrared 
spectroscopies (MIR and NIR) have been compared by using different instruments and with head-space gas 
chromatography coupled to an ion mobility spectrometer (HS-GC-IMS). High classification success rates in 
validation models were obtained using IR spectrometers (>70% and > 80% in average for ternary and binary 
classifications, respectively), although HS-GC-IMS showed greater classification potential (>85% and > 90%).   

1. Introduction 

Virgin olive oil producers, stakeholders and consumers need a proper 
and complete characterisation of the OOs that are produced, marketed, 
and consumed in order to guarantee the quality and authenticity of the 
product and to avoid possible mislabelling and frauds or adulteration 
(Moore, Spink & Lipp, 2012). According to international and European 
legislation (Commission Implementing Regulation (EU) 2019/1604, 
2019; IOC, 2018), virgin olive oils are classified into extra virgin 
(EVOO), virgin (VOO) and lampante (LOO), EVOO being the most 
appreciated category, while LOO cannot be sold or consumed (Fer-
nandes, Ellis, Gámbaro & Barrera-Arellano, 2018). Nowadays, the 
quality and the classification of virgin olive oils are based on the analysis 
of some combining physicochemical parameters and on a further sen-
sory evaluation according to positive or negative attributes carried out 
by a “panel test” of experts (IOC, 2018). Although the panel tests are 
made up of well-trained professionals and this methodology is consid-
ered as the reference, it depends on human perceptions, is destructive 
and time-consuming. Furthermore, only a few samples per day can be 

tested. Therefore, rapid and cost-efficient analytical methodologies 
based on instrumental techniques are necessary in order to complement 
and support the panel tests work. 

In recent years, several techniques have been explored in order to 
study their capability to determine the quality of virgin olive oils 
(Zaroual, Chénè, El Hadrami & Karoui, 2021). Some of the best 
analytical techniques to classify virgin olive oils categories have turned 
out to be headspace gas-chromatography coupled to mass spectrometry 
(HS-GC–MS) or to ion mobility spectrometry (HS-GC-IMS), which are 
based on the analysis of volatile organic compounds (VOCs), molecules 
closely related to the organoleptic characteristics that the panel test 
evaluates. These techniques have been successfully employed to 
authenticate the quality of virgin olive oils classified as EVOO, VOO or 
LOO (Arroyo-Manzanares, Gabriel, Carpio, & Arce, 2019; Contreras, 
Arroyo-Manzanares, Arce & Arce, 2019; Contreras, Jurado-Campos, & 
Arce, 2019; García-Nicolás, Arroyo-Manzanares, Arce, Hernández- 
Córdoba, & Viñas, 2020; Garrido-Delgado, Arce, & Valcárcel, 2015; 
Gerhardt, Schwolow, Rohn, Pérez-Cacho, Galán-Solvedilla, Arce & 
Weller, 2019; Valli et al., 2020). Although HS-GC-IMS is still less 
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common for analysing agri-food complex matrices in laboratories in 
comparison with GC-flame ionisation detector or GC–MS, both tech-
niques seem to provide comparable virgin olive oil classification per-
centages (Contreras, Arroyo-Manzanares, et al., 2019; Jurado-Campos, 
Rodríguez-Gómez, Arroyo-Manzanares & Arce, 2021). In this article, 
HS-GC-IMS has been selected since it is a promising virgin olive oil 
classification technique, which combines high selectivity and identifi-
cation power together with high robustness and cost-efficiency. How-
ever, this technique generates highly complex multidimensional data 
which also need chemometric methods to interpret them (Schwolow, 
Gerhardt, Rohn & Weller, 2019). Thus, other works have been focused 
on the exploration of different data processing strategies to improve the 
classification results (Contreras, Arroyo-Manzanares, et al., 2019; Ger-
hardt et al., 2019). Moreover, the high volume of samples to classify into 
quality categories requires the development of other rapid methods that 
provide instant results even at screening level. For these reasons, the 
study of other OO classification methods using some alternative 
analytical techniques, such as infrared spectroscopy (IRs), is addressed 
in the current work. IRs, coupled to chemometric techniques, conforms a 
fast, reliable, and cost-efficient method, also having some disadvantages 
and drawbacks. Thus, it should be noted that IRs techniques generally 
measure global fingerprints, with information about the functional 
groups but no specific information about the composition of VOCs. 
Therefore, it will be necessary to evaluate whether that analytical lim-
itation translates into worse classification results compared to chro-
matographic techniques. 

The most used wavelengths in IR spectroscopic analysis are near- 
infrared (NIR), which are considered from 14000 cm− 1 up to 4000 
cm− 1 (700–2500 nm); and mid-infrared (MIR) analysis, whose values 
range from 4000 cm− 1 to 400 cm− 1. Several methods based on NIR 
technology have been carried out to authenticate OOs according to their 
variety or geographical origin (Laroussi-Mezghani et al., 2015; Peršurić, 
Saftić, Mašek, & Kraljević Pavelić, 2018) or their purity due to adul-
terations (Azizian, Mossoba, Fardin-Kia, Delmonte, Karunathilaka & 
Kramer, 2015; Mossoba, Azizian, Fardin-Kia, Karunathilaka & Kramer, 
2017). Likewise, NIR spectroscopy has been used for the non-destructive 
assessment of physicochemical quality parameters in OO samples 
(Cayuela, 2017; Garrido-Varo, Sánchez, De la Haba, Torres, & Pérez- 
Marín, 2017). Some other studies have focused on the assessment of 
sensorial profile of OOs related to volatile organic compounds and/or 
phenolic compounds, which directly affect the quality grade, using NIR 
and/or MIR (Martínez Gila, Cano Marchal, Gómez Ortega, & Gámez 
García, 2018). A good approximation was carried out by Sinelli, Cer-
retani, Egidio, Bendini & Casiraghi (2010), by establishing a classifica-
tion of OOs according to olfactory attributes (European Commission 
Regulation 640/2008, 2008) using MIR and NIR, treating the spectral 
data both by linear discriminant analysis (LDA) and soft independent 
modelling of class analogy (SIMCA). The results showed a prediction 
range between 71.6% and 100% as average value. Abu-Khalaf & Hmidat 
(Abu-Khalaf & Hmidat, 2020) were able to distinguish between four 
different quality groups -extra virgin, virgin, ordinary virgin and 
lampante- of local OOs using visible-NIR spectroscopy and also found a 
high correlation with acidity and peroxide indexes using partial least 
squares (PLS). Hirri, Bassbasi, Platikanov, Tauler & Oussama (2016) 
analysed a total of 70 OOs from four quality categories using Fourier 
Transform (FT)-MIR, also considering their physicochemical data and 
organoleptic information related to polyphenols content. A first partial 
least squares discriminant analysis supervised chemometric model (PLS- 
DA) over physicochemical data was not able to distinguish among 
EVOO, VOO, and ordinary VOO. However, the PLS-DA model based on 
FT-MIR data provided a 93% success rate in calibration while the 
external validation was 100% for binary classifications for the four 
categories. 

All the aforementioned indicates that, on the one hand, chemometric 
data treatment are needed to obtain satisfactory results by IRs tech-
niques; and, on the other hand, that there is still a lack of knowledge 

about the potential of these techniques for classifying virgin olive oil 
categories, since the studies that address this subject are still scarce, 
considering very few samples from very specific or local origins, often 
from the same category, and whose quality had not been corroborated 
by at least two independent tasting panels. Thus, the analytical methods 
can be calibrated and validated with samples tested and labelled by at 
least two panels whose results match to avoid transferring the panel 
error to the instrumental method (Jurado-Campos, Rodríguez-Gómez, 
Arroyo-Manzanares & Arce, 2021). In addition, the effect of using 
different instrumental devices within the same analytical technique has 
not been explored. 

In this context, the first aim of this study was to assess and compare, 
for the first time, the potential of NIR and MIR spectroscopies for per-
forming a rapid screening that enables the classification of different OO 
categories using a ternary (EVOO, VOO and LOO) and a binary (EVOO / 
Non-EVOO and LOO / Non-LOO) approach, with the final purpose of 
supporting the current official methods and, ultimately, giving a rapid 
tool to olive oil companies for evaluating the quality of their own 
products. Another novel aspect of the work was that different IR spec-
trometers were also considered and compared, since each instrument 
can be equipped with different analytical devices and, subsequently, 
offer specific spectral information which might lead to different classi-
fication results. In addition, IR classification results were compared with 
those obtained by HS-GC-IMS, as a separation technique, to discuss and 
evaluate their advantages and disadvantages; and to offer a quick tool 
for decision-making to OO companies, entities and researchers. 

2. Materials and methods 

2.1. Selected samples 

A set of 135 Spanish virgin olive oils coming from the harvest 
2019–2020 were collected between July 2020 and April 2021. The 
samples were stored in a freezer at − 4 ◦C and evaluated by two tasting 
panels: Panel 1 (Córdoba, Spain) and Panel 2 (Seville, Spain), which is 
accredited in standard 17,025 and works in accordance with EC stan-
dard no. 796/2002 and COI T20/Doc. No. 5 Rev.1 of 1996. The result of 
the tasting showed 23 samples (17% from the total) that did not match 
between the two panels and 112 samples classified into the same cate-
gory by both (83 % from the total): 50 EVOO, 41 VOO, and 21 LOO. The 
23 samples that did not match between the two panels could correspond 
to olive oil samples located at the interface of two categories, EVOO/ 
VOO or VOO/LOO, which are difficult to label due to very similar 
chemical characteristics. Although all the 135 samples were analysed, 
only the 112 matching samples were used for chemometric model 
calibration and validation to avoid transferring the panel error to the 
instrumental method (Table I, Supplementary Material). Most of the 
samples were obtained by mixing several olive varieties, only including 
some monovarietal samples. The total amount of samples seemed to be 
enough for the intended purposes considering several previous works 
categorising and classifying OOs with IRs (Abu-Khalaf & Hmidat, 2020; 
Hirri et al., 2016; Sinelli et al., 2010), and the proportion of the three 
categories was well-balanced. 

2.2. Mid-Infrared spectral analysis 

To explore different MIR spectroscopic instruments and to be able to 
establish which factors can offer better results to characterise OO sam-
ples, MIR spectra were obtained by two different spectrometers. First, 
samples were analysed by using a Tensor 27 Bruker FT-MIR Hyperion 
2000 spectrophotometer (Bruker Optik GmbH, Germany), equipped 
with an attenuated total reflectance accessory (ATR) of single reflection, 
incident angle 45◦, DTGS detector, Globar (MIR) source and KBr 
germanium separator, with a resolution of 4 cm− 1 at 100 scans, called 
MIR1 henceforth. Analyses of the 112 samples were carried out by 
pipetting 80 µL of the sample into the ATR, which was cleaned with 
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soapy water between one sample and the next. Secondly, the MIR ana-
lyses were also carried out using a Vertex70 Bruker spectrophotometer 
(Bruker Optik GmbH, Germany), with a multiple reflection - ZnSe 
separator 6-bounce ATR, and a resolution of 4 cm− 1 at 50 scans, called 
MIR2 henceforth. In this case, analyses were carried out by pipetting 
around 0.7 mL of sample into the ATR. The ATR cleaning between du-
plicates was done just with absorbent paper, while hexane and ethanol 
were applied between consecutive samples, using a soft sponge for a 
final drying. 

For both instruments, samples were analysed at room temperature 
and in duplicate, spectra were obtained in the absorbance mode from 
4000 to 600 cm− 1 and the data were handled with OPUS 6.5 software 
(Bruker Optik GmbH, Germany). The background spectrum (blank) was 
collected before each sample measurement. 

2.3. Near-Infrared spectral analysis 

All samples were analysed in duplicate by NIR spectroscopy (NIRs) 
using three different spectrometers. First, NIR spectra were obtained 
using a Bruker NIR spectrometer (Bruker Optik GmbH, Germany), 
equipped with a multiparameter analyser MPA II (Bruker Optik GmbH, 
Germany), and with a resolution of 4 cm− 1 at 32 scans – called NIR1 
henceforth. Data were handled with OPUS 6.5 software (Bruker Optik 
GmbH, Germany). Analyses of the samples were carried out by pipetting 
about 0.7 mL in a thin transparent glass vial that was later inserted in the 
convenient MPA port, where each sample was preheated for 15 s at 50 ̊C, 
to homogenise its physical state (e.g. temperature and viscosity). The 
background or reference spectrum (blank) was taken before the analysis 
of each sample. 

As done for MIR, another NIR spectrometer was tested in order to 
compare their capability for characterising OO samples. The second 
analytical instrument used was a NIR FOSS DS2500L (called NIR2 
henceforth), equipped with a 0.1 mm optical pitch gold slurry cup, in 
double transmission. The resolution was 0.5 nm, and each analysis was 
made at 5 scans and the software controlling the analyses was “Local 
Configurator (DS2500)”. Approximately 0.7 mL of the sample was used 
for each analysis, placing the olive oil directly on the slurry cup and 
taking care not to leave any air bubbles within the oil slide. Each sample 
was analysed in duplicate, obtaining a total of 224 spectra. Each blank 
was performed automatically and serially with each measurement by the 
instrument. 

Finally, another NIR FOSS DS2500L spectrometer (called NIR3 
henceforth) was used to perform the measurements but, in this case, the 
analytical instrument was equipped with a different sample loading 
accessory, specific for oil samples. This loading device allowed sample 
preheating (50 ◦C) and acquiring good spectral information in the range 
of 400–635 nm, which was masked by the absorbance belonging to the 
yellow color of the gold slurry cup when using the previous instrument. 
1 mL disposable vial with a diameter of 8 mm was used for each sample 
analysis, which was also made in duplicate using a resolution of 0.5 nm 
at 32 scans. The control and analysis software was FOSS Manager and 
ISIscan Nova, respectively. At 420 nm, the signal intensity was auto-
matically corrected with an inner filter of the instrument. No blank 
between samples was needed. 

The scanning was made in the absorbance mode from 800 to 2500 
nm (NIR1) or from 400 to 2500 nm (NIR2 and NIR3). 

2.4. Gas chromatography coupled to ion mobility spectrometry analysis 

The OO samples were analysed by HS-GC-IMS using an Agilent 
7497A headspace autosampler connected by a transfer line to an Agilent 
8860 GC system (Agilent, Santa Clara, CA, USA) and coupled to an ion 
mobility spectrometer (G.A.S. Gesellschaft für analytische Sensorsys-
teme mbH, Dortmund, Germany) equipped with a tritium (3H) ionisa-
tion source and a 10 cm drift tube. Sample measurements were made 
following a previous optimised and validated method (Contreras, 

Arroyo-Manzanares, et al., 2019). Hence, for each sample, 1 g of OO was 
weighed and added into a 20 mL headspace glass vial, sealed with a 
capsule fitted with a PTFE/silicone septum (Supelco) before analysing. 
The incubation took place for 5 min at 80 ◦C. 

Once the VOCs were extracted, 1 mL from the headspace of the vial 
was collected through the 1 mL sample loop (at 100 ◦C) and injected in 
split mode 1:4 into the GC injection port (at 200 ◦C) by a transfer line (at 
110 ◦C). Then the samples were transferred into a HP-5 (5%-phenyl)- 
methylpolysiloxane non-polar column, with 60 m, 0.25 mm inner 
diameter and 1 µm thick coating (Agilent, Santa Clara, CA, USA). Helium 
was used as carrier gas at a constant flow rate of 3.2 mL/min. The GC 
oven was programmed as follows: held at 40 ◦C for 3 min, then ramped 
at 15 ◦C/min to 120 ◦C and held at 120 ◦C for 21.47 min. After sepa-
ration, analytes were placed in the detector. Drift tube and transfer line 
were set at 55 and 150 ◦C, respectively. The drift gas, nitrogen, was set at 
150 mL/min. The detector worked at positive polarity. IMS parameters 
were: 150 µs of injection pulse width, signal averaging each 24 spectra, 
repetition rate of 20 ms; and drift, blocking and injection voltages of 
242 V, 20 V and 2500 V, respectively. HS-GC-IMS data were extracted 
with VOCal 1.0.0. software (G.A.S. Gesellschaft für analytische Sensor-
systeme mbH, Dortmund, Germany), acquiring the corresponding 
spectral fingerprints for building the data matrices in last term. 

2.5. Chemometrics 

Spectroscopic data were preprocessed before modelling by looking at 
the best procedure in terms of classification results. For MIR data, after 
removing the uninformative and with high noise regions (explained in 
the following section), Standard Normal Variate (SNV) was the method 
selected and applied to the spectra for scattering removal (Barnes et al., 
1989). SNV attempts to make all spectra comparable in terms of in-
tensities (or absorbance level). It can be useful to correct spectra for 
changes in optical path length and light scattering. For NIR, after 
removing some uninformative or noisy regions (explained in the 
following section), the most adequate preprocess was found to be SNV 
together with Baseline removal (Barnes, Dhanoa & Lister, 1989; Cen & 
He, 2007; Massart, Vandeginste, Buydens, De Jong, Lewi & Smeyers- 
Verbeke, 1997). Baseline removal aims at resetting all spectra on a 
common baseline, although in some cases it can distort the real pro-
portions between absorbance peaks and, therefore, caution should be 
used when interpreting the results. MIR and NIR spectra were then mean 
centred prior to modelling. 

In the case of HS-GC-IMS, the analyses worked on the topographic 
map or IMS spectrum, thus considering the whole spectral fingerprint of 
each sample, although data were previously simplified by cropping the 
maps by removing the non-informative regions (e.g., those before the 
RIP region). Data treatment included a pre-processed consisting in peak 
alignment, RIP normalisation, baseline and noise removal, data reduc-
tion, unfolding of the 3D matrix, and mean-centring. All the steps of the 
modelling followed were described in previous papers (Contreras, 
Jurado-Campos, et al., 2019). 

After removing the different noisly and uninformative regions from 
IR spectra (explained in the following section), and preprocessing the 
data, principal component analysis (PCA) was used to both study the 
best preprocessing methods applied to IRs data and to explore the 
datasets. Moreover, for classification modelling, partial least squares 
discriminant analysis (PLS-DA) was applied to each dataset formed by 
the preprocessed spectra without the removed regions (explained in the 
following section). Selection of optimal number of latent variables (LVs) 
was done from the lowest prediction error in cross-validation. The 
classification success, expressed as True Positive Rate (TPR%), was 
achieved for a ternary (EVOO, VOO and LOO) and binary approaches 
(EVOO / Non-EVOO and LOO / Non-LOO). 

For calibrating and testing the PLS-DA models, the set of 112 samples 
(in duplicate) was randomly divided into two subsets by using the Onion 
algorithm (Gallagher & O’sullivan, 2020). The first subset (train set) was 
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composed of 90 samples (in duplicate) to calibrate the model, which was 
validated by internal full venetian blinds cross-validation (CV) for 
finding the optimum latent variables; whereas the external model vali-
dation was performed using a second subset of 22 samples in duplicate, 
not used for the calibration model, including 10 EVOO, 7 VOO and 5 
LOO. The same samples in the calibration and validation sets were 
considered, both for the different techniques and for the design of 
ternary and binary classification models. 

Data preprocessing and modelling for all the data sets were carried 
out by Matlab R2016a software (Mathworks Inc., Natick, MA, USA) with 
PLS Toolbox (Eigenvector Research Inc., Wenatchee, WA, USA) and 
some handmade scripts in the case of HS-GC-IMS. 

3. Results and discussion 

3.1. Olive oils predicted quality using two different MIR spectrometers 

Two different MIR instruments were tested to assess their potential 
for OO classification. The main difference between the two spectrome-
ters lay in the material that their ATR crystal was made of: Ge (MIR1) vs. 
ZnSe (MIR2). Furthermore, the former was a single bounce ATR while 
the second was a 6-bounce ATR. The 112 OO samples were analysed in 
duplicate, and a previous visual inspection was made. 

At first, the entire spectral range from 4000 to 600 cm− 1 was 
considered, but some bands did not seem to provide useful spectral 

information, and they could lead to errors occurring in the methodology 
to classify the samples. Hence, in MIR1 spectra, bands around 2400 
cm− 1, belonging to the CO2 absorption regions (Dupuy, Galtier, Ollivier, 
Vanloot & Artaud, 2010; Terouzi et al., 2011), were finally discarded 
before modelling, because this may have led to errors due to a high 
variability in that spectral information, independently -e.g., non- 
intrinsic- of the samples according to their quality category. In addi-
tion, bands between 4000 and 3050 cm− 1 and 1700–1500 cm− 1 were 
found to show a low signal/noise ratio (S/N) in MIR1 spectra and sub-
sequently they were also deleted. Considering MIR2 spectra, only the 
latest spectral bands (665–600 cm− 1) showed a very low S/N and were 
consequently discarded. Fig. 1a and b shows the raw MIR spectra for 
each spectrometer, with the spectral regions that were not considered 
for the classification models marked in red. Therefore, the MIR spectra 
considered for the classification approach was the whole spectra without 
the marked in red regions. By looking at the two different spectra, MIR1 
(Fig. 1a) and MIR2 (Fig. 1b), it could be seen that the spectra obtained by 
MIR2, equipped with a multiple reflection - ZnSe separator 6-bounce 
ATR, led to obtain much more intense spectral signals, which may be 
the reason for the high signal/noise ratio presented and the repeatability 
of this device in comparison to the spectra obtained by MIR1, which 
used an ATR of single reflection and KBr germanium separator and 
showed high noise and scattering. Thus, these results were in accordance 
with the fact that MIR2 used a multi-bounce ATR with multiple reflec-
tion and therefore a higher effective pathlength. 

Fig. 1. Raw MIR spectra for each spectrometer, MIR1 (a) and MIR2 (b), and raw NIR spectra obtained from each device, NIR1 (c), NIR2 (d), and NIR3(e). Spectral 
regions marked with red squares indicates the zones removed from the classification analysis. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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When the MIR spectra were correctly preprocessed and regions un-
informative and noisily were removed, a PLS-DA ternary model was 
built with a proper number of latent variables (LVs) (i.e., 12 and 13 
latent variables (LV) for MIR1 and MIR2 respectively) considering the 
selected spectra from both MIR spectrometers as X variables, while the Y 
variables had the three OO quality classes. Table 1 shows the confusion 
matrices for the internal and external validation (CV and prediction) 
obtained by PLS-DA carried out with the spectral data from the two MIR 
spectrometers. Considering the subset with 180 spectra included in the 
cross-validation, coming from the 90 samples in duplicate, the results 
from both instruments showed high success percentages for classifying 
EVOO, VOO and LOO, with TPR% between 75.00 % and 86.25 %. 
However, for the external validation (prediction set) only EVOO samples 
obtained an acceptable classification success using MIR1: 14/20 samples 
(70.00 %). Most of VOO and LOO samples were misclassified in this 
ternary classification model. Likewise, MIR spectra from MIR2 enabled 
the correct classification of 18/20 EVOO samples (90.00 %), but only 
half of the VOO and LOO samples were predicted to be the correct 
category (57.14 % and 50.00 %, respectively). Among the few works 
focused on predicting OO categories applying MIRs, Hirri et al. (2016) 
achieved 100% of classification success considering four OO quality 
grades. However, the set of samples studied may not be representative of 
the real market, since they used olive oils from very local varieties 
(collected in central Morocco). Furthermore, only 70 samples in total, 
representing those four commercial grades, were included in the study 
and sample analyses did not seem to have been performed in duplicate; 
thus, the total amount of MIR spectra generated per each quality cate-
gory considered could be somewhat low, it being possible that the pre-
diction models obtained with those data were underfitted. 

Additionally, binary classification models were also built to evaluate 
whether MIR spectroscopy could reach higher classification success just 
trying to discriminate EVOO from VOO and LOO (modeled as a single 
group: Non-EVOO) and then LOO from EVOO and VOO (modelled as a 
single group: Non-LOO). Despite the limitations found for classifying the 
three OO classes, MIR spectroscopy has shown to be able to distinguish 
quickly and objectively a given OO from the best or the worst quality 
category (Table 2). This could also be a great achievement, as a first 
screening, in order to guarantee a proper OO value/price both for pro-
ducers and consumers (Tsimidou, 2006). Considering the same cali-
bration and validation sample sets as for ternary models, the binary 
classification model obtained with data from MIR1 showed successful 
validation results only when differentiating EVOO from Non-EVOO, 
with an accuracy of 70.00 % in classification of EVOO samples; and 
Non-LOO from LOO, with 85.29 % of Non-LOO samples correctly clas-
sified. However, very low classification success was found for Non- 
EVOO (50.00 %) and LOO (30.00 %) samples. Spectral data from 
MIR2 provided higher prediction success in the binary approach than 
MIR1, reaching percentages of 90.00 %, 91.67 %, 70.00 % and 88.24 % 
for EVOO, Non-EVOO, LOO and Non-LOO, respectively. 

As mentioned above, the main difference between the two analytical 

instruments was the type of ATR that they were equipped with and the 
single and multiple reflection that it was used. As can be concluded from 
the above-described outcomes, the ZnSe-crystal-ATR of MIR2 spec-
trometer offered better OO classification results compared to Ge-crystal- 
ATR of MIR1, even though some bands of the IR spectrum that intro-
duced errors in the spectral information had been removed to optimise 
the results given by this second spectrometer. On the one hand, as seen 
above by looking at the spectra (Fig. 1 a and b), Ge-crystal-ATR with 
single reflection provided a low spectral signal/noise (S/N) ratio and 
high scattering, whereas ZnSe-crystal-ATR with multiple reflection gave 
the opposite. This led to great differences among sample spectra and, in 
the case of Ge-crystal-ATR used in MIR1 device, a decrease in the spectra 
repeatability and, consequently, in the repeatability of the method. In 
fact, although an acceptable intra-day repeatability was observed when 
a control sample was analysed in triplicate by MIR1 a notable difference 
in the spectra of the replicates by day of analysis when the same control 
sample was analysed on different days was observed (data not shown). 
This suggested a great influence of that variable -day of analysis- over 
the technique. Finally, the control sample was analysed nine times in the 
same day and a mean relative standard deviation (RSD%) from the 
spectra absorbance intensity was calculated, with a value of 161 %. This 
high RSD% confirmed that the results given by the Ge-crystal-ATR MIR1 
device were not repeatable and, subsequently, not reliable enough. 
ZnSe-crystal-ATR MIR2 device, aside from better classification results 
for the three OO categories, showed an RSD of 3.0 % in the spectra 
wavenumbers of the analysis of the control sample. All these results lead 
to the conclusion that ATR-MIR spectroscopy coupled with this PLS-DA 
chemometric method can be moderately effective to discriminate among 
OO categories, although the sampling device and instrument used have 
influence on the results. 

3.2. Olive oils predicted quality using three different NIR spectrometers 

The same procedure that was performed with MIRs was carried out 
with NIRs using three different spectrometers, named as NIR1, NIR2 and 
NIR3. After an initial visual checking of the spectra obtained from each 
device (Fig. 1 c, d and e), the spectral regions with high noise, which did 
not provide real spectral sample information, were removed (marked in 
red in Fig. 1): from 2400 to 2500 nm for the spectral data obtained by 
NIR1 (Fig. 1c), since it corresponded to a strong water absorption band 
(Tsimidou, 2006); from 400 to 635 nm due to its absorbance belonging 
to the yellow color from the slurry cup, and from 2369 to 2500 nm (high 
final noise) for NIR2 data (Fig. 1d); and, finally, from 2200 to 2500 nm 
(high final noise) for NIR3 data (Fig. 1e). 

The same as for MIR, each PLS-DA ternary model from NIR data was 
built with a proper number of LVs considering the spectra without the 
removed regions from the three NIR spectrophotometers as X variables, 
while the Y variables had the three OO categories. Table 3 shows the 
confusion matrices containing the % of classification success both for 
ternary cross-validation and prediction (i.e., internal and external 

Table 1 
Confusion matrices using the PLS-DA ternary models for calibration (CV) and external validation (prediction) with the two different ATR-MIR spectrometers.   

Actual OO commercial category N Ge-ATR MIR1 ZnSe-ATR MIR2 

Predicted OO commercial 
category 

Classification results Predicted OO commercial 
category 

Classification results 

EVOO VOO LOO TPR (%) Mean TPR (%) EVOO VOO LOO TPR (%) Mean TPR (%) 

CV EVOO 80 69 8 3 86.25 83.77 67 13 0 83.75 80.56 
VOO 68 10 57 1 83.82 12 51 5 75.00 
LOO 32 6 0 26 81.25 2 3 27 84.38 

Prediction EVOO 20 14 4 2 70.00 42.86 18 2 0 90.00 70.45 
VOO 14 8 4 2 28.57 3 8 3 57.14 
LOO 10 1 6 3 30.00 0 5 5 50.00 

Notes: OO = olive oils; CV = cross-validation; EVOO = extra virgin olive oil; VOO: virgin olive oil; LOO: lampante olive oil; N: number of samples; TPR: true positive 
rate. 
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validation, respectively). EVOO, VOO and LOO samples were correctly 
classified in CV for each NIR device with mean classification percentages 
between 76 and 79 %. For the prediction results, EVOO samples were 
classified with a high success (i.e., TPR%) using the three devices: 80.00 
% (12 LV), 90.00 % (12 LV) and 80.00 % (18 LV) for NIR1, NIR2 and 
NIR3 spectral data, respectively. However, external validation results 
for defective samples (VOO and LOO) did not surpass 64.29 % except for 
classifying LOO using NIR3 (TPR% = 80.00%). NIRs did not therefore 
seem to be a reliable and efficient technique in general terms to distin-
guish between defective OO in a ternary model. Nevertheless, it must be 

considered that the number of LOO samples considered for the predic-
tion model was relatively low in all this study, which could lead to a 
great decrease in the classification success percentages for this category 
with very few LOO samples being misclassified. 

Therefore, since the classification results were not completely satis-
factory in ternary model, binary classification models were also built 
from NIR data. Classification results are shown in Table 4. The binary 
PLS-DA model obtained with NIR1 (8 LVs), was promising for dis-
tinguishing defective (non-EVOO) from non-defective samples (EVOO), 
with an accuracy of 80.00 %TPR in the external validation (prediction) 

Table 2 
Confusion matrices using the PLS-DA binary models for calibration (CV) and external validation (prediction) with the two different ATR-MIR spectrometers.   

Actual OO commercial category N Ge-ATR MIR1 ZnSe-ATR MIR2 

Predicted OO 
commercial category 

Classification results Predicted OO 
commercial category 

Classification results 

EVOO Non-EVOO TPR (%) Mean TPR (%) EVOO Non-EVOO TPR (%) Mean TPR (%) 

CV EVOO 80 72 8 90.00 90.00 66 14 82.50 83.33 
Non-EVOO 100 10 90 90.00 16 84 84.00 

Prediction EVOO 20 14 6 70.00 59.09 18 2 90.00 90.91 
Non-EVOO 24 12 12 50.00 2 22 91.67   

Actual OO commercial category N Predicted OO 
commercial category 

Classification results Predicted OO 
commercial category 

Classification results 

LOO Non-LOO TPR (%) Mean TPR (%) LOO Non-LOO TPR (%) Mean TPR (%) 

CV LOO 32 27 5 84.38 95.00 28 4 87.50 93.33 
Non-LOO 148 4 144 97.30 8 140 94.60 

Prediction LOO 10 3 7 30.00 72.72 7 3 70.00 84.09 
Non-LOO 34 5 29 85.29 4 30 88.24 

Notes: OO = olive oils; CV = cross-validation; EVOO = extra virgin olive oil; VOO: virgin olive oil; LOO: lampante olive oil; N: number of samples; TPR: true positive 
rate. 

Table 3 
Confusion matrix using the PLS-DA ternary models for cross-validation (CV) and external validation (prediction) with NIR.  

Instrument Model Actual OO commercial category N Predicted OO commercial category Classification results 

EVOO VOO LOO TPR (%) Mean TPR (%) 

NIR1 CV        
EVOO 78 66 11 1  84.62 78.65 
VOO 68 19 45 4  66.18 
LOO 32 1 2 29  90.63        

Prediction        
EVOO 20 16 4 0  80.00 69.05 
VOO 14 4 9 1  64.29 
LOO 8 1 3 4  50.00        

NIR2 CV        
EVOO 80 66 14 0  82.50 78.89 
VOO 68 14 50 4  73.53 
LOO 32 0 6 26  81.25        

Prediction        
EVOO 20 18 2 0  90.00 72.73 
VOO 14 2 9 3  64.29 
LOO 10 3 2 5  50.00        

NIR3 CV        
EVOO 80 68 11 1  85.00 76.67 
VOO 68 11 47 10  69.12 
LOO 32 3 6 23  71.88        

Prediction        
EVOO 20 16 4 0  80.00 72.73 
VOO 14 2 8 4  57.14 
LOO 10 0 2 8  80.00        

Notes: OO = olive oils; CV = cross-validation; EVOO = extra virgin olive oil; VOO: virgin olive oil; LOO: lampante olive oil; N: number of samples; TPR: true positive 
rate. 

C. Ortiz-Romero et al.                                                                                                                                                                                                                         



Food Chemistry: X 19 (2023) 100738

7

of EVOO samples and 81.82 %TPR in Non-EVOO. When grouping LOO 
and Non-LOO samples, and considering 4 LV, the model successfully 
predicted 32/34 Non-LOO samples (94.12 %), although only 4/8 (50.00 
%) LOO samples were classified in the correct category. As discussed 
above, one should consider the unbalanced samples that formed this 
binary approach that could affect the classification results obtained. The 
validation results (prediction) for the corresponding binary models with 
NIR2 were 90.00 % and 66.67 % for EVOO / Non-EVOO (8 LVs), and 
80.00 % and 85.29 % for LOO / Non-LOO (9 LVs), while with NIR3 were 
75.00 % and 91.67 % for EVOO / Non-EVOO (7 LV), and 80.00 % and 
85.29 % for LOO / Non-LOO (6 LV) in external validation (prediction). 
Although the total classification results were similar for the three NIR 
spectrometers in binary models, the third device (NIR3) provided a total 
mean TPR slightly higher (84.09 %), at the same time as being able to 
classify every OO category considered with a success rate above 75.00 
%. 

All these results could be explained by the different spectral infor-
mation extracted from the NIR instruments (Fig. 1 c, d and e). Thus, 
NIR1 only seemed to provide useful spectral information in the ab-
sorption bands between approximately 1600 and 2450 nm (Fig. 1c). 
Likewise, NIR2 and NIR3 included the information of that range and, in 
addition, extended it by offering information belonging to the visible 
spectrum (400–700 nm) (Fig. 1 d and e). This indicates that the latter 
two instruments were able to provide broader spectral information, and 
this should lead to better classification results compared to NIR1, as seen 
above for the ternary model. 

Looking at the comparison between the two NIR FOSS spectrometers, 
an absorption region with high signal and inter-category variability 
appeared in NIR3 from 400 to 550 nm (Fig. 1e), but not in NIR2 spectra 
since the absorption in the yellow by the gold of the slurry cup generated 
a band that was overlaid above the useful information of the OO samples 
(Fig. 1d). A classification test considering only those visible spectral 
bands from NIR3 data showed a high potential for distinguishing be-
tween EVOO and VOO samples (data not shown). Related to this, Abu- 
Khalafa & Hmidat (2020) obtained high classification percentages 
when analysing 48 local OOs, from four different categories, by Visible/ 
NIRs considering the region from 400 to 1100 nm; which confirms the 
capability and usefulness of that spectral region for classifying OO 
samples and, subsequently, the influence of the spectral range selection 
on these classification results. Likewise, NIR2 provided useful spectral 
information in the region from 2200 to 2400 nm, whereas a high noise 
region was observed at those bands using NIR3. Furthermore, NIR3 
showed higher signal intensity than NIR2 (Fig. 1c and d). Hence, each 
instrument had some useful spectral information in the above- 
mentioned regions of the IR absorbance spectrum, which enabled 

obtaining very similar classification results, as noted above, although it 
should be pointed out that NIR3 provided slightly higher TPR% in the 
binary approach. 

The repeatability of the NIRs was also tested by the visualisation of 
the spectra and the calculation of the RSD%. Thus, the mean RSD% 
calculated from all the wavenumbers from the sample spectra had a 
mean value of 2.43 % for the three NIR spectrometers, which indicated a 
high spectral homogeneity and a high repeatability of the methods. 

3.3. Olive oils predicted quality using HS-GC-IMS 

The 112 OO samples were finally analysed using a robust separation 
technique, such as HS-GC-IMS, in order to compare its classification 
potential with the best results obtained using MIR and NIR spectrome-
ters (i.e., with MIR2 and NIR3). The HS-GC-IMS data was treated as a 
fingerprint, taking the total data contained in the samples, as explained 
before in Section 2.5. The comparison of the classification success rates 
among HS-GC-IMS, NIRs and MIRs is shown in Table 5. In contrast with 
IRs results, a substantial improvement in OO classification percentages 
for ternary model can be observed by PLS-DA with HS-GC-IMS data, 
since this technique not only allowed correctly classifying 90.00% of the 
EVOO samples, but at the same time was capable of providing 85.71% 
and 80.00% of classification success for VOO and LOO, respectively. The 
explanation for this classification upgrading may lie in the fact that, as 
the OO categories are established by sensory tasting and chromato-
graphic techniques detect the VOCs that directly provide the sensory 
attributes to the OO, HS-GC-IMS stands out as more specific than IRs. 
These percentages of success in OO ternary classification, averaging a 
TPR % of 86.36 %, were close to those obtained in similar studies carried 
out with chromatographic techniques, both using GC–MS (García-Nic-
olás et al., 2020; Quintanilla-Casas et al., 2020; Sales, Cervera, Gil, 
Portolés, Pitarch & Beltrán, 2017; Sales, Portolés, Johnsen, Danielsen & 
Beltran, 2019) and GC-IMS (Contreras, Arroyo-Manzanares, et al., 2019; 
Contreras, Jurado-Campos, et al., 2019; Garrido-Delgado et al., 2015; 
Gerhardt et al., 2019; Valli et al., 2020). For binary models, the chro-
matographic technique and method here applied also showed a greater 
classification potential compared to spectroscopic ones, with only one 
misclassified sample from 22 for EVOO / Non-EVOO model (6 LVs) and 
3/22 for LOO / Non-LOO model (2 LVs) in the prediction. The TPR% 
stood at 90.91 %, once again in the same order than percentages success 
obtained in similar OO classification studies using chromatographic 
techniques (Cecchi et al., 2019; Dierkes, Bongartz, Guth & Hayen, 2012; 
Garrido-Delgado, Mercader-Trejo, Arce & Valcárcel, 2011; Purcaro, 
Cordero, Liberto, Bicchi & Conte, 2014). However, with only five LOO 
samples considered for the classification study, as was previously 

Table 4 
Confusion matrix using the PLS-DA binary models for cross-validation (CV) and external validation (prediction) with the three NIR spectrometers.   

Actual OO 
commercial 
category 

NIR1 NIR2 NIR3 

Predicted OO 
commercial 
category 

Classification 
results 

Predicted OO 
commercial 
category 

Classification 
results 

Predicted OO 
commercial 
category 

Classification 
results 

EVOO Non- 
EVOO 

TPR 
(%) 

Mean 
TPR (%) 

EVOO Non- 
EVOO 

TPR 
(%) 

Mean 
TPR (%) 

EVOO Non- 
EVOO 

TPR 
(%) 

Mean 
TPR (%) 

CV EVOO 68 10 87.18 87.64 70 10 87.50 85.56 69 11 86.25 84.44 
Non-EVOO 12 88 88.00 16 84 84.00 17 83 83.00 

Prediction EVOO 16 4 80.00 80.95 18 2 90.00 77.27 15 5 75.00 84.09 
Non-EVOO 4 18 81.82 8 16 66.67 2 22 91.67    

LOO Non- 
LOO   

LOO Non- 
LOO   

LOO Non- 
LOO   

CV LOO 23 9 71.88 91.01 28 4 87.50 93.33 22 10 68.75 86.67 
Non-LOO 7 139 95.21 8 140 94.60 14 134 90.54 

Prediction LOO 4 4 50.00 85.71 8 2 80.00 84.09 8 2 80.00 84.09 
Non-LOO 2 32 94.12 5 29 85.29 5 29 85.29 

Notes: OO = olive oils; CV = cross-validation; EVOO = extra virgin olive oil; VOO: virgin olive oil; LOO: lampante olive oil; TPR: true positive rate. 
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mentioned, a single sample misclassified leads to a very high decrease in 
TPR% value. 

3.4. Comparison of techniques (IR vs GC-IMS). Pros and cons discussion 

In the present work, three different techniques and six analytical 
instruments have been tested based on their potential to classify OOs by 
their quality categories, and copious information from each analytical 
technique, both from their experimental procedure and the results ob-
tained, has been acquired. Considering all the outcomes obtained from 
this study, several advantages and disadvantages of each technique are 
going to be highlighted and discussed, with the aim of summarising 
some useful information about different analytical procedures for clas-
sifying OOs, so that the OO sector can have a scientific criterion to 
decide which technique may be more interesting for categorising OOs. 

In this regard, the spectroscopic techniques (NIRs and MIRs) pre-
sented several analytical or methodological advantages compared to the 
fingerprint treatment of HS-GC-IMS signal, such as there being no need 
to weigh the samples prior to analysis or to use carrier gases (He or N2) 
or separation columns for the analyses, the great speed at analysing each 
sample, allowing the analysis of up to 10 samples per hour, or the 
simplicity of the processing and treatment of the spectral data gener-
ated. Furthermore, the main advantage of NIRs over MIRs was that there 
is no consumption of any organic solvent other than the solvents 
required in some ATR-equipped MIR spectrometers to clean the acces-
sory between loading consecutive samples. However, it would be 
necessary to consider that the features that IR instruments analyse from 
the samples are more related to the alteration degree of the samples (e.g. 
acidity, hydroperoxides, etc.) while HS-GC-IMS analyse the VOCs 
responsible for the aroma of the samples. The main methodological 
drawback of HS-GC-IMS with respect to IRs is the time needed to com-
plete the analysis of each sample, around half an hour, but this disad-
vantage is offset by having an autosampler, which allows the analyses to 
be performed continuously, without depending on the presence of a 
technician. In addition, the use of reagents or sample dissolution or 
handling are not required in HS-GC-IMS analyses. However, it must also 
be considered that these GC instruments are significantly more expen-
sive than spectrophotometers; therefore, in light of the results obtained 
here, it may be necessary to get a HS-GC-IMS if the aim is to ensure a 
high percentage of success in classifying an OO as EVOO, VOO or LOO. 
Only if the objective is to distinguish only between defective and non- 
defective - or edible and inedible - oils, an IR spectrometer (NIR / 
MIR) could also be used, in view of the results of the binary models, thus 
taking advantage of the benefits offered by these devices. All these 
technical characteristics have been collected and summarised in 
Table II, Supplementary Material. 

3.5. Misclassified samples 

A final study based on the identification of the misclassified samples 
by each technique applied in this work, revealed that 50 % of the 
samples considered in the prediction models were always correctly 

classified by the three techniques, so there was some agreement between 
analytical instruments in this regard. On the other hand, 23 % of those 
validation samples were incorrectly classified by a particular technique, 
18 % by two of them, and only 9 % (2 from 22) were classified in a 
different category by the three techniques (NIR3, MIR2 and HS-GC-IMS) 
at the same time. These classification imprecisions by the different 
techniques employed in this study can be due to the technical differences 
between instruments and analytical methods such as signal/noise ratio, 
selected spectrum range in the case of IR measurement, or alignment, 
baseline correction or weighting in the case of the HS-GC-IMS meth-
odology, among others. 

4. Conclusions 

Studies on the potential of spectroscopic techniques for the classifi-
cation of different categories of virgin olive oil are very scarce and not 
very representative of the global oil market. With this work, the po-
tential of different infrared spectroscopic techniques and, within them, 
of various analytical instruments or devices, to classify and predict OO 
samples quality was compared for the first time; as well as the advan-
tages and disadvantages that the analysis of OO samples using this 
alternative technique can pose compared to some other more wide-
spread techniques such as HS-GC-IMS. Moreover, it is also important to 
underline that the evaluation of the samples by more than one panel has 
been considered in this work, which is important in order to be ranked 
on the quality grade in a robust way. 

The results obtained shown that infrared -both near and medium- 
spectroscopy coupled to chemometric methods, presented some poten-
tial to classify or discriminate among OO samples according to their 
quality category, especially when considering binary models differen-
tiating defective and non-defective samples, or edible and non-edible 
OOs. In ternary models, however, IRs classification potential success 
was constrained to one single OO category, usually EVOO. On the other 
hand, the results showed that the effectiveness of the technique can 
strongly depend on the spectral absorption range considered, the type of 
instrument used for the analyses and its accessory equipment. In this 
way, under the experimental conditions here described, NIRs seems to 
be a more proper technique compared to MIRs, since slightly better 
EVOO classification results were achieved while the analytical meth-
odology was simpler and required less solvent consumption. Neverthe-
less, neither MIRs nor NIRs reached sample classification success as high 
as other more specific and widespread technique, such as HS-GC-IMS, 
for ternary models, although the differences were smaller in a binary 
approach. In light of these results, it is proposed to use rapid techniques 
such as IRs to carry out preliminary screenings of OO categories, but 
techniques such as HS-GC-IMS should be in charge for confirming them, 
since they provide a greater reliability to distinguish between the three 
categories of OO here considered. Furthermore, the HS-GC-IMS analyses 
the volatile compounds, which are the direct responsible of the aroma. 

Further studies should be carried out to confirm that this type of 
spectroscopic techniques could be integrated as effective methods for 
the discrimination of the quality of virgin olive oil by adding more 

Table 5 
Comparison of NIRs and MIRs best OO classification results (true positive rate, TPR) with HS-GC-IMS; both in cross-validation (CV) and prediction (Pred) for ternary 
and binary approaches.   

MIR2 NIR3 HS-GC-IMS 

Model Category TPR CV (%) TPR Pred (%) TPR CV (%) TPR Pred (%) TPR CV (%) TPR Pred (%) 

Ternary EVOO  83.75  90.00  85.00  80.00 82.50 90.00 
VOO  75.00  57.14  69.12  57.14 73.53 85.71 
LOO  84.38  50.00  71.88  80.00 75.00 80.00 

Binary EVOO-NonEVOO EVOO  82.50  90.00  86.25  75.00 85.00 90.00 
Non-EVOO  84.00  91.67  83.00  91.67 92.00 100 

Binary LOO-NonLOO LOO  87.50  70.00  68.75  80.00 100 80.00 
Non-LOO  94.60  88.24  90.54  85.29 94.60 88.24  
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samples. Moreover, from the base of this work, those additional studies 
could be focused on the application of some other robust non-separation 
techniques on OOs, such as Raman, Electrospray-Ion Mobility Spec-
trometry or Fluorescence, and the OOs classification capability of those 
techniques, instruments and methodologies compared to IRs could also 
be tested. Moreover, data fusion could be another option to be tested, 
although the advantage or disadvantage of using two or more teams 
should also be assessed. Hence, a comprehensive study of the perfor-
mance of these and other rapid techniques may provide the producers 
and other olive oil actors with the necessary information to implement 
new analytical strategies to support the panel test work. 
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