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bacteria
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Abstract 

Objective:  Our immediate objective is to test the data-suggested possibility that in-agarose gel bacterial propaga-
tion causes gel fiber dislocation and alteration of cell distribution. We also test the further effect of lowering water 
activity. We perform these tests with both Gram-negative and Gram-positive bacteria. Data are obtained via electron 
microscopy of thin sections, which provides the first images of both bacteria and gel fibers in gel-supported bacterial 
lawns. The long-term objective is analysis of the effects of in-gel propagation on the DNA packaging of phages.

Results:  We find that agarose gel-supported cells in lawns of Escherichia coli and Lysinibacillus (1) are primarily in 
clusters that increase in size with time and are surrounded by gel fibers, and (2) sometimes undergo gel-induced, 
post-duplication rotation and translation. Bacterial growth-induced dislocation of gel fibers is observed. One reason 
for clustering is that clustering promotes growth by increasing the growth-derived force applied to the gel fibers. 
Reactive force exerted by gel on cells explains cell movement. Finally, addition to growth medium of 0.94 M sucrose 
causes cluster-associated E. coli cells to become more densely packed and polymorphic. Shape is determined, in part, 
by neighboring cells, a novel observation to our knowledge.
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Introduction
Bacterial cells propagate in a polymer gel when in either 
(1) a lawn for plaque assay of phages (recent references 
[1, 2]) or (2) a biofilm [3–5]. But, the supporting gel’s 
influence on the cells is not known. Agar gels are typically 
used [1, 2], although recent studies have shown that poly-
acrylamide gels can also be used [6]. Analysis is optimally 
done with procedure, such as used here, that reveals both 
cells and gel fibers.

In theory, bacterial propagation in an agarose gel is 
constrained by agarose fibers, which are rigid to thermal 
motion [7]. Indeed, if these fibers are unbroken and rigid 
to bacterial motion, in-gel bacteria could not duplicate 
when the diameter of the gel’s effective pore (2 × PE) is 
smaller than bacterial cell dimensions. In liquid media, 
Escherichia coli has diameter of ~ 1000 nm and length of 

2000–5000 nm [8]. Studies of gel electrophoretic sieving 
yield a smaller 2 × PE of 462 nm for 0.6% underivatized 
agarose; PE decreases as agarose concentration increases 
[9]. But, here we propagate E. coli in 0.6% agarose gels. 
Also, elongation of single E. coli cells is observed by light 
microscopy in (1) 1% hydroxyethyl agarose gels [10] 
(PE = 113 nm [9]) and (2) 8% underivatized agarose gels 
[11] (2  ×  PE < 60  nm [9]). Tryptone, as used in media 
here, combines with bacteria to increase gel stiffness [10].

In-gel propagability of E. coli suggests, therefore, that 
cell growth-induced dislocation of gel fibers occurs. 
However, no observation has, to our knowledge, been 
made of gel fibers after in-gel bacterial duplication. Our 
interest originated during analysis of in-plaque phage 
DNA packaging. Here, we use electron microscopy (EM) 
of thin sections to achieve this observation for bacterial 
propagation in agarose gels; gel swelling during section-
ing prevents this analysis of polyacrylamide gels [12].
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Main text
Methods
Bacterial strains
Escherichia coli BB/1 (host for phages T3 and T7 [13]) 
and a Lysinibacillus are used here as Gram-negative and 
Gram-positive bacteria, respectively. The Lysinibacillus 
is host for phage G (Lysinibacillus PGH). It was typed 
via commercial sequencing and informatic analysis (J.A. 
Thomas, W. Jiang and P. Serwer, unpublished). It had pre-
viously been mis-identified as Bacillus megaterium PGH 
[14], which, in contrast to observations made here, has 
diameter 1.5× larger than that of E. coli [15].

Escherichia coli BB/1 was propagated in 2  ×  LB 
medium: 20  g tryptone, 10  g yeast extract, 5  g NaCl in 
1.0  l of Milli-Q filtered water (Millipore/Sigma). A liq-
uid culture was propagated to stationary phase at 30  °C 
just before use. The Lysinibacillus was thusly propagated 
in medium with 5 g KCl, 10 g Bacto tryptone per ml of 
water with sterile 0.001 M CaCl2 subsequently added.

In‑gel propagation
Gels for in-gel propagation were prepared by autoclav-
ing and dissolving solid Seakem Gold (Lonza) agarose in 
a medium specified above. This solution was equilibrated 
at 50 °C. Then, 3 drops (Lysinibacillus) or 5 drops (E. coli) 
of bacterial culture were mixed with 3.5 ml of the molten 
agarose. This mixture was poured into a Petri plate over 
a 1.0% bottom layer agar gel in 10 g Bacto tryptone, 5 g 
NaCl in 1.0 l of water, with sterile 0.001 M CaCl2 added 
for Lysinibacillus. After room temperature gelation, incu-
bation was at 30 °C for the time indicated.

Electron microscopy
A 6–9  mm segment of agarose gel-supported bacterial 
lawn was excised at the time indicated. The lawn was 
added to 0.5 ml of 4% formaldehyde, 1% glutaraldehyde, 
0.11 M sodium phosphate, pH 7.3. After 2 h at room tem-
perature, the gel was (1) washed for 5  min in 1.5  ml of 
0.1  M sodium phosphate, pH 7.3 and (2) post-fixed for 
30 min, at room temperature, in 1% osmium tetroxide in 
Zetterqvist’s buffer [16].

The specimen was then dehydrated in 1.5 ml of the fol-
lowing (in parentheses are number of changes/time [min] 
each): 70% ethanol (1/10), 95% ethanol (1/10), 100% etha-
nol (2/10) and 100% propylene oxide (2/10). Next, Epon 
812, from Polysciences, was vacuum-infiltrated at room 
temperature in (1) a 50:50 mixture of resin with propyl-
ene oxide for 30 min, followed by (2) undiluted resin for 
30 min. Finally, the resin was polymerized at 85 °C over-
night, in a flat-embedding BEEM capsule.

An embedded gel was thin-sectioned with a Leica 
EM UC6 microtome and diamond knife. Sections were 

adhered to a 150-mesh copper grid, after color-selec-
tion [17] for ~ 100  nm thickness. Sections were stained 
with 7% uranyl acetate for 30  s, followed by Reynold’s 
lead citrate [18] for 20  s both in a microwave oven 
(0.035 W cm−3).

EM was performed with a JEOL JEM-1400 electron 
microscope. Images were recorded with an AMT image 
capture engine Version: 7. Boxed regions in figures were 
contrast enhanced.

Results
Distribution of cells
EM revealed that most cells (82% of 638 randomly 
selected) of a 16  h, 30  °C-incubated E. coli lawn were 
clustered (Fig.  1a). Clusters had 8–80 bacteria (average, 
30, in 19 randomly selected clusters) with surrounding, 
inter-cluster, bacteria-free regions larger than clusters. 
The latter regions always had fibers indistinguishable 
from those previously seen [19] in agarose gels. These 
fibers (1) were best seen in higher-magnification micro-
graphs (Fig. 1b; boxed region) and (2) indicated that gel 
breakage was not the source of the cell-free space.

The clusters were, in some locations, surrounded by 
individual cells (arrowheads in Fig. 1a, b). The latter could 

Fig. 1  Bacterial clusters after in-gel propagation. EM of a thin section 
is shown after incubation in a 0.6% agarose gel of a E. coli for 16 h, 
b Lysinibacillus for 16 h, c E. coli for 72 h and d Lysinibacillus for 32 h. 
Magnification bar lengths are in nm
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have resulted from (1) presence in a cluster that included 
cells not in the section, (2) post-replication migration 
away from a cluster and (3) non-replication.

Three characteristics of the clustering increased when 
the time of incubation was increased to 72 h: (1) percent-
age of cells cluster-associated (85–95%, depending on 
field), (2) number of cells per cluster (100–400) and (3) 
average compactness of the clusters. In Fig. 1c, a densely 
packed cluster at bottom left appears to be merging with 
a less densely packed cluster at bottom right. The result 
was indistinguishable for Lysinibacillus except that the 
larger clusters appeared earlier (32 h: Fig. 1d).

By EM, Lysinibacillus and E. coli cells were 550–730 nm 
wide and 2000–5000 nm long. This width is smaller than 
the 1000 nm obtained by light microscopy for E. coli in 
liquid culture [8], perhaps because of cell shrinkage dur-
ing dehydration (“Methods” section).

Effects of clustered cells on gel fibers
For 72-h E. coli clusters in a 0.6% agarose gel, the den-
sity of inter-cell fibers varied from near-zero (arrowheads 
#1 in Fig. 2a) to density (arrowheads #2 in Fig. 2a) higher 
than the fiber density just outside of the cluster. Thus, 
within a cluster, growing cells appear to have dislocated 
fibers.

More dramatic evidence of gel fiber dislocation was 
finding of agarose fibers in bundles at the periphery 
(only) of E. coli clusters in a 0.6% gel. Arrowheads #3 
indicate these bundles in Fig.  2a. All observed fibers 
were assumed to be agarose because no fibers were seen 
emanating from most regions of cell surfaces. Thus, the 
assumption is that bundling was caused by gel compres-
sion caused by cluster growth caused, in turn, by growth 

of cells within the cluster. This compression implied reac-
tive force on compression-generating cells (Newton’s 
Second Law).

Results with Lysinibacillus lawns in a 0.8% gel also led 
to the conclusion of fiber dislocation by growing cells. 
Comparable variability of fiber density was seen (Fig. 2b). 
Sometimes, both cell and relatively concentrated gel fib-
ers were superimposed. Cell growth apparently caused 
these fibers to wrap around the cell (arrowheads #1 in 
Fig. 3b).

Some aspects of cell position and orientation within a cluster
Non-movement of cells after duplication in-gel should 
result in end-to-end chains of average length more than 
four cells. The reasons are that (1) progeny cells are 
arranged end-to-end immediately post-duplication [20] 
and (2) on average, more than two duplications occurred 
in the time of incubation. EM did sometimes reveal lon-
gitudinally sectioned chains two cells in length (Fig.  1c, 
arrowheads). But, longer chains were seen at a rate ~ 1% 
of the number of chains two-long. Thus, movement of 
cells usually occurred after duplication.

Additional evidence of movement was that the 32-h 
Lysinibacillus and the 72-h E. coli clusters often had a 
sub-cluster array of 10–50 neighboring cells transversely 
sectioned, as seen in Fig. 1c for E. coli. These arrays had 
to be generated by bacterial motion because propagation 

Fig. 2  Dislocation of gel fibers. Dislocation of agarose fibers is 
observed in thin sections of a cluster of a E. coli grown for 72 h in a 
0.6% agarose gel and b Lysinibacillus grown for 32 h in a 0.8% agarose 
gel (spores were seen in Lysinibacilli; arrowheads #2). Magnification 
bar length is in nm

Fig. 3  Effects of adding 0.94 M sucrose to the growth medium. 
Shape variability of cluster-associated E. coli cells is seen in a 
thin section of cells propagated for 48 h in a 0.6% agarose gel. 
Magnification bar length is in nm
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of inoculum-contained cellular aggregates did not cause 
them. Phase contrast microscopy revealed that aggrega-
tion was absent in the inoculum.

Sucrose in the growth medium: deviations of cell shape
We also performed EM of E. coli after in-gel propagation 
in medium with water activity (aw) lowered by inclusion of 
0.94 M sucrose (aw = 0.97 [21]). Some phage T3 mutants 
have displayed an informative phenotype in this medium 
[13]. Biofilms were sometimes favored by lowered aw 
(cystic fibrosis-generating biofilms, for example [3]).

In this lowered-aw medium, cell clustering was accom-
panied by cell shape polymorphism never observed in 
unsupplemented medium. After 48-h incubation, most 
cells lost their rod shape (Fig. 3). Others may have been 
shape-altered, but not sectioned in a plane that revealed 
altered shape. The shape appeared not to be pre-deter-
mined, but to be controlled, in part, by volume exclusion 
of neighboring cells.

Discussion
In‑gel distribution of cells of a lawn
The observed cell clustering must have explanation based 
on the surrounding gel fibers. The reason is that cluster-
inhibiting competition for nutrients and oxygen increases 
as clusters become larger and more compact.

At least two possible gel-derived, cluster-encourag-
ing effects are suggested by our observation that gel 
fiber dislocation accompanies bacterial growth (Fig.  2a, 
b). The first occurs via (1) variable local gel strength 
and (2) bacterial growth rate that increases as local gel 
strength decreases. The asymmetric shape of some clus-
ters (Fig. 1a, b) is explained by (1) and (2), together with 
asymmetric zones of local gel weakness.

The second possible cluster-encouraging effect is bac-
terial growth-dependent force that (1) is exerted by clus-
ters against gel fibers and (2) increases as cluster size and 
density increase. This force would promote additional 
cluster-associated bacterial growth.

A clustering-amplified force might occur via combin-
ing of forces generated by bacteria throughout the cluster 
and/or inhibition of growth at a cluster surface. In either 
case, clustered cells are force-biased to outgrow cells that 
are either un-clustered or in smaller clusters.

For completeness, we note the (untested) possibility 
that clustering is further promoted by cellular secretions. 
This possibility includes improved production and use of 
growth factors via specialization and cross-feeding.

The observed side-by-side clustering is impossible via 
cell duplication without further translational and rota-
tional cell movement. The presumed driver is reactive 
force exerted by dislocated gel fibers on bacterial cells.

In‑gel changes in cell shape at lowered water activity
The observation of sucrose-induced, neighboring cell-
controlled shape distortion in Fig. 3 is, to our knowledge, 
the first such observation. We do not have evidence of 
mechanistic details. We hypothesize that neighboring 
cells control shape because the sucrose over-rides mech-
anisms for specifying rod-like shape, possibly by increas-
ing intracellular pressure.

Consequences for understanding both in‑gel phage 
propagation and biofilms
The clustering observed here renders certain that phages 
T3, T7 and G propagate in conditions that vary, when in 
laboratory-generated, agarose (and presumably agar) gel-
supported bacterial lawns. Nutrient concentrations will 
vary with position in and near clusters. In addition, cells 
will experience a variable gel fiber-derived pressure.

Previous studies have considered the following biofilm-
generating factors: (1) characteristics of bacterial attach-
ment surfaces [22], (2) availability and type of nutrients 
[23], (3) availability of oxygen [24], (4) water flow [25], 
(5) electrical activity of cells [26] and (6) quorum-sensing 
of cells [22]. The data presented here implicate cluster-
ing not, to our knowledge, a factor previously consid-
ered. Clustering would cause biofilm-associated bacterial 
strains to be mixed primarily as clusters, not single cells.

Limitations

1.	 We have not repeated the analysis performed here 
with biofilms.

2.	 Although the fibers in our images do not appear to 
emanate from bacterial cells and look like agarose 
fibers, a chance exists that some of them are secreted 
by the cells.

3.	 The levels of cluster-associated nutrients and oxygen 
have not been measured.
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