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Lung cancer is one of the leading causes of cancer mortality worldwide. The main types of lung cancer are small cell lung cancer
(SCLC) and nonsmall cell lung cancer (NSCLC). In this work, a computational method was proposed for identifying lung-cancer-
related genes with a shortest path approach in a protein-protein interaction (PPI) network. Based on the PPI data from STRING,
a weighted PPI network was constructed. 54 NSCLC- and 84 SCLC-related genes were retrieved from associated KEGG pathways.
Then the shortest paths between each pair of these 54 NSCLC genes and 84 SCLC genes were obtained with Dijkstra’s algorithm.
Finally, all the genes on the shortest paths were extracted, and 25 and 38 shortest genes with a permutation𝑃 value less than 0.05 for
NSCLC and SCLCwere selected for further analysis. Some of the shortest path genes have been reported to be related to lung cancer.
Intriguingly, the candidate genes we identified from the PPI network contained more cancer genes than those identified from the
gene expression profiles. Furthermore, these genes possessed more functional similarity with the known cancer genes than those
identified from the gene expression profiles.This study proved the efficiency of the proposedmethod and showed promising results.

1. Introduction

Lung cancer is one of the leading causes of cancer mortality
worldwide [1]. Two main types of lung cancer are non-small
cell lung cancer (NSCLC), which accounts for 80%–85%, and
small cell lung cancer (SCLC), which accounts for around
20% of all cases. However, the SCLC has an extraordinarily
high degree of metastasis and a strong association with
smoking [2]. Diagnosis and treatment at the early stage of the
disease process could reduce fatalities and increase the prob-
ability of disease-free survival. Therefore, it is meaningful

to screen lung-cancer-related genes that could be used as
prognostic factors or to help elucidate the mechanism of the
disease.

Recently, as high-throughput biotechnologies develop
rapidly, numerous biological data have been generated from
processes such as protein complex, yeast two-hybrid sys-
tems, and gene expression profiles. These data are useful
resources for understanding and deducing gene function. So
far, protein-protein interaction (PPI) data has been widely
utilized to annotate and predict the gene function assuming
that interaction proteins possess the similar or identical
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functions and thusmayparticipate in the samepathways.This
so-called “guilt by association” rule was initially proposed by
Nabieva et al. [3]. This rule could also be utilized to identify
novel cancer-related genes.

Search Tool for the Retrieval of Interacting Genes
(STRING) is an online database resource [4] that provides
both predicted and experimental interaction information
with a confidence score. It has been shown that proteins with
short distances between each other in the PPI network tend
to have the same biological functions [5–8], and interactive
neighbors are prone to have the same biological functions
as noninteractive ones [9, 10]. The possible reason is that
the query protein and its interactive proteins might form
a protein complex to exert a particular function or might
participate in the same pathways.

Though great successes have been achieved for gene
function prediction and identification of novel cancers-
related genes with the application of the high-throughput
data, yet high-throughput data is not error free. In this
work, we proposed a computational method for identifying
lung-cancer-related genes based on PPI network constructed
from STRING. 54 NSCLC and 84 SCLC related genes were
retrieved from associated KEGG pathways. Then, Dijkstra’s
algorithm [11] was employed to obtain the shortest paths
between each pair of the 54 NSCLC and 84 SCLC genes.
All the genes present on the shortest paths were extracted
and analyzed. Several of these genes have been reported to
be related to lung cancer. However, some of them were not
previously reported.Therefore, there are probably novel lung-
cancer-related genes and have the potential to be biomarkers
for diagnosis of lung cancer.

2. Materials and Methods

2.1. Lung-Cancer-Related Gene List. We compiled all 54 genes
existing in the human nonsmall cell lung cancer (NSCLC)
pathway and 84 genes in the small cell lung cancer (SCLC)
pathway from KEGG [12]. These two gene sets and cor-
responding Ensembl protein IDs are listed in Additional
file S1 in Supplementary Matrial available online at doi:
http://dx.doi.org/10.1155/2013/267375.

2.2. Lung Cancer Gene Expression Data. The gene expression
profiling in Kastner et al.’s work was used in our study [13],
which includes 8 SCLC, 16 NSCLC, and 14 normal lung
tissue samples. It was retrieved from NCBI Gene Expression
Omnibus (GEO) (Accession number: GSE40275). The gene
expression profile was obtained by the Human Exon 1.0
ST Array with 56283 probes corresponding to 26410 genes.
Signal intensity was first log2 transformed and then quantile
normalized with “preprocessCore” package of R [14].

2.3. Identifying Differentially Expressed Genes. The “samr”
package of R [15] was utilized to identify the differentially
expressed genes between NSCLC, SCLC, and normal tissues
separatelywith the criterion that false-discovery-rate- (FDR-)
adjusted 𝑃 value [16] was less than 0.01 and fold change was
greater than 3 or less than 0.33.

2.4. Cancer-Related Gene List. A list of 742 cancer-related
genes was compiled from three different sources [17]. First, a
list of 457 cancer-related genes was collected from the Cancer
Gene Census. Second, a list of cancer-related genes from the
Atlas of Genetics and Cytogenetic in Oncology was retrieved
[18]. We compiled the third list from the Human Protein
Reference Database (HPRD) [19].

2.5. STRING PPI Data and Shortest Path Identification. The
initial weighted PPI network was constructed based on
data from STRING (version 9.0) [4] (http://string.embl.de/).
Each interaction in STRING is evaluated by an interaction
confidence score in range from 1 to 999 to quantify the
likelihood that an interaction may occur. We used Dijkstra’s
algorithm which has also been used in our previous works
[20, 21] to identify the shortest path between each protein
pair corresponding to the 54 NSCLC and 84 SCLC genes
in the PPI network, respectively. Finally, all the proteins
present on the shortest paths were ranked according to their
betweenness.The Dijkstra’s algorithm was implemented with
R package “igraph” [22].

2.6. KEGG Pathway Enrichment Analysis. KEGG pathway
enrichment analysis was performed with the functional
annotation tool DAVID [23]. The enrichment 𝑃 value was
corrected with the Benjamin multiple testing correction
method to control family-wide false discovery rate less than
0.05 [24]. All the protein-coding genes in human genome
were taken as background during the enrichment analysis.

3. Results

3.1. Differentially Expressed Genes of the Gene Expression Pro-
file. With the SAMR method, 1918 significantly upexpressed
probes and 2243 downexpressed probes corresponding to
1825 genes were identified for NSCLC when compared with
14 normal lung tissues (for probes see additional file S2,
and for gene symbols see additional file S3). For SCLC, 819
significantly up-expressed probes and 820 down-expressed
probes corresponding to 1063 genes were identified (for
probes see additional file S2, and for gene symbols see
additional file S3).

3.2. Shortest Path Genes and Enrichment Analysis. An undi-
rected graph was constructed with the PPI data from
STRING. Subsequently, we repeatedly chose a pair of proteins
corresponding to 54 NSCLC genes and the 84 SCLC genes
respectively, and the shortest path between these two proteins
was determined with Dijkstra’s algorithm. A total of 1711
and 3916 shortest paths were obtained (see additional file
S4) with lowest cost for NSCLC and SCLC containing 114
and 161 path genes, respectively. Shown in Figure 1 are the
1711 shortest paths between the 54 NSCLC genes. The weight
was labeled on the edge between each of the interaction
gene pairs. Shown in Figure 2 are the 3916 shortest paths
between the 84 SCLC genes. To determine whether our 114
and 161 shortest path genes were also hubs in the background
network, we performed a permutation to count the number
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Figure 1: 1711 shortest paths between 54 NSCLC genes. The 1171 shortest paths between 54 NSCLC genes were identified with Dijkstra’s
algorithm based on PPI data from STRING. Yellow round represents 54 NSCLC genes. Red round represents 114 genes existing on shortest
paths.Numbers on edges represent the edgeweight to quantify the interaction confidence.The smaller the number, the stronger the interaction
between two nodes.

of their occurrences on the shortest paths between 54 and
84 randomly selected genes only if they had a greater
betweenness than that in our study.This process was repeated
2000 times, and the proportion of occurrences for the 114
and 161 shortest path genes was regarded as the 𝑃 value. The
detailed results thus obtained are given in additional file S5.
Then we chose the 25 NSCLC and 38 SCLC shortest path
genes with a 𝑃 value less than 0.05 for further analysis (see
additional file 5).

The GO enrichment analysis of 25 NSCLC shortest path
genes indicated that they were significantly enriched in the
regulation of intracellular signaling cascades and regulation
of macromolecule metabolic processes (see additional file
S6). These terms had been demonstrated to make great
contributions to the survival and reproduction of cancer
cells, while they also appeared in the enriched GO terms
of 38 SCLC shortest path genes (see additional file S6).
Besides these terms, the analysis result of SCLC shortest path
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on edges represent the edge weight to quantify the interaction confidence. The smaller the number, the stronger the interaction between two
nodes.

genes showed that they were significantly enriched in cell
adhesion processes, suggesting that genes in this term might
play an important role in differentiating SCLC from NSCLC
(see additional file S6). The KEGG pathway enrichment of
these 38 SCLC shortest path genes indicated that they were
enriched in canonical-cancer-related pathways such as the
cell cycle and p53 signaling pathway (Table 1).

3.3. Comparing the Overlap between Candidate Genes with
742 Cancer-Related Genes. The 25 and 38 shortest path
genes were regarded as candidate genes for NSCLC and
SCLC, respectively. We checked the overlap between 742
cancer genes and differentially expressed genes from the gene
expression array as well as the overlap between the candidate
genes identified in our study (Table 2). The entire 5-gene
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Table 1: KEGG enrichment analysis of 38 SCLC shortest path genes.

Term Counta Percentageb P value Benjamini adjusted P value
Focal adhesion 8 21.1 1.40𝐸 − 05 6.70𝐸 − 04

Regulation of actin cytoskeleton 7 18.4 2.20𝐸 − 04 5.40𝐸 − 03

Arrhythmogenic right ventricular cardiomyopathy (ARVC) 5 13.2 2.70𝐸 − 04 4.40𝐸 − 03

ECM-receptor interaction 5 13.2 4.00𝐸 − 04 4.80𝐸 − 03

Hypertrophic cardiomyopathy (HCM) 5 13.2 4.20𝐸 − 04 4.10𝐸 − 03

Dilated cardiomyopathy 5 13.2 5.70𝐸 − 04 4.60𝐸 − 03

Cell cycle 5 13.2 1.80𝐸 − 03 1.20𝐸 − 02

p53-signaling pathway 4 10.5 2.90𝐸 − 03 1.70𝐸 − 02

aThe number of genes belonging to a certain pathway.
bThe percentage of genes belonging to a certain pathway accounts for all the genes undergoing KEGG pathway analysis.

Table 2:Overlap between candidate genes and cancer-related genes.

Gene set
Number of
candidate
genes

Overlap with
742 cancer

genes
P value

NSCLC from array 1825 93 6.698𝑒 − 04

SCLC from array 1063 69 2.218𝑒 − 06

NSCLC in our study 25 6 2.518𝑒 − 05

SCLC in our study 38 5 2.559𝑒 − 03

P value was calculated with the hypergeometric test assuming the total
number of protein-coding genes was 20000.

set can be found in additional file S3. From Table 2, we
can see that both the lung cancer candidate genes identified
from the gene expression array and those identified by our
method had a significant overlap with the 742 cancer genes.
However, the 25 NSCLC candidate genes identified with our
method contained more cancer genes than those from the
gene expression array (𝑃 value = 3.858e − 03) (Table 3).
The 38 SCLC candidate genes had a higher percentage of
cancer-related genes (0.1316) than those from expression
array (0.0649) though the𝑃 value of Fisher’s exact test was not
significant (𝑃 value = 0.186). At least, the 38 SCLC candidate
genes contained comparable cancer-related genes as those
from gene expression array.

4. Discussion

4.1. Shortest Path Genes in Nonsmall Cell Lung Cancer
(NSCLC). We identified 25 shortest path genes in NSCLC
and 38 shortest path genes in SCLC with a permutation
𝑃 value less than 0.05. Intriguingly the top five shortest path
genes in NSCLC are also among the most significant genes
in SCLC, while SCLC has several unique genes with large
betweenness values.Thesemay help to reveal the relationship
between the two major types of lung cancer.

As in NSCLC, HSP90AA1 [25–27] has been well docu-
mented to be relevant to lung cancer. We focus on candidate
genes with large betweenness values and discuss the potential
relationship between them and lung cancer.

Table 3: Comparing the overlap between candidate genes with
cancer-related genes.

Gene set
Number of
candidate
genes

Overlap with
742 cancer

genes
P value

NSCLC from array 1825 93
NSCLC in our study 25 6 3.858𝑒 − 03

SCLC from array 1063 69
SCLC in our study 38 5 0.186
P value was calculated with Fisher’s exact test.

Estrogen receptor 1 (ESR1) belongs to the nuclear ster-
oid hormone receptor superfamily which acts as ligand-
dependent, sequence-specific transcription factors and regu-
lates the expression of genes involved in signal transduction,
cell-cycle control, and cell survival [28]. Previous evidence
showed that the proportion of never smokers among women
with lung cancer is higher compared with men. Hyper-
methylation of ESR1 was reported to be detected only in
lung tumors, but not in normal lung tissues, with a higher
frequency being found in male patients than in female
patients [29]. These all indicated ESR1 as a prognostic factor
in lung cancer and as a potential target of hormone therapy.

ATP-binding cassette sub-family Amember 1 (ABCA1) is
a sulfonylurea-sensitive and cAMP-dependent anion trans-
porter with critical impact on intracellular cholesterol trans-
port. Cholesterol level increase has been found in cancers
compared with normal tissue in many kinds of cancers [30],
such as oral cancer [31]. Smith and Land demonstrated in
colon cancer cells that ABCA1 had an anticancer activity
in which deficiency allowed for increased mitochondrial
cholesterol, inhibited release of mitochondrial cell death-
promotingmolecules, and facilitated cancer cell survival [32].
As abnormalmetabolism is generally found in cancer, ABCA1
deserves further investigation with regard to its role in lung
cancer.

Insulin receptor substrate 1 (IRS1) is an adaptor pro-
tein for insulin-like growth factor (IGF) signaling and is
associated with IGF-stimulated proliferation [33]. It has
been reported to be downregulated in NSCLC [34], and
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its degradation accelerates lung tumor growth by upgrad-
ing interaction between the potent mitogen platelet-derived
growth factor receptor (PDGFR) and phosphatidylinositol 3
kinase (PI3 K) [35]. Correspondingly, our study shows that
the shortest path of IRS1 is designated more than 100 and is
significant in both NSCLC genes and SCLC genes, indicating
that it may play a crucial part in lung cancer development.

FDXR (NADPH: adrenodoxin oxidoreductase) serves as
the first electron transfer protein in the mitochondrial P450
systems. FDXR is identified to be target of the p53 family. It
could be induced in a p53-dependent way by DNA damage
in cells and participated in p53-mediated apoptosis via
generating oxidative stress in mitochondria [36, 37]. Owing
to the significance of p53 in apoptosis during tumorigenesis,
the contribution of FDXR to lung cancer is worthy of further
elucidation.

4.2. Shortest Path Genes in Small Cell Lung Cancer (SCLC).
The KEGG pathway enrichment analysis shows that there is
a distinct group of shortest path genes in SCLC compared
with NSCLC. These are the extracellular-matrix- (ECM-)
related genes (Table 1). This coincides with the KEGG path-
way enrichment analysis result of known SCLC pathway
genes. ECM surrounds SCLC cells and includes collagen
IV, tenascin, fibronectin, and laminin. Cell surface receptor
integrins interact with ECM components and numerous
signal transduction pathways which play important roles in
cell cycle regulation, apoptosis, and so on and thus promote
cancer cell proliferation [38]. Hodkinson et al. found that
ECM can inhibit the caspase-3 activation and subsequent
cell apoptosis induced by etoposide via stimulating phos-
phatidyl inositol 3-kinase- (PI3K-) signaling pathway in
SCLC cells in a ITGB1/PI3K-dependent way [39]. Choi et al.
demonstrated that downregulation of the phosphorylation
activity of ILK (integrin-linked kinase) by single deletion of
ILK protein itself or deletion of ITGB4/ILK complex could
suppress the invasion of ovarian cancer [40]. Other studies
also demonstrate that the intracellular signals activated by
ECM components account for the high metastasis potential
and drug resistance of SCLC [41]. In this work, we found
that collagen IV members COL4A5 and COL4A3, integrin
members ITGA1, ITGB4 and ITGA4, and linked kinase ILK
all have a betweenness of more than 80 and a 𝑃 value < 0.05,
all of which may indicate their crucial roles in SCLC.

Forkhead box protein M1 (FOXM1) is a transcription
factor regulating cell proliferation and DNA damage repair
[42, 43]. Research shows that it could be phosphorylated by
MAPK (ERK) kinase [44] and then activate the expression
of a number of cell-cycle-related genes which are crucial for
DNA replication and mitotic division in the Ras-mitogen-
activated protein-kinase- (MAPK-) signaling pathway, such
as cyclinA2, cyclin B1,AuroraB kinase, Cdc25Bphosphatase-
and Polo-like kinase1 [45]. Additionally, the protein level of
FXOM1 has been found increased in prostate adenocarci-
nomas [46], infiltrating ductal breast carcinomas [47], basal
cell carcinomas [48], intrahepatic cholangiocarcinomas [49],
and in many other solid tumors [50]. A study by Kim et al.
[51] showed that in human NSCLC Foxm1 protein is over-
expressed and promotes tumor cells proliferation during the

Table 4: The functional similarity between identified lung cancer
genes and 742 cancer genes.

742 cancer genes
1825NSCLC genes from array 0.4314∗

1063 SCLC genes from array 0.4845∗

25NSCLC genes from our study 0.5554∗

38 SCLC genes from our study 0.6919∗
∗Pearson correlation coefficient of functional profiles.

development of NSCLC. These all indicate that FXOM1 may
play an import role in SCLC as well.

Immunoglobulin-binding protein 1 (IGBP1) was formerly
identified as a signal transduction molecule with a surface
IgM receptor. More recently, it has been shown to regulate
the phosphatase catalytic activity of protein phosphatase 2A
(PP2A) [52]. PP2A is composed of a majority of cellular
serine/threonine phosphatases [53] and regulates a number
of important cellular processes, such as cell cycle transition,
apoptosis, transcription, translation, autophagy [54], and
cell transformation [55]. IGBP1 directly interacts with the
catalytic subunit of PP2A [56], and this interaction leads
to an antiapoptosis function. Recent studies show that, in
carcinogen-transformed human cells and primary human
cancers such as primary lung cancers, primary hepatocellular
carcinomas and primary breast cancers, the expression level
of IGBP1 is upregulated, [57]. Sakashita et al. found its
overexpression in small cell adenocarcinomas [58], and Li
et al. found that in a lung adenocarcinoma cell line the
interaction of IGBP1 and Lactoferrin could induce cell apop-
tosis [59], implying IGBP1 to be a candidate target for SCLC
therapy.

4.3. Functional Similarities between Candidate Genes and
Known Cancer Genes. In order to compare the functional
similarities between our candidate genes and the 742 known
cancer genes, their functional profiles were constructed using
the −log10 of the hypergeometric test 𝑃 value on Gene
Ontology (GO) terms [20, 21]. Then the Pearson correlation
coefficient of their functional profiles was calculated [20, 21].
The functional similarities of five gene sets are shown in
Table 4. All five gene sets can be found in additional file S3.
Our 25 NSCLC (0.5554) and 38 SCLC (0.6919) candidate
genes both had greater functional similarity with the cancer
genes than the NSCLC (0.43139) and SCLC (0.48451) genes
identified from gene expression profiles. It is suggested that
our way is more efficient in identifying cancer-related genes.

5. Conclusion

In this study, we propose a computational method based
on a protein-protein interaction network to identify cancer-
related genes. We applied this method to lung cancer to
find the shortest paths between 54 NSCLC and 84 SCLC
genes in the protein-protein interaction network constructed
based on STRING data and selected the 25 and 38 genes
with a significant 𝑃 value for NSCLC and SCLC, respectively.
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Analysis of these shortest path genes indicates that some of
these genes, such as ESR1, FDXR, ABCA1, IRS1, HSP90AA1,
FOXM1, and IGBP1 are related to lung cancer. In addition,
the candidate genes of lung cancer identified in our study
contain more cancer genes than those identified from gene
expression profiles.Moreover, it is revealed that our candidate
genes have greater functional similarity with the cancer genes
than those identified from gene expression profiles. These
candidate genes may be worth experiment validation and
further research. It is expected that this method is useful in
predicting novel cancer-related genes and has widespread use
in cancer research.
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