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A B S T R A C T   

Background: The elderly multi-morbid patient is at high risk of adverse outcomes with COVID-19 complications, 
and in the general population, the development of incident AF is associated with worse outcomes in such pa-
tients. There is therefore the need to identify those patients with COVID-19 who are at highest risk of developing 
incident AF. We therefore investigated incident AF risks in a large prospective population of elderly patients 
with/without incident COVID-19 cases and baseline cardiovascular/non-cardiovascular multi-morbidities. We 
used two approaches: main effect modeling and secondly, a machine-learning (ML) approach, accounting for the 
complex dynamic relationships among comorbidity variables. 
Methods: We studied a prospective elderly US cohort of 280,592 patients from medical databases in an 8-month 
investigation of with/without newly incident COVID19 cases. Incident AF outcomes were examined in rela-
tionship to diverse multi-morbid conditions, COVID-19 status and demographic variables, with ML accounting 
for the dynamic nature of changing multimorbidity risk factors. 
Results: Multi-morbidity contributed to the onset of confirmed COVID-19 cases with cognitive impairment (OR 
1.69; 95%CI 1.52–1.88), anemia (OR 1.41; 95%CI 1.32–1.50), diabetes mellitus (OR 1.35; 95%CI 1.27–1.44) and 
vascular disease (OR 1.30; 95%CI 1.21–1.39) having the highest associations. A main effect model (C-index value 
0.718) showed that COVID-19 had the highest association with incident AF cases (OR 3.12; 95%CI 2.61–3.710, 
followed by congestive heart failure (1.72; 95%CI 1.50–1.96), then coronary artery disease (OR 1.43; 95%CI 
1.27–1.60) and valvular disease (1.42; 95%CI 1.26–1.60). The ML algorithm demonstrated improved discrimi-
natory validity incrementally over the statistical main effect model (training: C-index 0.729, 95%CI 0.718–0.740; 
validation: C-index 0.704, 95%CI 0.687–0.72). Calibration of the ML based formulation was satisfactory and 
better than the main-effect model. Decision curve analysis demonstrated that the clinical utility for the ML based 
formulation was better than the ‘treat all’ strategy and the main effect model. 
Conclusion: COVID-19 status has major implications for incident AF in a cohort with diverse cardiovascular/non- 
cardiovascular multi-morbidities. Our ML approach accounting for dynamic multimorbidity changes had good 
prediction for new onset AF amongst incident COVID19 cases.   

1. Introduction 

Multi-morbidity is associated with adverse health outcomes and 
healthcare costs, especially among the elderly [1,2]. Preliminary evi-
dence suggests that multi-morbidity is associated with confirmed 
COVID-19 infections notably among the elderly with several 
co-morbidities [3–5]. Furthermore, it has been hypothesized that 
COVID-19 is associated with incident atrial fibrillation (AF) but large 

studies are lacking to test this hypothesis [6–8]. 
In light of the above, the elderly population is usually closely scru-

tinized due to (a) the staggering healthcare costs reaching in many 
countries above 70% of the national healthcare expenditures, and (b) 
the need to improve the quality of integrated care because of the pres-
ence of multi-morbid conditions. The elderly multi-morbid patient is at 
higher risk of adverse outcomes with COVID-19 complications [3–5], 
and in the general population, the development of incident AF is 

* Correspondence author at: Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool L7 8TX, United Kingdom. 
** Co-Correspondence author at: Anthem Inc., 11884 Quarterhorse Court, Cincinnati, OH 45249, USA. 

E-mail addresses: gregory.lip@liverpool.ac.uk (G.Y.H. Lip), ashraf.genaidy@anthem.com (A. Genaidy).  

Contents lists available at ScienceDirect 

European Journal of Internal Medicine 

journal homepage: www.elsevier.com/locate/ejim 

https://doi.org/10.1016/j.ejim.2021.04.023 
Received 27 March 2021; Received in revised form 20 April 2021; Accepted 22 April 2021   

mailto:gregory.lip@liverpool.ac.uk
mailto:ashraf.genaidy@anthem.com
www.sciencedirect.com/science/journal/09536205
https://www.elsevier.com/locate/ejim
https://doi.org/10.1016/j.ejim.2021.04.023
https://doi.org/10.1016/j.ejim.2021.04.023
https://doi.org/10.1016/j.ejim.2021.04.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejim.2021.04.023&domain=pdf


European Journal of Internal Medicine 91 (2021) 53–58

54

associated with worse outcomes in such patients [9]. There is therefore 
the need to identify those patients with COVID-19 who are at highest 
risk of developing incident AF. 

We therefore investigated incident AF risks in a large prospective 
population of elderly patients with/without incident COVID-19 cases 
and baseline characteristics consisting of diverse cardiovascular/non- 
cardiovascular multi-morbidities. Our aims were to show how multi- 
morbidity contributes to the onset of confirmed COVID-19 cases, and 
secondly, how COVID-19 had the highest association with incident AF 
cases. We used two approaches: main effect modeling as well as a 
machine-learning (ML) approach, accounting for the complex dynamic 
relationships among co-morbidity variables. 

2. Methods 

2.1. Cohort detailed definition and data sources 

We studied a large prospective US Medicare population over an 8- 
month period starting April 1 2020 to determine their effects on po-
tential new COVID-19 cases and subsequently, the incidence of new 
onset AF. The study population comprised of the Medicare health plan 
was a predominantly elderly population (i.e. ≥65 years) and individuals 
with disability including those in the 18–65 age span. It is financed by 
the US government and managed by an independent healthcare orga-
nization. In essence, the Medicare health plan consisted of Medicare 
Advantage and Medicare/Medicaid Plan participants and were drawn 
from different geographical areas across the US continent. 

The co-morbid history was gathered for a two-year period prior to 
the start of the study and consisted of common cardiovascular and non- 
cardiovascular multi-morbidities. Only patients without a history of AF 
and COVID-19 prior to April 1, 2020 were included in the study. 
Furthermore, pharmacy claims were analyzed to ensure that patients do 
not have a history for oral anticoagulants (warfarin, direct oral antico-
agulants (DOACs)) and rhythm control medications (i.e., amiodarone, 
disopyramide, dofetilide, dronedarone, flecainide, mexiletine, procai-
namide, propafenone, quinidine gluconate, quinidine sulfate) typically 
used in AF, with previously noted exceptions for AF cases [10]. 

The study cohort was gathered from medical claims databases during 
the April 1 2018 – Nov 30 2020 time window based on primary and 
secondary ICD10 codes. Each participant had to contribute at least 32 
months of medical and pharmacy coverage during the study and records 
in the medical database (i.e., eight months for the prospective cohort 
investigation and 24 months of prior medical history for non-incidence 
AF/COVID-19 conditions). IRB approval was not required for the 
extraction of data from the claim databases; however, compliance with 
US privacy laws and Company governance is required for use of data. 

2.2. Parameter identification and definition 

At baseline (Day 0, upon entry into the study on April 1 2020), 
subjects without any history of COVID-19 and AF conditions for two 
years were enrolled over an 8-month period with two prospective co-
horts defined as follows: (a) cohort 1 – incident (new) COVID-19 cases 
and followed up for incidence of AF (at least one day after occurrence of 
a COVID-19 case); (2) cohort 2 – non-COVID-19 cases with or without 
developing incident AF cases (i.e., without subsequent COVID-19 cases 
in later days or simultaneous COVID-19 cases on the same day). 

The co-morbid history was identified on the basis of ICD10 codes 
(please see supplemental table S1 for ICD 10 codes), including: 
congestive heart failure, hypertension, diabetes mellitus, stroke, 
vascular disease, valvular disease, coronary artery disease, sleep apnea, 
chronic kidney disease, chronic obstructive pulmonary disease/bron-
chiectasis, major bleeding, cognitive impairment, lipid disorders, liver 
disease, anemia, depression, spondylosis/intervertebral discs, and 
osteoarthritis. 

An incident COVID-19 case was determined as the first case upon 

entry into the study using the US CDC code of ‘U071’. Confirmed cases of 
COVID-19 infections via the use of the ICD-10 code “U071” was rec-
ommended by the US Centers for Disease Control as of April 1 2020. In 
this respect, a confirmed diagnosis of COVID-19 was issued as docu-
mented by the provider, documentation of a positive COVID-19 test 
result, or a presumptive positive COVID-19 test result. Furthermore, 
“confirmation” does not require documentation of the type of test per-
formed, or disease severity; the provider’s documentation that the in-
dividual has COVID-19 was sufficient for the diagnosis. 

An incident AF outcome was defined as occurring by at least 1 day 
after the development of a COVID-19 condition or upon entry into the 
study in the absence of any developed COVID-19 case. It was defined in 
terms of ICD 10 codes as reported in supplemental table S1. 

The study population should not have had any history of AF or 
COVID-19 during the 2-year baseline period as defined in terms of ICD10 
codes (see supplemental table S1) and anticoagulant/rhythm control 
medications for AF (see supplemental tables S2 and S3). Two de-
mographic variables were utilized in this investigation, namely, gender 
and age. Age was defined as either a continuous variable or in 5 cate-
gories (18–45, 45–55, 55–65, 65–75, 75–90 years). 

2.3. Quantitative analyses 

The quantitative analysis consisted of descriptive statistics and 
model prediction using inferential statistics and machine learning 
computations. The descriptive and inferential analyses were performed 
using the Statistical Analysis Software (SAS) Enterprise and the ML 
computations were conducted using the SAS Enterprise Miner. 

The descriptive analyses included identification of member counts 
(percent) for demographic parameters, co-morbid history, and incident 
COVID-19 and AF conditions (with the exception of mean (SD) for age as 
a continuous variable). The outcome (i.e., COVID-19 or AF) and input (i. 
e., co-morbid history) variables had binary representations. 

2.4. Statistical analysis 

Statistical analyses were conducted using main effects with COVID- 
19 or AF as an outcome, with logistic regression modeling using the 
SAS Enterprise software. Prediction modeling was pursued using the 
Enterprise SAS Miner software for complex relationships between AF as 
a binary outcome and comorbid history / COVID-19 status / de-
mographic variables. All ML based modeling accounted for dynamic 
changes in risk including newly acquired risk factors, hence consisting of 
complex interactions among the comorbid condition history as well as 
incident conditions such as COVID-19 conditions. The ML based logistic 
regression algorithm included main effects, interaction terms and 
polynomial effects, with the model selection based on the stepwise 
procedures. Several polynomial terms were included in the ML 
formulation. 

Model validation was based on calibration, discrimination, and 
clinical utility. Each model was trained on 67% of the data, with the 
remaining 33% data used for external validation. In this respect, the 
development and validation samples were extracted at random. 
Discriminant validity was assessed using C-indices (area under the 
curve) for both the development and validation samples, separately. In 
addition, clinical utility was assessed using decision curve analysis 
(DCA). 

3. Results 

3.1. Characteristics of cohort included in the study 

The total Medicare population was 364,348 persons with 347,976 
individuals contributing data to the medical databases. The final cohort 
included in this study consisted of 280,592 persons (mean age (SD) 72.5 
(9.9) years; 58.8% female) (Table 1). There was a diversified multi- 
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morbid history with hypertension and lipid disorders having the highest 
prevalence, >65%, followed by spondylosis/ intervertebral disc and 
osteoarthritis, with prevalence >30%, then prevalence in the range of 
15–20% for diabetes, coronary artery disease, anemia, and COPD. Other 
conditions had lower prevalence rates as shown in Table 1. 

The incidence of AF in the new COVID-19 cases was 2.5% compared 
to 0.6% in the non-COVID-19 cases. The crude incidence frequency ratio 
for incident AF cases was 3.87 in COVID-19 cases. As shown below, this 
ratio drops to 3.0 after accounting for confounders. 

3.2. Main effect modeling 

With COVID-19 as an outcome variable, the strongest associations (p 
< 0.0001) were found for congestive heart failure, hypertension, dia-
betes, stroke, vascular disease, chronic obstructive pulmonary disease/ 
bronchiectasis, cognitive impairment, anemia, depression, and spon-
dylosis / intervertebral discs (Table 2). The highest odds ratios were 
obtained for cognitive impairment (OR 1.69 95%CI 1.52-1.88) and 
anemia (1.41 95%CI 1.32-1.50), both non-cardiovascular morbidities. 

With (new onset) AF as an outcome variable, main effect modeling 
demonstrated that the strongest associations (p < 0.0001) were obtained 
with reference to COVID-19 status cases (OR 3.12 95%CI 2.61-3.710), 
followed by congestive heart failure (1.72 95%CI 1.50-1.96), then cor-
onary artery disease (OR 1.43 95%CI 1.27-1.60) and valvular disease 
(1.42 95%CI 1.26-1.60). This was followed by chronic kidney disease, 
chronic obstructive pulmonary disease / bronchiectasis, anemia, lipid 
disorders, gender and age as a continuous variable. Females had lower 
risk relative to males for incident AF (OR 0.67 95%CI 0.61-0.74) 
(Table 3). 

3.3. Machine learning algorithm 

For the training data, the c index value for the ML-based logistic 
regression algorithm was 0.729 (95%CI 0.718-0.740) and was incre-
mentally higher than that obtained for the main effect model (C-index 
0.718). Similar results were obtained for the externally validation cohort 
(0.704, 95%CI 687-0.721). 

Table 4 depicts the complex relationships between the incident AF 
outcome and model features in terms of main effect, interactions and 
polynomial effects. The top three independent effects of co-morbid 
conditions in the main effect model (Table 3) were COVID-19 status, 
congestive heart failure and coronary artery disease, which were the 
only independent effects found in the ML based logistic regression 
formulation (Table 4). COVID-19 status, congestive heart failure and 
coronary artery disease also had interaction effects with other co-morbid 
conditions or demographic variables. Age was significant both as a 
categorical variable in interaction terms and as a continuous variable in 
quadratic terms. 

In Fig. 1, the clinical utility of main effect model and ML based lo-
gistic regression algorithm had better clinical utility in terms of net 
benefit than the two treatment strategies (i.e., treat all or none). In this 
respect, the “treat all” (i.e., provide all patients with AF-related treat-
ments)” or “treat none” (i.e., provide no treatments to any patients) 
interventions are two default strategies where patients are managed 
without the use of a model. With the above in mind, the net benefit 
measure reflects the number of true positives after being adjusted for 
any potential false positives. A model is usually useful if it has a net 
benefit that is better than the default strategies. As evident from Fig. 1, 
the developed models provide better net benefit values than the “treat 

Table 1 
Baseline characteristics for total cohort. Values are numbers (%) unless stated 
otherwise/  

Baseline characteristic Total Cohort 

Age group (years)  
18-45 6481 (2.3) 
45-55 10094 (3.6) 
55-65 27242 (9.7) 
65-75 120854 (43.1) 
75-90 115921 (41.3)   

Age (years), mean (SD) 72.5 (9.9)   

Gender  
Males 115629 (41.2) 
Females 164963 (58.8)   

Total 280592 (100.0)   

Co-morbid history  
Congestive heart failure 18184 (6.5) 
Hypertension 195769 (69.8) 
Diabetes mellitus 56929 (20.3) 
Stroke 15976 (5.7) 
Vascular disease 33077 (11.8) 
Valvular disease 28318 (10.1) 
Coronary artery disease 45812 (16.3) 
Chronic sleep apnea 6184 (2.2) 
Chronic kidney disease 34593 (12.3) 
Chronic pulmonary obstructive disease /bronchictasis 52339 (18.7) 
Major bleeding 20531 (7.3) 
Cognitive impairment 9999 (3.6) 
Lipid disorders 190681 (68.0) 
Liver disease 27923 (10.0) 
Anemia 51021 (18.2) 
Depression 40121 (14.3) 
Spondylosis and intervertebral discs 105504 (37.6) 
Osteoarthritis 86530 (30.8)  

Table 2 
Effects of baseline characteristics and demographic variables on COVID-19 
outcomes using main effect model.     

95% confidence 
interval  

Effect Levels Point 
estimate 

Lower 
limit 

Upper 
limit 

Pr >
ChiSq 

Congestive heart 
failure 

(1 vs 0) 1.21 1.11 1.33 <.0001 

Hypertension (1 vs 0) 1.17 1.09 1.25 <.0001 
Diabetes mellitus (1 vs 0) 1.35 1.27 1.44 <.0001 
Stroke (1 vs 0) 1.22 1.10 1.34 <.0001 
Vascular disease (1 vs 0) 1.30 1.21 1.39 <.0001 
Chronic kidney 

disease 
(1 vs 0) 1.11 1.03 1.20 0.0049 

Chronic pulmonary 
obstructive disease 
/bronchictasis 

(1 vs 0) 1.22 1.14 1.30 <.0001 

Major bleeding (1 vs 0) 1.13 1.03 1.23 0.0093 
Cognitive impairment (1 vs 0) 1.69 1.52 1.88 <.0001 
Liver disease (1 vs 0) 1.12 1.04 1.22 0.0038 
Anemia (1 vs 0) 1.41 1.32 1.50 <.0001 
Depression (1 vs 0) 1.25 1.17 1.35 <.0001 
Spondylosis and 

intervertebral discs 
(1 vs 0) 1.25 1.18 1.32 <.0001 

Osteoarthritis (1 vs 0) 1.09 1.03 1.16 0.0032 
Age group 75-90 

OR 65- 
75 

0.96 0.93 0.99 0.004  

OR 55- 
65 OR 
45-55      
VS 18- 
45           

Note      
1 - presence of 

condition      
0 - absence of 

conditions      
age groups - in years       
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all” strategy. 
Above the probability threshold of 1.0%, the ML formulation pro-

vided better clinical utility than the main effect model. At a probability 
threshold of 1.5%, the net true positive AF events were equal to 85.5 
events for the ML based logistic regression and higher than those for the 
main effect model (58.9 net events). In addition, the sensitivity and 
specificity were equal to 29.8% and 91.2%, respectively for the ML 
algorithm. 

3.4. Model calibration 

From calibration standpoint, the main effect model and machine 
learning algorithm (fig S1a and S1b) were well calibrated in the lower 
segment of predicted probability (0–5%). Beyond this probability range, 
the main effect model did not seem well calibrated due to perhaps the 
absence of adequate number of parameters (in other words, mis-
specification error in the 5% to 100% probability range) resulting in risk 
over-estimation. The ML based algorithm overestimated the risk beyond 
5% (beyond the range of operation) but had better calibration than that 
obtained for the main effect model. 

4. Discussion 

In this large analysis of elderly patients free of AF and COVID-19 at 
baseline, but followed up for new COVID-19 cases, we developed a ML 
based logistic regression algorithm for predicting incident AF account-
ing for dynamic changes in risk including newly acquired risk factors. 
Second, DCA showed the ML based logistic regression algorithm had 
better clinical utility in terms of net benefit than the two treatment 
strategies (i.e., treat all or none). 

The ML analyses demonstrated that COVID-19 status had the stron-
gest independent association with incident AF relative to the traditional 
cardiovascular co-morbidities including congestive heart failure and 
coronary artery disease. This was also evident in the main effect 

analyses. In the absence of COVID-19, the presence of congestive heart 
failure and coronary disease are independent cardiovascular risk factors 
leading to incident AF conditions; however, the presence of incident 
COVID-19 infection changed the importance of classic cardiovascular 
risk factors feeding into the development of new onset AF. There were 
also significant and dynamic interactions between the presence of 
incident COVID-19 infections and co-morbid history including anemia, 
chronic obstructive pulmonary disease and vascular disease. 

In the main effect model, cardiovascular and non-cardiovascular 

Table 3 
Results of main effect model for incident atrial fibrillation outcome using 
baseline characteristics and covid status     

95% confidence 
interval  

Effect Levels Point 
estimate 

Lower 
limit 

Upper 
limit 

Pr > 
ChiSq 

Covid-19 status (1 vs 0) 3.12 2.61 3.74 <.0001 
Congestive heart 

failure 
(1 vs 0) 1.72 1.50 1.96 <.0001 

Hypertension (1 vs 0) 1.26 1.11 1.43 0.0005 
Stroke (1 vs 0) 1.23 1.06 1.43 0.0076 
Vascular disease (1 vs 0) 1.21 1.07 1.37 0.0018 
Valvular disease (1 vs 0) 1.42 1.26 1.60 <.0001 
Coronary artery 

disease 
(1 vs 0) 1.43 1.27 1.60 <.0001 

Chronic kidney 
disease 

(1 vs 0) 1.28 1.14 1.44 <.0001 

Chronic pulmonary 
obstructive disease 
/bronchictasis 

(1 vs 0) 1.29 1.16 1.43 <.0001 

Anemia (1 vs 0) 1.27 1.14 1.41 <.0001 
Depression (1 vs 0) 1.16 1.02 1.32 0.0228 
Lipid disorders (1 vs 0) 0.79 0.71 0.89 <.0001 
Spondylosis and 

intervertebral discs 
(1 vs 0) 1.15 1.04 1.26 0.0045 

Gender (1 vs 0) 0.67 0.61 0.74 <.0001 
Age Interval 

in years 
1.05 1.05 1.06 <.0001       

Note      
1 - presence of 

condition      
0 - absence of 

conditions       

Table 4 
Results of machine learning based algorithm for incident atrial fibrillation 
outcome  

Effect Levels DF Chi- 
Square 

Pr>ChiSq Coefficient 
Estimate 

Intercept  1 947.09 <0.0001 -5.560000 
CAD 1 1 8.55 0.0035 0.360900 
CHF 1 1 41.12 <0.0001 0.357200 
covid_stts 1 1 43.21 <0.0001 0.420100 
ANEMIA*HYP 1 1 1 7.36 0.0067 0.115300 
ANEMIA*MBldg 1 1 1 6.49 0.0108 0.113000 
ANEMIA*covid_stts 1 1 1 10.27 0.0014 -0.150100 
CAD*LIPDIS 1 1 1 5.82 0.0158 0.016800 
CAD*age_group  4 12.79 0.0123   

1 4 1 7.87 0.005 -0.343200  
1 3 1 1.79 0.1815 -0.166700  
1 2 1 0.48 0.4891 -0.107400  
1 1 1 0.04 0.8325 -0.047800 

CHF*HYP 1 1 1 15.82 <0.0001 -0.183300 
CHF*VALVD 1 1 1 5.78 0.0162 -0.093500 
CKD*age_group  4 28.38 <0.0001   

1 4 1 1.91 0.1670 0.058600  
1 3 1 18.82 <0.0001 0.256900  
1 2 1 3.37 0.0664 0.236100  
1 1 1 5.56 0.0184 -0.537000 

COGI*LIPDIS 1 1 1 9.72 0.0018 0.138500 
COGI*SPOND 1 1 1 7.16 0.0074 -0.077900 
COPD*MBldg 1 1 1 4.31 0.0378 -0.085700 
COPD*covid_stts 1 1 1 4.71 0.0300 -0.092700 
COPD*gndr 1 1 1 7.15 0.0075 0.081200 
DEP*VALVD 1 1 1 8.55 0.0034 -0.105700 
LIPDIS*MBldg 1 1 1 11.75 0.0006 -0.148600 
MBldg*gndr 1 1 1 30.71 <0.0001 0.169800 
STROKE*VALVD 1 1 1 7.87 0.0050 -0.110600 
VD*covid_stts 1 1 1 11.71 0.0006 -0.123700 
age*age  1 124.95 <0.0001 0.000304       

Note:      
CAD - coronary artery 

disease      
CHF - congestive heart 

failure      
COVID_STTS - presence/absence of covid-19 

condition   
HYP - hypertension      
CKD - chronic kidney 

disease      
COGI - cognitive 

impairment      
LIPDIS - lipid disorders      
SPOND - spondylosis and intervertebral 

discs    
COPD - chronic pulmonary obstructive disease /bronchictasis  
DEP - depression      
GNDR - gender (female=1, 

male=0)     
VALVD - valvular 

disease      
MBLDG - major 

bleeding      
VD - vascular disease      
Age - continuous variable in years     
Age group in years - 0 for 18 to 45, 1 for 45 to 55, 2 for 55 to 65, 3 for 65 60 75, 4 for 75 

to 90 
Each of the comorbid conditions is labeled as 1 for presence of condition and 0 for 

absence  

G.Y.H. Lip et al.                                                                                                                                                                                                                                 



European Journal of Internal Medicine 91 (2021) 53–58

57

multi-morbidities had significant roles in the spectrum of AF disease 
complexity in addition to the emergent COVID-19 as a risk factor. As 
expected, multi-morbidity played an important role in increasing the 
risk of COVID-19 infection[3–5]. Demographic variables continued to 
demonstrate their importance as risk factors associated with the inci-
dence of AF. Age implicated its effects in non-linear terms using both (a) 
quadratic effects when modelling age as a continuous variables; and (b) 
interactive terms (with coronary artery disease and chronic kidney 
disease) upon the use of age as a categorical variable. Gender showed its 
influence in interactive terms with the co-morbid history (chronic 
obstructive pulmonary disease, major bleeding). 

Our findings are important given the worse prognosis amongst 
COVID-19 patients with AF, with a higher risk of thrombosis and mor-
tality when compared to AF patients without COVID-19 patients [11]. 
Our ML prediction could be incorporated into telehealth approaches to 
monitor patients following their COVID-19 diagnosis, for the onset of 
incident AF [12]; an important consideration given that many COVID-19 
infections could be asymptomatic [13]. Given the increasing focus on 
integrated care management of patients with AF [14], and the need for 
thromboprophylaxis in such patients [15], novel ML approaches could 
facilitate structured management and follow-up, especially since risk 
profiles change in a dynamic manner over time [16–18]. Such a struc-
tured approach to holistic AF care, including proactive risk evaluation, 
has been shown to be associated with improved clinical outcomes, 
especially with a reduction in hospitalisations and bleeding events 
[19–21]. 

4.1. Limitations 

Our study is limited by its observational design and shorter follow-up 
period. As with observational cohorts the possibility of residual con-
founding remains. One should keep in mind the potential bias emerging 
due to healthcare services concentrating on the treatment of COVID-19 
cases and possibly leading to the cancellation of routine services, such as 
office visits for established chronic conditions. This extent of possible 
bias is not known but should be kept in mind. Additional research would 

be required to assess the implications of these results on integrated care 
management for such AF patients [8]. Finally, the results of this study 
are only applicable for the incident AF cases for which the prior history 
of anticoagulants and heart rhythm control were applied as exclusion 
criteria for this purpose. Therefore, the effects of prior use of anticoag-
ulants cannot be ascertained from this study. 

5. Conclusions 

COVID-19 status had the strongest independent association with 
incident AF, compared to the traditional cardiovascular co-morbidities 
including congestive heart failure and coronary artery disease. An ML 
approach elicited the complex dynamic relations which lead to the 
incidence of AF and in general showed better performance than the 
statistical main-effect model in terms of discriminatory validity, clinical 
utility as well as model calibration. 
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Fig. 1. Decision curve analysis for main effect model (ME), machine learning based logistic regression formulation (ML_LR) and treat all strategy.  
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