
lable at ScienceDirect

Regenerative Therapy 14 (2020) 205e214
Contents lists avai
Regenerative Therapy

journal homepage: http: / /www.elsevier .com/locate/reth
Original Article
The importance of scoring recognition fitness in spheroid
morphological analysis for robust label-free quality evaluation

Kazuhide Shirai a, b, Hirohito Kato a, Yuta Imai a, Mayu Shibuta a, Kei Kanie a,
Ryuji Kato a, c, *

a Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
b Mathematical Sciences Research Laboratory, Research & Development Division, Nikon Corporation, Yokohama Plant, 471, Nagaodai-cho, Sakae-ku,
Yokohama-city, Kanagawa 244-8533, Japan
c Institute of Nano-Life-Systems, Institute for Innovation for Future Society, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
a r t i c l e i n f o

Article history:
Received 25 December 2019
Received in revised form
6 February 2020
Accepted 20 February 2020

Keywords:
Spheroid
Object recognition
Spheroid morphology
Label-free quality evaluation
Cell manufacturing
* Corresponding author. Graduate School of Phar
University, Furocho, Chikusa-ku, Nagoya 464-8601, Ja

E-mail address: kato-r@ps.nagoya-u.ac.jp (R. Kato)
Peer review under responsibility of the Japane

Medicine.

https://doi.org/10.1016/j.reth.2020.02.004
2352-3204/© 2020, The Japanese Society for Regener
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

Because of the growing demand for human cell spheroids as functional cellular components for both
drug development and regenerative therapy, the technology to non-invasively evaluate their quality has
emerged. Image-based morphology analysis of spheroids enables high-throughput screening of their
quality. However, since spheroids are three-dimensional, their images can have poor contrast in their
surface area, and therefore the total spheroid recognition by image processing is greatly dependent on
human who design the filter-set to fit for their own definition of spheroid outline. As a result, the
reproducibility of morphology measurement is critically affected by the performance of filter-set, and its
fluctuation can disrupt the subsequent morphology-based analysis. Although the unexpected failure
derived from the inconsistency of image processing result is a critical issue for analyzing large image data
for quality screening, it has been tackled rarely. To achieve robust analysis performances using
morphological features, we investigated the influence of filter-set's reproducibility for various types of
spheroid data. We propose a new scoring index, the “recognition fitness deviation (RFD),” as a measure to
quantitatively and comprehensively evaluate how reproductively a designed filter-set can work with data
variations, such as the variations in replicate samples, in time-course samples, and in different types of
cells (a total of six normal or cancer cell types). Our result shows that RFD scoring from 5000 images can
automatically rank the best robust filter-set for obtaining the best 6-cell type classification model (94%
accuracy). Moreover, the RFD score reflected the differences between the worst and the best classifi-
cation models for morphologically similar spheroids, 60% and 89% accuracy respectively. In addition to
RFD scoring, we found that using the time-course of morphological features can augment the fluctua-
tions in spheroid recognitions leading to robust morphological analysis.
© 2020, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Spheroids, in vitro three-dimensionally cultured cellular aggre-
gates, have been shown to mimic in vivo biological functions
compared with two-dimensionally cultured cells [1e4]. Therefore,
their importance in drug development research has grown. To
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understand the physiological responses for testing pharmaceutical
efficacy and safety, human cell-derived spheroids have been stud-
ied as replacements for animal models as a new in vitro drug
screening platform. Cancer spheroids [5e7], liver spheroids [8], and
heart spheroids [9e11] represent some of the cutting-edge cell
applications in development. Moreover, based on recent advances
in stem cell engineering, stem cell-derived spheroids are expected
to be applied clinically [12,13]. In tissue engineering applications,
spheroids are used as building blocks to manipulate larger scale
tissues or organs [11,14].

One of the most advantageous features of spheroids is the bal-
ance of their biological complexity and their scalability. From the
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aspect of screening, spheroids are highly compatible with high-
throughput screening technologies, such as multi-well plate assay
systems or high content analysis platforms [15]. From the aspect of
manufacturing, spheroids can enable the highest efficiency in
large-scale cell source processing, up to the scale of 1010 cells, such
as in induced pluripotent stem cell manufacturing [16] or mesen-
chymal stem cell-derived implantable tissues [12]. Despite the
growing expectations for such spheroid applications, the technol-
ogy to control the quality of spheroid production is still limited.
Although it is essential to prepare massive numbers of spheroids
with controlled quality for any application, spheroid evaluation
technology, which can balance three important criteria (“effi-
ciency,” “resolution,” and “non-invasiveness”) is still lacking.

For spheroid evaluation, conventional biochemical assay tech-
niques can feasibly expand their evaluation throughput. However,
their evaluation per spheroid is limited to measuring the average
value of all spheroid-comprising cells and difficult to discriminate
their delicate differences. Conventional molecular biology tech-
niques, such as sequencing or quantitative PCR analysis, can
sensitively measure their differences, although still costly for high
throughput screening. High content imaging has great potential for
obtaining single-cell or intracellular organelle level evaluation data
per spheroid. However, the imaging resolution commonly nega-
tively correlates with their throughput. Moreover, most of the
fluorescent-staining-based techniques are limited to end-point
assays, therefore evaluated spheroids cannot be further used for
the leading applications. Non-invasive cell evaluation technologies
have been introduced to evaluate in vitro three-dimensionally
cultured cells including spheroid such as measurements for oxy-
gen gradients [17] and optical coherence tomography [18]. Among
these, label-free microscopic image-based analysis is one of the
technologies which can balance “efficiency,” “resolution,” and
“non-invasiveness.”

Our group has applied label-free image-based morphology
analysis for enabling quantitative, high throughput, and non-
invasive profiling of cells [19,20], colonies [21,22], and cell aggre-
gates [23]. Marklein et al. reported high content imaging of early
morphological signatures of human mesenchymal stem cells [24].
Oja et al. have also reported image-based analysis to detect aging in
clinical-grade mesenchymal stromal cell cultures [25]. Maddah
et al. have reported the application of a system for automated
morphology-based evaluation of induced pluripotent stem cell
cultures [26]. Although such label-free image-based analysis works
have been growing, studies discussing the robustness of their
analysis performance is still scarce. For better image-based analysis,
especially for cell manufacturing applications, it is crucial to
investigate the robustness of image-based quality evaluations,
balancing its accuracy and reproducibility. In this work, we inves-
tigated to develop the concept to maximize the “reproducibility” of
label-free morphology-based analysis for spheroids.

Generally, the workflow of conventional image-based cell
evaluation analysis consists of 3 steps: recognition, measurement,
and analysis (Fig. 1, Supplementary information Fig. S1, S2). The
very first step, target recognition, is the image processing step,
which try to recognize the region of “spheroid area” by the com-
bination of image processing filters for further measures. Although
it has a critical impact on all subsequent processes, the recognition
of “whole spheroid” has been a very subjective process, rather than
an evidence-based process. One of the biggest reasons for the
subjectivity is that the three-dimensional spheroids have fine
contrast area with their main body, although their outer surface
region with loose aggregates makes poor contrast (Supplementary
information Fig. S3). By such ambiguous contrast, the definition of
the outline of whole spheroid can vary significantly between op-
erators who design the filter-set. In other words, in spheroid
images, it is a fact that there exists an “uncertain area”
(Supplementary information Fig. S3A) at the outer region of
spheroid which reflect the spheroid quality, however their recog-
nition level is highly dependent on operators' decisions. Since op-
erators commonly design their filter-set for label-free images only
with limited and representative images, and evaluate their per-
formance only by their feelings, the unexpected variation of “un-
certain area” can critically fail the recognition process and disturb
the subsequent analysis (Supplementary information Fig. S3B). For
example, even if a filter-set was designed to “sharply” recognize
spheroids within the first small dataset, their recognition can be
“loose” in the second dataset by the existence of new type of
“uncertain area” in new data.

To solve this basic issue in morphological analysis, we here
investigated the influence of non-robust recognition filter-sets, and
propose a “recognition fitness deviation (RFD)” as a new scoring
index to objectively rank the most robust recognition filter-set
which leads to the best analysis performance. To investigate this
concept, we compared the effect of three types of spheroid recog-
nition filter-sets (designated as recipes) and investigated their ef-
fects on cell type classification performances only from their label-
free images. For this model, phase-contrast microscopic images of
spheroids, including cancer cells (A-498, A549, NCIeH23, U-251)
and healthy cells (HASMC, NHDF), covering different or similar
morphological features, were analyzed. Our RFD scoring, which is
designed to reflect the deviation of recognition fitness toward
different replicate samples, time points, and cell types, was shown
to quantitatively indicate the most robust spheroid recognition
recipe, which leads to the best cell type classification model using
only spheroid morphology. Moreover, our investigation indicated
that time-course morphological feature usage could complement
the fluctuations of designed recipes and improve the analysis per-
formance in combination with RFD evaluation.

2. Methods

2.1. Cell culture

Healthy human dermal fibroblast cells (NHDF (Lot No. 01439)),
human aortic smooth muscle cells (HASMC (Lot No. 01293)), hu-
man adenocarcinoma cells derived from lung cancer (A549 (Lot No.
60150896)), human lung adenocarcinoma cells (NCIeH23 (Lot No.
58078626)), human renal cancer cells (A-498 (Lot No. 58033335)),
and human astrocytoma cells (U-251 (Lot No. unidentified)) were
used. Cell culture was performed using an appropriate medium
according to the culture protocol described in the product infor-
mation sheet (American Type Culture Collection). The cells were
seeded on a 10-cm dish (172958, Thermo Fisher Scientific Inc.,
Waltham,MA, USA) and cultured. Eachmedium contained 10% fetal
bovine serum (Lot No.13N059, 172012-500 ML, Nichirei Bioscience,
Tokyo, Japan) and 1% penicillin and streptomycin (26253-84,
Nacalai Tesque, Kyoto, Japan) was added, and the cells were
cultured at 37 �C, under 5% CO2. Cell suspensions were seeded in a
Prime Surface 96-well plate (MS9096U, Sumitomo Bakelite, Tokyo,
Japan) at a concentration of 1500 cells/well for spheroid formation.

2.2. Image acquisition

Phase-contrast images (1000� 1000 pixels) at 4�magnification
were captured using the automatic cell culture observation system
BioStation CT (Nikon, Tokyo, Japan) at intervals of 6 h for 38 times
over approximately 9 days. In this study, we selected time point 24
(¼ 144 h) to time point 32 (¼ 192 h), representing a total of 9 time
points, as the period where spheroids formed stably for the anal-
ysis. For each cell type, 24 spheroids were prepared for each sample



Fig. 1. Schematic illustration of this study. (Left: Orange column) The work-flow in the illustration indicates the conventional image analysis scheme for morphology-based
analysis. From the original image, the objective target in the image (spheroids in this study) is recognized by image processing (step 1: Recognition). The recognized area
(colored in green) is commonly designed to cover the total spheroid area including their outer borders. Then, from the recognized area, morphological features are measured (step
2: Measurement). Using morphological features as multiple descriptors of the objective target, further analysis (step 3: Analysis) is conducted. (Center column) The uncertain area,
the gap between the “recognized area” and the “certain area,” is defined as the uncertain area ratio in the image. Because annotation of the true spheroid area is difficult in label-free
images, we defined the uncertain area by calculating the “area with low-intensity SD” to measure the recognition fitness in each image. Practically, within the recognition area
(green), the uncertain area (light blue) is flagged, and their total ratios were scored as a “uncertain area ratio.” It should be noted that the “certain area” only defines the region of
main body of spheroid, and its outer border in the whole spheroid is dependent on the recipe. Such certain area ratios are called “recognition fitness” in our study. (Right: Grey
column) At present, the fitness and performance of a recipe is highly dependent on operators. In this study, we evaluated such recognition fitness with a more objective scoring
criterion, the recognition fitness deviation (RFD). In this concept, the importance of evaluating a recipe by the summary of all the uncertain area ratios in each image, the SD value
within the fitness of the recipe for data variations is proposed. By summarizing the SDs of uncertain area ratios with three types of scores, the radar chart can be illustrated to show
the robustness of the recipe. The smaller the RFD (the area of radar chart), the more robust the recipe is.
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replicates to make total 5328 images (24 spheroids � 37 time
points� 6 cell types). The images only from the successfully formed
spheroids without noise were selected for analysis (19 for A-498, 21
for A549, 18 for NHDF, 17 for HASMC, 23 for NCIeH23, and 19 for U-
251 (total 117)).

2.3. Image processing

CL-Quant software version 3.20 (Nikon, Tokyo, Japan) was used
to design filter-sets for recognizing spheroids in images and to
measure the recognized area. Multiple combinations of image
processing filter-sets were called “recipes.” Three different recipes
designed with different concepts were compared; Recipe A: using
the soft-matching function in CL-Quant, which is the automated
machine-learning algorithm based on user-selected areas. Recipe B
consisted of: (1) normalization of the background; (2) soft-
matching; (3) removal of objects; (4) filling holes. Recipe C
included: (1) normalization of the background; (2) thresholding of
the intensity; (3) opening and closing to fill holes; (4) flattening of
the background; (5) thresholding of the intensity; (6) opening and
closing to fill holes; (7) merge recognition areas from step 3 and 6;
(8) fill holes. The three recipes were designed by three different
operators. Recipe A was designed using 10e20 images from only
NHDF. It was intended to capture the spheroid surface area infor-
mation. Recipe B was modified from recipe A, but was optimized to
fit cancer spheroid images (different from the cancer cells used in
this study), and was intended to fit sharply to those cancer
spheroids, but was first to be applied to the six cell types in this
work. Recipe C was designed with 10e20 images of all the six cell
types used in this work. However, recipe C was intended to
emphasize the subtle differences of the spheroid surface areas,
which tend to become characteristically loose for some cell types.
From the recognized area using each recipe, a total of 11 morpho-
logical features (area, compactness, correlation mean, energy
mean, entropy means, homogony mean, inertia means, length:
width ratio (ratio of length/width), perimeter, shape factor, std dev
(standard deviation of) intensity) were analyzed (Supplementary
information Table S1). The feature calculation details are
described in previous works [19e23]. Each feature was normalized
with standard normalization for further analysis.
2.4. Morphological analysis for comparing the performances of the
recipes

For the comparison of the effects from the different morpho-
logical features extracted from different recipes, the similar
morphological features were analyzed using hierarchical clustering
based on Euclidean distance. To further compare the differences of
recipes, ridge regression was performed to classify six cell types
with leave-one-out cross-validation. In the clustering and classifi-
cation, the effect of morphological features was compared using
only time point 3, or all time points. All analysis was performed
using R software (version 3.2).



Fig. 2. Representative images of spheroids and their recognition. Using the same initial phase-contrast image (left column), three different types of recipes (recipe A, recipe B,
and recipe C) were applied to recognize the same spheroid. The black area is the non-spheroid area defined by each recipe, and in the recognized area, the raw spheroid image (left
column) is overlaid to indicate the “uncertain area ratio” visually. The row shows their morphological and recognition differences in six cell types. White bars in U-251, NCIeH23,
A498, and A549: 75 mm, in NHDF and HASMC: 150 mm. In the bottom row, the recognized area outline (green line) visualizes the “outline of whole spheroid,” which varies greatly
among the recipes. In other words, it indicates that there are conceptual differences of recipes regarding fitting sharply or loosely to capture the spheroid surface morphology.
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2.5. Measurement of recognition fitness deviations

To quantitatively evaluate the spheroid recognition fitness in all
images, the recognition fitness deviation (RFD) was designed to
score the robustness of image processing recipes (Fig. 1). First, for
RFD calculations, the “uncertain area ratio” in each image was
calculated. In each image, the uncertain area ratio was defined as
the ratio of the “uncertain area” (Supplementary information
Fig. S1A) in the “recognized area” by the recipe. The “uncertain
area” is the area with poor contrast, therefore implementation of
outline region can vary between the operators. The “certain area” is
the spheroid main body area, where contrast is clearer and
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operators tend to recognize easily. In our study, we defined the
“uncertain area” as a low-intensity value (<55) which repeats
within a 5-pixel horizontal window, since in the raw image, the
“certain area” of spheroid commonly shows high-intensity stan-
dard deviation (SD), and the rest of the image field shows faint
intensity differences (Fig. 1A). It is important to note that the “high-
intensity SD area,” which we call the “certain area” is the area,
which probably includes the true spheroidmain body, but is not the
whole spheroid. Limited recognition of such area loses the char-
acteristics of spheroids. Using the quantitative definition of un-
certain area ratio, we could compare the area where operators
differ in implementation in all the images with the same quanti-
tation criteria automatically. When all the uncertain area ratios are
calculated for all images using different recipes, the SD values were
calculated within different sample replicates (score 1), different
time points (score 2), and different cell types (score 3). The sum of
scores 1 to 3 reflects the deviation of each recipe's recognition
performance. If the deviation is high, the recipe is not working
reproductively in some samples. Therefore, we designated these as
RFD. As an illustration, sum of score 1 and score 2 is plotted in each
hexagon axis per each cell type, and the total area of the radar chart
reflects score 3 (Fig. 1).
3. Results

3.1. Diversity of spheroid morphology and fluctuation of spheroid
recognition

In this study, six types of cells were selected to mimic the va-
rieties of spheroids (Fig. 2A). Even by seeding the same cell number
in a well, their morphologies were found to have diversity with
their details. First, size difference is a clear morphological feature.
Some spheroids shrink to a smaller size (U-251 and A-498) than
other spheroids during the culture. Comparing such sizes in cancer
cells (U-251, NCIeH23, A-498, and A549), the difference between
normal and cancer cannot be categorized simply with their sizes.
Second, the tightness of spheroid aggregation, reflected by the in-
tensity distribution in the spheroid area, is also a characteristic
feature. Although there is a slight tendency for normal cell spher-
oids to appear brighter, it is difficult to classify them as normal or
cancer cells or their tissue origins. Therefore, it was clear that
spheroid morphological features weremore complicated than their
differences in morphological characteristics, as in two-
dimensionally cultured cells.

To analyze spheroid varieties using image analysis, we
compared three recipes (AeC; Fig. 2A). The three recipes were
designed by three operators aiming for the same goal, the
morphological analysis of spheroids. However, their analytical sit-
uations and concepts for designing their recipes were different.
They differed not only in their filter-set combinations but also the
data which each operator focused upon to develop their recipe. For
the design of recipe A, the operator utilized images of only one cell
type (NHDF). The operator attempted to recognize the outermost
surface of spheroids since NHDFs tend to aggregate loosely, and
some cells float to the surface. For the design of recipe B, the
operator used images of other cancer cell spheroids, which were
not included in the six prepared cell types, and modified recipe A to
fit the cell type. Thus, different filters were added in recipe B. For
the design of recipe C, the operator utilized images of all six cell
types and attempted to create a recipe to recognize various types of
cells from scratch. However, in this recipe design, the operator
attempted to augment the differences between various spheroids
by rendering a recipe that sensitively recognizes the differences of
spheroid surface collapse. As a result, their recognition of fitness
was found to show diversity.

However, the characteristics of these recipes were only evident
when their recognition results for all cell types were paneled for
visualization. For example, comparisons for single-cell types, such
as U-251 or A-498, did not show clear differences between recipes.
By the paneled comparison, recipe A showed overall “fat” recog-
nition, recipe B showed overall “fit” recognition, and recipe C
showed fluctuated recognition, which was “invasive” or “disor-
dered,” sensitively reflecting the spheroid surface status. It is
essential to realize that such paneled comparison results shown in
Fig. 2A are only partial results in the more than 5000 images,
showing one timepoint with one image from three replicates. This
result strongly indicates that a recipe evaluated only by limited
numbers of images does not assure robust performance and can
critically disrupt further analysis when the number of images or cell
types increases. In other words, the robustness of image processing
requires an evaluation from the aspect of its overall performance
toward the varieties of data by some quantitative index.
3.2. Evaluation of a recipe's robustness with recognition fitness
deviation

To quantitatively and comprehensively evaluate the recipes, we
analyzed the “recognition fitness,” which derives from the gap
between the “recognized area (defined by the recipe designer's
implementation)” and the “certain area (where spheroid main
body can be clearly defined)”, designated as “uncertain area” (Fig. 1
and Supplementary information Fig. S1). To objectively score such
fitness, we here introduced an algorithm tomeasure the “uncertain
area ratio”. By analyzing large image data covering the variation in
the sample replicates, time points, and cell types, we compared the
recipe's reproducibility in their recognition fitness (Fig. 3A). In the
plots of the uncertain area ratio, we found that even under replicate
conditions (17e23 spheroids per each condition), there were out-
liers indicating unexpected recognition results.

Moreover, the outlier deviation of uncertain area was found in
the time course as well (ex. Recipe C for HASMC recognition). When
such recognition performanceswere paneledwithin all cell types, it
was again found that there are specific cell types that show large
deviations (ex. NHDF and HASMC recognition by recipe C). By
detailed confirmation of each recipe's recognition image, the un-
certain area ratio was visually confirmed to reflect the unexpected
failures in recognition reproducibility (Fig. 3B and C). In our data,
the NHDF and HASMC were the two most difficult spheroids to be
robustly recognized.

To further confirm the influence of such fluctuations in recipe
performance, we compared the effect on the measured morpho-
logical features from their recognized areas (Fig. 3D, and
Supplementary information Fig. S3). Even from the same spheroid,
the morphological features were found to show significant differ-
ences when the deviations of the uncertain area ratios were high.
This result indicated that if a recipe were not robust enough, the
measured morphological features can contain significant noise.

To visually and quantitatively evaluate the total performances of
the recipes, we summarized the SDs of the uncertain area ratio
within identical replicate samples (score 1), time points (score 2),
and cell types (score 3) to visualize in a radar chart (Fig. 3E). In this
visualization, the small and uniform radar area indicates the
robustness of a recipe. With this scoring, recipe A can be ranked as
the best of the three recipes quantitatively. We further designated
these summed SDs of uncertain area ratios as “recognition fitness
deviations (RFD).”



Fig. 3. Evaluation of recipes using recognition fitness deviation (RFD). (A) Variation of uncertain area ratios among varieties of data (varieties within sample replicates, time
points, and cell types). In each graph, the X-axis shows the time point (6 h), the first Y-axis (left) shows the uncertain area ratio for each plot in color (each spheroid), and the second
Y-axis (right) shows the time-course changes in SD summarizing 17e23 plots (red line). Among the six-cell types evaluated, the red line pattern was similar among A-498, A549,
and NCIeH23; NCIeH23 is only shown as a representative. The alphabetically indicated plots, aeh, are representative spheroid examples to indicate different uncertain area ratios
in 3B. The alphabetically indicated (i-1)e(i-4) are representative cases of the different uncertain area ratios found in the same spheroid in 3B. (B) Representative images to indicate
the uncertain area ratios between spheroids and their recognition areas. (aeh) indicates the alphabetically indicated plots in 3A. U-251 and NCIeH23, and NHDF and HASMC are
lined vertically, to compare the differences of recognition fitness between pairs of similar spheroid morphologies. White bars in aed: 65 mm, in eeh: 130 mm. (C) Representative
images are indicating the uncertain area ratios within the time-course in the same spheroid (HASMC). (i-1) e(i-4) indicates the alphabetically indicated plots in 3A. All white bars:
130 mm. (D) The fluctuation of morphological features measured from different recognition fitness within the spheroid (HASMC) captured in 2C. The X-axis indicates the time points
(6 h), and the Y-axis indicates the normalized feature values (Area, Length: width ratio, and Inertia mean). (E) The RFD evaluation of the three recipes, as a summary of recognition
fitness among all time-points, spheroid image replicates, and cell types. Specifically, fitness among six cell types is indicated with the hexagon axis as a radar chart. If a recipe can be
robustly used for a variety of cells, time-courses, and image replicates, the RFD (radar area) becomes smaller.
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3.3. Effects of a recipe's recognition in further morphology-based
analysis

When a recipe results in poor recognition robustness, the
further measured morphological features can poorly express the
morphological characteristics of spheroids. As a result, the
following analysis using morphological features is affected.

As a model case of this confirmation, we compared the analysis
results (step 3 in Fig. 1) based on the three recipe's spheroid
recognition and morphological measurement. First, by using the
morphological features from a single time point (time point 3), we
compared the recipe's effect in hierarchical clustering. In this
analysis, we focused on how NHDF and HASMC, the most difficult
spheroids to discriminate, would be clustered. The NHDF and
HASMC spheroids were mostly clustered in separate clusters with
recipe A, whether both cell types were combined in the same
cluster in the other two recipes (Fig. 4A). Especially in recipe C, the
morphological characteristics indicated by the heatmap became
faint, because there appeared a “peaky morphological values” in
the total morphological data by the fluctuating recognition.

We further utilized the same morphological features for the
classification of six cell types by ridge regression. Recipe A showed
better performance both in the (1) six-cell type classifications, and
the (2) NHDF/HASMC classification, compared with other recipes.
Especially, with the most challenging spheroids to be recognized,
the classification of NHDF and HASMC tend to fail in recipe B and
recipe C (Fig. 5A). This result indicates that the performance of the
morphology-based prediction model can be critically affected by
the performance of the utilized image processing recipe because
the measured morphological features had less interpretable infor-
mation. Moreover, recipe A, which showed the lowest RFD score,
was found to show the best performance.

Second, since our previous studies showed the importance of
using time-course morphological features in morphology-based
predictions [21], we investigated the effect of using time-course
information on recipe's performance. With hierarchical clustering,
the spheroids of NHDF and HASMC were clustered in different
clusters in recipe A, although they tend to be mixed under closer
trees in the rest of the recipes (Fig. 4B). However, with recipe B, the
mis-clustering rate was improved compared with the clustering
results using only a single time point (Fig. 4A). With the six-cell
type classification, the performances of all three recipes increased
with both (six cell types, and NHDF/HASMC classification)
compared with the classification model using only a single time
point (Fig. 5). Moreover, the classification of NHDF or HASMC with
recipe B and recipe C were significantly improved. Consequently, by



Fig. 4. Comparison of hierarchical clustering results of spheroid morphologies between recipes. (A) Comparison of recipes with morphological features at time point 3.
Columns: 17e23 spheroids per six cell types (117 spheroids). Row: 11 morphological features at only time point 3. (B) Comparison of recipes with morphological features at all time
points. Columns: 17e23 spheroids per six cell types (117 spheroids). Row: 11 morphological features � nine time points. The heatmap indicates the normalized value for each
feature (blue: low, yellow: high). The color label for each spheroid column under the clustering indicates cell types: pink, U-251; light blue, NCIeH23; yellow, A-498; green, A549;
red, NHDF, blue, HASMC. The colored bars indicate the cluster of morphologically similar cell types: red, NHDF, blue, HASMC. The red horizontal line at the tree indicates the
Euclidian distance ¼ 10.
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the use of time-course morphological features, the performance
itself and the deviation of performances among recipes were found
to be improved. However, it should be noted that even with such
performance improvements using time-course data, recipe B and
recipe C showed lower performances when compared with recipe
A, the lowest RFD scoring recipe.

4. Discussion

In this work, to obtain robust performance in the morphological
image-based evaluation of cells, we propose RFD scoring concept as
a means of objectively selecting the recipe, instead of the conven-
tional expert experience-based selection, to enhance the repro-
ducibility of spheroid image analysis.
The reproducibility of image processing has rarely been dis-
cussed and quantitatively scored, since most of the image pro-
cessing design was accomplished by manual trial and error until
the operator was satisfied. This experience-based image processing
design has been the standard in most image processing studies in
various fields. To explore evidence-based options to the subjective
operator-biased image processing pipeline, we presently propose
an objective scoring concept to evaluate image processing recipes
(Supplementary information Fig. S1 and S2). Our strategy is simple.
Instead of insisting on a recipe based on limited evaluation, our RFD
scoring enables the comprehensive and automatic evaluation of the
recipe's performance for all the possible variations of the acquired
images. Faced with a great variation and volume of images, the RFD
scoring can perform the evaluation automatically, instead of



Fig. 5. Comparison of the confusion matrix of cell-type classification performances using morphological features from different recipes and their time points. (A) The
classification performances of models using morphological features of time point 3. (B) The classification performances of models using morphological features of all time points. In
the matrix, the numbers indicate the counts of spheroids classified by the model. The grey cell indicates the correctly classified, and the red cell indicates the misclassified (�2). On
the right, the total misclassification spheroid number is indicated.
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necessitating an image-by-image manual scrutiny by the operator.
Therefore, by its nature, RFD scoring can be applied to any type of
image analysis of spheroids, including spheroid viability prediction,
spheroid metabolic potency assessment, spheroid differentiation
analysis, and spheroid morphometrymeasurement, as the first step
of image analysis to compare the custom-made recipes for each
data. As an analogy, our RFD score for selecting robust recipe can be
interpreted as “Melting temperature value for selecting robust
primers in quantitative polymerase chain reaction”
(Supplementary information Fig. S1).

Our data revealed the risk and importance of evaluating the
“reproducibility” of manually designed spheroid recognition filter-
sets, and proposed the RFD scoring to comprehensively and auto-
matically evaluate their performances. To the best of our knowl-
edge, this study is the first to show that a label-free morphological
feature can discriminate 6 different cell qualities (the difference of
cancer or normal, or differences in cancer cell types). The study is
also the first to investigate the reproducibility of spheroid image
analysis with 5000 experimentally obtained spheroid images.

Our data clarified that different recipes designed with different
concepts show significant variations in spheroid recognition,
especially when they are checked in a panel with different data
variations. By the objective quantification of such recognition
fitness, we found that such variability of recipe performance can
occur not only between cell types, but also during their time course,
and even within replicated samples. Therefore, to design a robust
recipe that can be promise reproducible results in big image data
analysis, our data suggest that human-dependent or self-proposed
recipe evaluation has a considerable reproducibility risk. Therefore,
in this study, we evaluated the cell recognition performances
widely throughout the data with a new quantitative scoring index,
the RFD.

To investigate the performance of our RFD scoring, we compared
three recipes designed differently using different concepts and
compared their actual performances not only in the recognition
step but also in their morphology-based analysis steps. As a result,
we found a good negative correlation of the proposed RFD score
and their analysis performances, where a lower RFD indicates a
higher recipe reproducible performance.With recipe A and recipe B
(modified from recipe A), both recognition performance seemed
very similar at a glance (Fig. 2A). However, when RFD were scored
in detail and overall, the score indicated higher robustness for
recipe A, and recipe A resulted in the best performances in clus-
tering and classification.

In the morphology-based analysis, we examined the effect of
time-course data usage in different recipes. As a result, both the
results of clustering and classification, the performance of all rec-
ipes, including the lower performing recipes (recipe B and recipe C),
could be improved. Therefore, it was suggested that time course
morphological information that can be obtained from label-free
imaging could partially compensate for the fluctuation disorder of
spheroid recognitions in less robust recipes. However, it is impor-
tant to note that even with time-course data usage, the RFD score
evaluation showed the best performing recipe, recipe A. In other
words, it was clear that with lower RFD score recipe, which shows a
lower rate of uncertain area recognition under any condition, works
best as a morphology-based analysis model.

In this study, we focused on the issue of the “recognition of
object,” which is presently designed and evaluated manually by an
operator, with spheroid images. However, with the recent progress
of deep learning algorithms, biological-image analysis now has
new approaches. There are algorithms to detect the object area
with high precision by training the object feature through deep
learning [27,28]. In such algorithms, the object, the spheroid in our
case, can be recognized with higher recognition fitness compared
with our three compared recipes. However, although any other
algorithmsmay show higher fitness in some data, our work suggest
that their robustness evaluation is more important. Moreover, with
deep learnings, more and more volume of annotated spheroid
images (which are difficult to obtain) is required to design robust
recognition. Apart from the object recognition approach, there are
also algorithms, which uses the total image pixel information
including all object and background with convolutional feature
extraction [29,30]. With such algorithms, there is no need to
evaluate our recognition fitness, and their extracted information
can be used for further analysis. However, even with such algo-
rithms, our proposing concept of checking the robustness of the
algorithm with varieties of data remains essential, because “auto-
matic feature extraction ability” does not promise the robustness of
image processing.

Considering the practical application of image-based cell eval-
uation technology with various types of patients or lot diversities, it
should be essential to establish robust image processing to provide
robust measurement results for subsequent analysis. Our RFD
scoring concept will release the image processing from the present
human-oriented decision in image processing design to lead for a
more automated cell recognition process that can be optimized
with the growth of data. Moreover, by introducing such scoring in
image processing, the robustness of the recipe can be optimized
using automated machine learning algorithms (Supplementary
information Fig. S5). Further studies should evaluate the effect of
our RFD scoring in more varied images, including different cell
types, image magnifications, and images from different micro-
scopes. We believe our work will contribute to the mechanization
and automation of image-based in-process monitoring technology
in cell processing.

Declaration of Competing Interest

A collaboration research support from Nikon Corporation was
funded to Ryuji Kato. The first author Kazuhide Shirai is the
employee of Nikon Corporation, who have been administrated as
PhD candidate in the Graduate School of Pharmaceutical Sciences,
Nagoya University.

Acknowledgments

This research was partially supported by the Japan Science and
Technology Agency (JST) Program for Creating STart-ups as part of
the Advanced Research and Technology (START Program) program,
and with collaborative funding from Nikon Corp.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.reth.2020.02.004.

References

[1] Pampaloni F, Reynaud EG, Stelzer EHK. The third dimension bridges the gap
between cell culture and live tissue. Nat Rev Mol Cell Biol 2007;8:839e45.
https://doi.org/10.1038/nrm2236.

[2] Gaebler M, Silvestri A, Haybaeck J, Reichardt P, Lowery CD, Stancato LF, et al.
Three-dimensional patient-derived in vitro sarcoma models: promising tools
for improving clinical tumor management. Front Oncol 2017;7:1e14. https://
doi.org/10.3389/fonc.2017.00203.

[3] Van Den Brand D, Massuger LF, Brock R, Verdurmen WPR. Mimicking tumors:
toward more predictive in vitro models for peptide- and protein-conjugated
drugs. Bioconjugate Chem 2017;28:846e56. https://doi.org/10.1021/
acs.bioconjchem.6b00699.

[4] Hoffmann OI, Ilmberger C, Magosch S, Joka M, Jauch KW, Mayer B. Impact of
the spheroid model complexity on drug response. J Biotechnol 2015;205:
14e23. https://doi.org/10.1016/j.jbiotec.2015.02.029.

https://doi.org/10.1016/j.reth.2020.02.004
https://doi.org/10.1038/nrm2236
https://doi.org/10.3389/fonc.2017.00203
https://doi.org/10.3389/fonc.2017.00203
https://doi.org/10.1021/acs.bioconjchem.6b00699
https://doi.org/10.1021/acs.bioconjchem.6b00699
https://doi.org/10.1016/j.jbiotec.2015.02.029


K. Shirai et al. / Regenerative Therapy 14 (2020) 205e214214
[5] Rodrigues T, Kundu B, Silva-Correia J, Kundu SC, Oliveira JM, Reis RL, et al.
Emerging tumor spheroids technologies for 3D in vitro cancer modeling.
Pharmacol Ther 2018;184:201e11. https://doi.org/10.1016/
j.pharmthera.2017.10.018.

[6] Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ. 3D tumor spheroids as
in vitro models to mimic in vivo human solid tumors resistance to therapeutic
drugs. Biotechnol Bioeng 2019;116:206e26. https://doi.org/10.1002/
bit.26845.

[7] Gencoglu MF, Barney LE, Hall CL, Brooks EA, Schwartz AD, Corbett DC, et al.
Comparative study of multicellular tumor spheroid formation methods and
implications for drug screening. ACS Biomater Sci Eng 2018;4:410e20.
https://doi.org/10.1021/acsbiomaterials.7b00069.

[8] Bell CC, Hendriks DFG, Moro SML, Ellis E, Walsh J, Renblom A, et al. Charac-
terization of primary human hepatocyte spheroids as a model system for
drug-induced liver injury, liver function and disease. Sci Rep 2016;6:1e13.
https://doi.org/10.1038/srep25187.

[9] Ong CS, Fukunishi T, Zhang H, Huang CY, Nashed A, Blazeski A, et al. Bioma-
terial-free three-dimensional bioprinting of cardiac tissue using human
induced pluripotent stem cell derived cardiomyocytes. Sci Rep 2017;7:2e12.
https://doi.org/10.1038/s41598-017-05018-4.

[10] Beauchamp P, Moritz W, Kelm JM, Ullrich ND, Agarkova I, Anson BD, et al.
Development and characterization of a scaffold-free 3D spheroid model of
induced pluripotent stem cell-derived human cardiomyocytes. Tissue Eng C
Methods 2015;21:852e61. https://doi.org/10.1089/ten.tec.2014.0376.

[11] Moldovan NI. Progress in scaffold-free bioprinting for cardiovascular medi-
cine. J Cell Mol Med 2018;22:2964e9. https://doi.org/10.1111/jcmm.13598.

[12] Santos JM, Cam~oes SP, Filipe E, Cipriano M, Barcia RN, Filipe M, et al. Three-
dimensional spheroid cell culture of umbilical cord tissue-derived mesen-
chymal stromal cells leads to enhanced paracrine induction of wound healing.
Stem Cell Res Ther 2015;6:1e19. https://doi.org/10.1186/s13287-015-0082-5.

[13] Tellez-Gabriel M, Cochonneau D, Cad�e M, Jubelin C, Heymann MF,
Heymann D. Circulating tumor cell-derived pre-clinical models for personal-
ized medicine. Cancers (Basel) 2019;11:1e16. https://doi.org/10.3390/
cancers11010019.

[14] Laschke MW, Menger MD. Spheroids as vascularization units: from angio-
genesis research to tissue engineering applications. Biotechnol Adv 2017;35:
782e91. https://doi.org/10.1016/j.biotechadv.2017.07.002.

[15] Moriconi C, Palmieri V, Di Santo R, Tornillo G, Papi M, Pilkington G, et al.
INSIDIA: a Fiji macro delivering high-throughput and high-content spheroid
invasion analysis. Biotechnol J 2017;12:1e7. https://doi.org/10.1002/
biot.201700140.

[16] Petrenko Y, Sykov�a E, Kubinov�a �S. The therapeutic potential of three-
dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell
Res Ther 2017;8:1e9. https://doi.org/10.1186/s13287-017-0558-6.

[17] Langan LM, Dodd NJF, Owen SF, Purcell WM, Jackson SK, Jha AN. Direct
measurements of oxygen gradients in spheroid culture system using electron
paramagnetic resonance oximetry. PloS One 2016;11:1e14. https://doi.org/
10.1371/journal.pone.0160795.
[18] Hari N, Patel P, Ross J, Hicks K, Vanholsbeeck F. Optical coherence tomography
complements confocal microscopy for investigation of multicellular tumour
spheroids. Sci Rep 2019;9:1e11. https://doi.org/10.1038/s41598-019-47000-
2.

[19] Sasaki H, Takeuchi I, Okada M, Sawada R, Kanie K, Kiyota Y, et al. Label-free
morphology-based prediction of multiple differentiation potentials of human
mesenchymal stem cells for early evaluation of intact cells. PloS One 2014;9.
https://doi.org/10.1371/journal.pone.0093952.

[20] Ishikawa K, Yoshida K, Kanie K, Omori K, Kato R. Morphology-based analysis
of myoblasts for prediction of myotube formation. SLAS Discov 2019;24:
47e56. https://doi.org/10.1177/2472555218793374.

[21] Yoshida K, Okada M, Nagasaka R, Sasaki H, Okada M, Kanie K, et al. Time-
course colony tracking analysis for evaluating induced pluripotent stem cell
culture processes. J Biosci Bioeng 2019;128:209e17. https://doi.org/10.1016/
j.jbiosc.2019.01.011.

[22] Kato R, Matsumoto M, Sasaki H, Joto R, Okada M, Ikeda Y, et al. Parametric
analysis of colony morphology of non-labelled live human pluripotent stem
cells for cell quality control. Sci Rep 2016;6:1e12. https://doi.org/10.1038/
srep34009.

[23] Shibuta M, Tamura M, Kanie K, Yanagisawa M, Matsui H, Satoh T, et al. Im-
aging cell picker: a morphology-based automated cell separation system on a
photodegradable hydrogel culture platform. J Biosci Bioeng 2018;126:
653e60. https://doi.org/10.1016/j.jbiosc.2018.05.004.

[24] Marklein RA, Lo Surdo JL, Bellayr IH, Godil SA, Puri RK, Bauer SR. High content
imaging of early morphological signatures predicts long term mineralization
capacity of human mesenchymal stem cells upon osteogenic induction. Stem
Cell 2016;34:935e47. https://doi.org/10.1002/stem.2322.

[25] Oja S, Komulainen P, Penttil€a A, Nystedt J, Korhonen M. Automated image
analysis detects aging in clinical-grade mesenchymal stromal cell cultures.
Stem Cell Res Ther 2018;9:1e13. https://doi.org/10.1186/s13287-017-0740-x.

[26] Maddah M, Shoukat-Mumtaz U, Nassirpour S, Loewke K. A system for auto-
mated, noninvasive, morphology-based evaluation of induced pluripotent
stem cell cultures. J Lab Autom 2014;19:454e60. https://doi.org/10.1177/
2211068214537258.

[27] Van Valen DA, Kudo T, Lane KM, Macklin DN, Quach NT, DeFelice MM, et al.
Deep learning automates the quantitative analysis of individual cells in live-
cell imaging experiments. PLoS Comput Biol 2016;12:1e25. https://doi.org/
10.1371/journal.pcbi.1005177.

[28] Wan T, Xu S, Sang C, Jin Y, Qin Z. Accurate segmentation of overlapping cells in
cervical cytology with deep convolutional neural networks. Neurocomputing
2019;365:157e70. https://doi.org/10.1016/j.neucom.2019.06.086.

[29] Kraus OZ, Ba JL, Frey BJ. Classifying and segmenting microscopy images with
deep multiple instance learning. Bioinformatics 2016;32:i52e9. https://
doi.org/10.1093/bioinformatics/btw252.

[30] Niioka H, Asatani S, Yoshimura A, Ohigashi H, Tagawa S, Miyake J. Classifi-
cation of C2C12 cells at differentiation by convolutional neural network of
deep learning using phase contrast images. Hum Cell 2018;31:87e93. https://
doi.org/10.1007/s13577-017-0191-9.

https://doi.org/10.1016/j.pharmthera.2017.10.018
https://doi.org/10.1016/j.pharmthera.2017.10.018
https://doi.org/10.1002/bit.26845
https://doi.org/10.1002/bit.26845
https://doi.org/10.1021/acsbiomaterials.7b00069
https://doi.org/10.1038/srep25187
https://doi.org/10.1038/s41598-017-05018-4
https://doi.org/10.1089/ten.tec.2014.0376
https://doi.org/10.1111/jcmm.13598
https://doi.org/10.1186/s13287-015-0082-5
https://doi.org/10.3390/cancers11010019
https://doi.org/10.3390/cancers11010019
https://doi.org/10.1016/j.biotechadv.2017.07.002
https://doi.org/10.1002/biot.201700140
https://doi.org/10.1002/biot.201700140
https://doi.org/10.1186/s13287-017-0558-6
https://doi.org/10.1371/journal.pone.0160795
https://doi.org/10.1371/journal.pone.0160795
https://doi.org/10.1038/s41598-019-47000-2
https://doi.org/10.1038/s41598-019-47000-2
https://doi.org/10.1371/journal.pone.0093952
https://doi.org/10.1177/2472555218793374
https://doi.org/10.1016/j.jbiosc.2019.01.011
https://doi.org/10.1016/j.jbiosc.2019.01.011
https://doi.org/10.1038/srep34009
https://doi.org/10.1038/srep34009
https://doi.org/10.1016/j.jbiosc.2018.05.004
https://doi.org/10.1002/stem.2322
https://doi.org/10.1186/s13287-017-0740-x
https://doi.org/10.1177/2211068214537258
https://doi.org/10.1177/2211068214537258
https://doi.org/10.1371/journal.pcbi.1005177
https://doi.org/10.1371/journal.pcbi.1005177
https://doi.org/10.1016/j.neucom.2019.06.086
https://doi.org/10.1093/bioinformatics/btw252
https://doi.org/10.1093/bioinformatics/btw252
https://doi.org/10.1007/s13577-017-0191-9
https://doi.org/10.1007/s13577-017-0191-9

	The importance of scoring recognition fitness in spheroid morphological analysis for robust label-free quality evaluation
	1. Introduction
	2. Methods
	2.1. Cell culture
	2.2. Image acquisition
	2.3. Image processing
	2.4. Morphological analysis for comparing the performances of the recipes
	2.5. Measurement of recognition fitness deviations

	3. Results
	3.1. Diversity of spheroid morphology and fluctuation of spheroid recognition
	3.2. Evaluation of a recipe's robustness with recognition fitness deviation
	3.3. Effects of a recipe's recognition in further morphology-based analysis

	4. Discussion
	Declaration of Competing Interest
	Acknowledgments
	Appendix A. Supplementary data
	References


