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Published online: 15 November 2017 Perceptual decisions pervade our every-day lives, and can align or conflict with inbuilt biases. We

investigated these conflicting biases by applying transcranial random noise stimulation (tRNS) while
subjects took part in a visual Simon task - a paradigm where irrelevant spatial cues influence the
response times of subjects to relevant colour cues. We found that tRNS reduces the response time

of subjects independent of the congruence between spatial and colour cues, but dependent on the
baseline response time, both between subjects and across conditions within subjects. We consider the
reduction in response time to be non-specific to the Simon task, and cast our interpretations in terms
of drift-diffusion models, which have been previously used as mechanistic explanations for decision-
making processes. However, there have been few extensions of the drift-diffusion model to the Simon
effect, and so we first elaborate on this interpretation, and further extend it by incorporating the
potential action of tRNS.

In common perceptual decision making tasks one of two responses has to be made, for example on the basis of the
direction of motion of coherent random dots™2. In such a case, evidence for a response in one direction is thought
to count against evidence for a response in the opposite direction. One potential extension of such a paradigm is
to consider the development of a decision when the response depends, or is thought to depend on two sources
of information which are in direct conflict. We design an experiment using the “Simon effect”, coined by Hedge
et al.? in which conflict arises when a subject must react to relevant information regarding the response, which
is however presented in a location inconsistent with that response. The conflict generally leads to an increase in
response time (RT). This bias due to conflict was first measured by Simon et al., and has since been repeated with
many variations, including with single handed responses in left or right directions’; responses to tones as opposed
to words®; and with visual as opposed to auditory stimuli’~®. What is common in all these cases, is that in some
manner, a source of information which is clearly irrelevant to the task is interfering with a relevant source.

Here, we use the visual Simon effect, where the conflict in this case appears to be between the intended
response based on the colour of the cue, and an automatic response based on the side to which the cue is pre-
sented. Because in this version of the Simon effect the visual stimuli and the response are lateralised, we decided
to apply transcranial random noise stimulation (tRNS) across the two hemispheres with the hypothesis that
we may be able to influence conflict resolution, and take advantage of long cortical-cortical axonal projections
between the hemispheres as potentially sensitive targets.

Transcranial random noise stimulation has been previously used to modify motor excitability in humans, for
example, Terney et al.'” showed that motor-evoked potentials (MEP) generated by transcranial magnetic stimu-
lation (TMS) had increased amplitude when compared to sham following the application of tRNS, and suggested
that the influence was dominated by higher frequencies. Fertonani et al.'' showed that tRNS with frequencies
between 100 and 640 Hz improved performance accuracy in an orientation discrimination task, confirming the
general effectiveness of the technique to modify behaviour. Recent work!? showed that application of tRNS with
an electrode positioned over the occipital cortex initially enhanced performance in a visual detection task, but as
amplitude was increased, the visual detection worsened, consistent with concepts of stochastic resonance.

Computational models to capture the Simon effect have been previously put forward'*!*. However generally
such models do not capture the full RT distributions in correct and incorrect trials, and are difficult to directly
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Figure 1. Experimental setup and design for applying tRNS while a subject performs the Simon task. (a) The
subject must press a key with the left hand (H}) in response to a blue visual cue, and with the right hand (Hy) in
response to a yellow visual cue, irrespective of the cue presentation side (visual hemifield, V; or V). Application
of tRNS is via sponge electrodes positioned at FT7 and FT8 on the EEG 10-20 system. (b) Experiment is
composed of four identical sessions (S1-S4), each session is broken up into six blocks which are in turn
composed of 16 tRNS trials (red), 16 sham trials (blue) and two transition trials (not shown).

integrate with models of the function of tRNS. Recently, attempts have been made to extend the drift-diffusion
model framework'>"'7 (DDM) to conflict tasks'®~2°. Particularly for the Simon effect, this is not immediately pos-
sible due to a reversed relationship between mean RT and standard deviation across conditions when compared
to the DDM. The diffusion model for conflict tasks?® (DMC) is able to cater to this, at the cost of being difficult to
interpret. Here we propose a simpler DDM based model which fully captures our RT distributional data, and we
then augment this with an additional noisy input to cater for changes in RT due to stimulation.

We found that the influence of tRNS in our experimental condition modifies RT, however not in a way that is
specific to the congruent or incongruent conditions of the Simon task. More generally we found that the influence
on RT across conditions is dependent on the baseline RT, consistent with the addition of noise in evidence accu-
mulator based interpretations of the Simon effect.

Methods

Participants. 24 subjects (7 female) aged between 20 and 40 participated. The experimental procedures were
approved by the ethics committee of the University of Freiburg. All participants gave informed consent after being
briefed on transcranial current stimulation and filling out an exclusion questionnaire. All methods and proce-
dures were performed in accordance with the relevant guidelines and regulations. Two subjects were determined
to be left handed on the Edinburgh scale and were therefore excluded from our analysis.

Task. Our paradigm was based on a modification of the Simon effect task*. Subjects sat in front of a moni-
tor while fixating a cross placed in its centre (see Fig. 1a). They were required to wait for time intervals chosen
pseudorandomly between 1.8 s and 3.2 s in 0.2 s steps, the choice was made so that each interval was selected four
times within one block and equally often between stimulation and sham conditions. They were then shown a
coloured cue in either their left or their right visual hemifield for 50 ms (three frames on our 60 Hz monitor). The
subject’s task was to respond as quickly to the cue colour as possible, pressing a key with their left hand (H;) for
one colour, and with their right hand (Hy) for the other, while ignoring the physical location of the cue (left V,
or right V).

Subjects were asked to respond as quickly as possible and avoid making mistakes. RT with reference to visual
cue location and hand response were recorded. The experiment was divided into four sessions (see Fig. 1b), at
the end of each session subjects were allowed to take a break. A single session was divided into six blocks, each
composed of 34 trials. Additionally, we randomised whether the experiment began with sham or stimulation, and
randomly assigned subjects to one of two difficulty levels with respect to a maximum constraint of 0.6 s or 0.7 s for
RT. When subjects failed to respond in time, or made an incorrect key-press a tone was played. All experiments
were conducted using the Psychophysics Toolbox extension?!-** for MATLAB.

Transcranial random noise stimulation.  Out of the 34 trials in one block, we applied tRNS stimulation
for 18 consecutive trials (see Fig. 1). The first and last trial of tRNS within each block were used to ramp up and
ramp down the tRNS amplitude respectively, and were discarded from the analysis. During the remaining 16
trials in each block we applied no stimulation.
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Stimulation was delivered to the head via saline soaked sponge electrodes (7 cm x 5cm) positioned at FT7 and
FT8 in the EEG 10-20 system. The tRNS was generated by triggering a DC Stimulator Plus (neuroConn GmbH,
IImenau, Germany) with a National Instruments DAQ (National Instruments, USA). The stimulator generates
the waveform such that for every sample point (1280 Hz) a value is drawn from a Gaussian distribution where
there is a 99% probability of being within a fixed range of —500 ptA to 500 p1A, with the absolute value having a
hard ceiling of 600 ;1A The resultant distribution is to all practical intents and purposes the same as a Gaussian
distribution and consequently has a flat spectrum.

Analysis. Pre-processing. Key-presses that were performed less than 0.2 s after cue onset were removed as
they were deemed to occur only if the subject initiated the movement prior to the stimulus being presented.
We also did not analyse key-presses where the subject failed to answer within the required RT, and pooled data
across our two RT difficulty levels. Unless stated otherwise, we also removed key-presses where subjects made an
incorrect response.

Stimulation influence on response time and accuracy. In order to determine the influence of stimulation, as well
as the influence of visual hemifield stimulus laterality and response hand, on the RT averaged for each subject and
condition, we fitted a linear mixed-effects model as shown in equation (1).

RT, = By + BV + BpH+ B3,V-H+ BS+ BV-S+BH-S+3,V-H-S (1)

The model was designed to fit the mean RT over observations (i) taking into account all interactions incorpo-
rating the visual hemifield (V), response hand (H) and stimulation (S) factors. We also included random effects
for subject-specific constants and slopes (enumerated via the variable s) on the interaction between visual hemi-
field and response hand, such that the mixed-effects parameters in equation (1) take the form 3= 3, + b, where
b, ~ N(0, o7). We chose this random effects structure to account for variability in the asymmetries in RT across
subjects, for example due to the degree of visual hemifield or hand dominance while keeping the model complex-
ity as low as possible.

To assess the influence of stimulation on accuracy we extended the linear mixed-effects model described in
equation (1) by incorporating a logistic link function in order to describe the probability of making a correct
choice as shown in equation (2).

l"g[ﬁ] = Bos + BV + By H+ B3V -H+ S+ BV - S+ fH-S+ 5,V-H-S @)

Stimulation influence dependence on baseline response time. 'We were interested in the baseline RT in the sham
condition as a potential covariate to explain the change in RT due to stimulation. To assess the relationship
between the average RT across conditions for each subject, and the average RT change across conditions induced
by stimulation, we used a robust linear fit (using Tukey’s bisquare loss function). To assess this, we performed a
t-test to determine whether the slope of the fit was significantly different from zero. As an additional control to
address a potential dependence of ART on RT due to a statistical effect of regression towards the mean, we also
repeated the slope fit by randomising the assignment of sham and stimulation to each condition (10* iterations).
We then counted the proportion of iterations less than the slope estimated from the non-shuffled data. This is
equivalent to the p-value for rejecting the null hypothesis that our measured slope is not more negative than a
slope that would be generated from the random assignment of stimulation and sham.

Finally, to examine the same covariate within subjects we constructed a linear mixed-effects model (equa-
tion 3) with factors RT, visual hemifield, response hand and their interactions in order to explain the change in RT
between the sham and stimulation condition (ART). We included random effects of offset and slope on the RT
which were dependent on subject. We note that the choice of the random effects structure only has minor effects
on the result of this statistical test, and we decided to not include visual hemifield and response hand as factors to
avoid over-parametrising the model.

ART, = By, + B RT + B,H + 35V + B,V - H+ 3V - RT + BH - RT + 3,V - H - RT. (3)

Simon effect. In order to address whether stimulation impacted the measured Simon effect, we once again
resorted to using a linear mixed-effects model with random effects of constant and slope dependent on subject. In
this case, the factors are stimulus-response congruence and stimulation.

ART = By, + B SEy + B8 + BSEy - S (4)

ART# = By + B SEy + B8 + BsSEy - S (5)

We fitted one linear model for each type of Simon effect, that is with the dependent variable stimulus Simon
effect (ART.FY, equation 4), and with the dependent variable response Simon effect (ART ", equation 5). The
stimulus Simon effect on the left side, is defined as the RT in the V; Hy condition minus the RT in V; H; condition
(V,Hy— V H}), while the stimulus Simon effect on the right side is defined as the RT difference VyH; — V Hp.
Similarly, the left response Simon effect is defined as the RT difference V,H; — V; H|, while the right response
Simon effect is defined as the RT difference V, Hy — V Hp.
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Figure 2. Simon effect, and the basic influence of stimulation. (a) Simon effect RT distributions show density
estimates of individual subject normalised RT, multiplied by average RT across subjects. Congruent conditions,
VH; and V;Hy (solid lines) are left shifted and more skewed than the incongruent conditions V;Hp and VzH;
(dashed lines). Normalisation of RT is done by dividing by the average for each subject, density estimation

of RT distributions were generated by convolution with a Gaussian kernel with a fixed standard deviation of
15ms. (b) Mean of individual subject normalised RT, multiplied by grand mean RT across subjects for different
experimental conditions. A general trend of reduction in RT is visible across conditions with tRNS, and is
clearest in the V; Hy condition. The Simon effect is visible in that the central incongruent conditions have
longer RT than the congruent conditions. Error bars represent 95% CI. (¢) A change in accuracy due to tRNS is
difficult to discern, although mistakes appeared to be increased in the incongruent condition when compared to
the congruent condition, independent of stimulation as would be expected. Error bars represent 95% CL. Inset:
Histogram of mistakes for individual subjects. On average (median) subjects made mistakes in 6% of trials
during the task.

Behavioural model. Design. We decided to characterise the Simon effect in terms of a modified DDM, in
order to test how introducing noise (tRNS) into such a system would influence RT. We were interested in finding
out whether enhanced noise, which in a DDM can lead to earlier threshold crossings would have an influence
dependent on certain parameter settings in our model. In particular, we were interested in whether parameters
which generate fast simulated average RT, are less influenced than those which generate longer simulated average
RT.

Our model is based on the DDM'*"'7 and follows in the steps of previous work'®-2 in applying a DDM frame-
work to the Simon task. The DDM predicts linear (or near linear) increases in standard deviation with increasing
mean®*?*. However, this relationship is violated between congruent and incongruent conditions in the Simon
effect!®?6-28 (see Fig. 2a). Specifically, in the incongruent condition with respect to the congruent condition in the
Simon effect, the mean increases while the standard deviation of the RT distribution decreases. At high RT the
Simon effect has even been reported to invert because of this reduction in standard deviation?”%.

In designing a DDM based model for the Simon effect, we initially attempted to capture a shift in attention
towards the irrelevant stimulus by introduction of a bias in the starting decision-variable. This notion stems from
summarising the key property of a brief and automatic activation towards the stimulus source (a component of
several Simon effect models and theories®?**%%%), without a strong regard for its temporal profile. A simple bias
in starting decision-variable however is not sufficient to capture the intricacies of the Simon Effect as it intro-
duces a stronger Simon effect influence at longer RT, something which has been reported to be inconsistent with
Simon effect data?, and is indeed inconsistent with our findings. In the DMC?, this problem is dealt with via the
introduction of a drift with a specific temporal profile and while this fully captures the RT distributions it may be
difficult to fully falsify due to its flexibility.
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As a solution to a simple bias in decision-variable being insufficient to capture the RT distribution, while
attempting to avoid over specifying the temporal evolution of the drift, we were inspired by the shrinking-spotlight
(SSP) model'®. This model has been used to effectively describe the RT distributions in the Eriksen flanker task,
although it failed to capture the intricacies of the Simon effect task in its original form'?. In the SSP, distracter
stimuli influence the development of a decision-variable because at the start of a trial they are captured by atten-
tion. However, as the trial progresses attention shrinks to focus on the relevant stimulus effectively boosting it and
suppressing the irrelevant stimuli. Here, we consider an alternative which is that the presence of conflict recruits
additional attention as a trial progresses, hence enhancing the effective drift. Intuitively, our proposed model
works because a starting bias in the decision-variable acts as a primary source of conflict reducing the mean RT
in the conflict trials, however the introduction of boosted attention in these same trials then reduces the standard
deviation. One potentially undesirable property of our model is that the presence of conflict, which is not known
a priori is a factor that enables the recruitment of attention. However, we do not consider this to be a fundamental
problem as the impact of this factor is zero at the start of the trial so that similar mechanisms that govern the
development of the decision-variable for choice could also govern the development of a decision-variable for
conflict, which would additionally allow us to remove the direct temporal dependence.

Our model can be summarised as follows:

Ax:l-Hl—i—#b-tAt—i—cﬁl«/At

(6)
_ . bias VvV
X = X (7)
b
ty=t;"" + & (8)

Equation (6) describes the dynamics of the decision-variable (x). A change over a single time step Af (set to be
1 ms) is governed by a drift term I, a constant term which is multiplied by the factor H which is set to take a value
of —1 or +1 dependent on the colour of the visual cue, and consequently the correct response. Similarly the term
Vis set to take a value of —1 or +1 dependent on location of the visual cue. Consequently, the term (1 — V- H)/2
is 0 during a congruent trial and 1 during an incongruent trial, signalling the recruitment of additional attention
with the passage of time ¢, implemented by a constant slope b. The use of a constant for the base drift term I makes
the assumption that the brief, 50 ms visual stimulus persists in a local memory and continues to feed the evidence
accumulator as time passes®*2. The dynamics of the decision-variable are also governed by a noise term c fixed at
0.1 which acts to scale a Gaussian noise process {, ~ N(0, 1).

Equation (7) describes the starting value of the decision-variable x, at time ¢, which is dependent on a con-
stant bias term x™ - V, where the sign depends on the visual hemifield to which the cue is displayed due to the
Vterm.

Finally, equation (8) describes the non-decision time t, to allow for a period of processing time after stimulus
presentation but before evidence integration, as well as for a certain amount of movement time. This parameter is
composed of t,/*, and also has an associated variability drawn from a uniform distribution ¢ L~ U(— %, %), and

scaled by a term ¢,

As is typical in the DDM framework, a decision is considered to have been made when the decision-variable
crosses a threshold. Our convention is to use a crossing of +x, for a rightwards movement, or —x, for a leftwards
movement.

To summarise, the model distinguished between experimental conditions (excluding tRNS for now), via the
terms V and H. Six parameters are left free to be fitted (I, x,, £,"*, ¢, b, and xob i) of which two parameters (b,

x.*) govern the difference in RT distributions between the different experimental conditions.

Model fits.  We generated bins with edges defined by the average 10*, 30", 50, 70" and 90" percentiles of the
data across subjects for the data corresponding to correct key presses for each condition. We then computed the
RT distributions for each condition generated by 25 x 10° iterations of our model, and calculated the correspond-
ing relative proportion of correct RT falling into each bin. We repeated the same procedure for the incorrect key
presses, however in this case we only attempted to use a single bin edge (50" percentile) due to the relatively small
amount of available data. A cost function computed from the sum of the y? statistic across the bins*, and aver-
aged across conditions was then minimised by using MATLAB’s implementation of the generalised pattern search
algorithm®. In an attempt to reduce the influence of local minima we re-initiated the minimisation procedure
with randomised initial values. Once we had generated a fit for the population data, we also attempted to fit indi-
vidual subject data with the same model. In this case, we initiated our model parameters to match the parameters
found from the population data.

Additionally, after fitting the model to the sham data, we incorporated tRNS by augmenting equation (6) with
the term A&, gns- '(At) to form equation (9):

Ax=1-H[1+ #b t| A+ (g, + Ag B o
where A is a scaling term corresponding to the strength of stimulation, and &y represents a noise term like &,
although it is independent of it. The size of the stimulation strength parameter A used in our simulations was
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determined by choosing the value that yielded the lowest x? statistic on the full data set (sham and stimulation),
after having fixed all other parameters with model fits on the sham data.

To investigate the influence of stimulation across individual subjects as fitted by our DDM based model we
determined whether a linear relationship held between the change in RT induced by stimulation (ART), and the
baseline sham RT. In order to determine which parameters may be of interest in modifying the influence of RT
on our subjects, we also used linear fits to determine which parameters in our model varied systematically across
the RT of our subjects. Parameters that across subjects systematically varied with RT (averaged across conditions)
were then individually investigated by evaluating their impact on the influence of stimulation using the same
intensity value as determined for our pooled data.

Visual drift-asymmetry - extended model. By design, the model presented thus far is symmetrical in that it makes
identical predictions for both congruent conditions, and separately, identical predictions for both incongruent
conditions. While this may be suitable as a first approximation to the Simon effect, it is clear that this is in fact
not the case®. There are several options for introducing asymmetries into the model, for example, by adding
condition dependent non-decision times, thresholds, or drifts. Furthermore, the condition dependent param-
eters may depend on visual hemifield, response hand, or the interaction of the two. We chose to investigate the
drift-asymmetry model (which we refer to as the extended model), as it provides an intuitive explanation for
our within subject changes in RT, which is a natural extension of our simpler symmetrical model. We note how-
ever, that this choice will have to be verified independently in future work, and is currently beyond the scope of
this study. Mathematically, the drift asymmetry is introduced by assigning I from equation (6), I=1,+ fH+gV.
During model fits on the pooled data, the parameter f was found to be near zero, and we consequently simply
fixed it to zero resulting in our model’s free parameter I, being replaced with I, and g.

Sensitivity to stimulation. In order to determine whether within subject differences in RT across conditions have
an impact on the influence of stimulation, we define the following three measures:

Sensitivity = ARTy, — ARTy, L1 ARTyy, — ARTy g,
1 —_ - f—
RTVLHL - RTVRHR 2 RTVLHR - RTVRHL (10)
Sensitivity, = 1 ARTyp — ARy, + 1 ARTyp, — ARTy
b
Rlyvin, = Ry, 2| RTyp, — Rlyg, (11)
Sensitivity, = ARTyh, — ARTyy, + 1| ARTyy, — ARTyy,
3 —_ p—
RTypy — RTy 2| RTyy — RTyy W

where RT and ART are calculated as the mean across trials for individual conditions. The sensitivity metrics are
calculated for each subject individually for both RT data and extended model fits unless stated otherwise.

Model selection. In order to provide a rigorous motivation for our model selection we considered how the aver-
age x* value would change for alternative model configurations. We defined a base model to be a simple DDM,
including variability in the non-decision time:

Ax =1- HAt + ¢/ At (13)
% =0 (14)
ty= 15" + &6 (15)

This base model takes the same structure as our model from equations (6-8), with the same parameter defini-
tions, although only includes parameters that are common in perceptual decision making models, and omits
parameters that are specific to the Simon effect and its asymmetries. Starting from this base model, we then gen-
erated a model for every combination of parameters that we proposed to include. These are the two additional
parameters introduced for our simple Simon effect model (x*®, b), and two additional parameters that we intro-
duced for our extended model (f response hand asymmetry, g visual hemifield asymmetry). We evaluated the y?
statistic of each model (n=16) and for every subject individually (n=22) using 8-fold cross-validation. Fitting
was done as previously described, using the model parameters from the across subject model fit as starting values.
Additionally, we repeated the procedure 2 more times with random starting values (by adding a random value
drawn from a Gaussian distribution scaled to be 20% of the original values) in an attempt to reduce the probabil-
ity of our results being due to local minima. We performed Wilcoxon signed-rank tests on the averaged
cross-validated x? statistic across subjects in order to determine if chosen progressively more complex models
showed clear improvements.

Data Availability.  All experimental data generated or analysed during this study are included in this pub-
lished article (and its Supplementary Information files).
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Factor Estimate SE P
Visual hemifield (V) 0.012 0.005 0.0398
Response hand (H) 0.014 0.005 0.0099
Stimulation (S) —0.007 0.003 0.0156
V-H —0.041 0.010 6x107*
V-§ 0.005 0.004 0.228
H-S 0.000 0.004 0.998
V-H-S 0.005 0.006 0.375

Table 1. Mixed-effects linear model statistics for fixed effects on RT with factors of visual hemifield, response
hand, and stimulation, as well as using random effects for subject-specific constants and slopes. Model is fitted
to within subject and condition averages (n=176).

Results

tRNS influences response time in the Simon effect.  Figure 2a shows density estimates of RT distribu-
tions which demonstrate the typical Simon effect. That is, RT in the incongruent conditions (V;Hy and VH,), are
significantly longer than in the congruent conditions (V,H; and V;Hy).

To determine the influence of tRNS, we fitted a linear mixed-effects model with the following factors: stim-
ulation (tRNS, Sham), response hand (H;, Hy), and visual hemifield (V, V), as well as with random effects
dependent on the average subject RT for correct trials. We found a significant main influence of visual hemifield
(p=0.0398), response hand (p=0.0099) and stimulation (p =0.0156). We also found significant effects of inter-
actions between visual field and hand (p =6 x 107*), but not of any other interaction (see Table 1).

Figure 2b shows RT averages across subjects, after individual subject normalisation, and then multiplied by
the subject grand mean RT. Again, this figure demonstrates the Simon effect, including a typically seen stronger
influence in the right Simon effect when compared to the left Simon effect for both visual hemifield, and response
hand (compare dark bars to light bars). A general influence of stimulation is also visible when examining the
mean RT, particularly for the V;Hy condition.

Influence dependence on response time. The noticeable differences of the influence of stimulation visi-
ble in Fig. 2b, particularly between V;Hy and VH} led us to hypothesise about mechanisms that could yield sub-
tle changes across conditions. Specifically, we considered whether longer sham RT (which we refer to as baseline
RT) might lead to larger changes in RT induced by stimulation (which we will refer to as ART). In order to test
this, we initially examined the ART dependence on the baseline RT averaged across conditions between subjects,
as shown in Fig. 3a. Here, we found a dependence of ART on RT (slope =—0.141 4+ 0.057, p =0.023, Fig. 3a),
suggesting that this may be a viable and more general interpretation of our results. We were concerned that a gen-
eral negative slope in the dependence of ART on RT may occur naturally as a product of regression towards the
mean, i.e. that points with extreme RT in the baseline (sham) are statistically likely to be coupled with less extreme
points in stimulation. To address this, we repeated the slope fits of Fig. 3a, randomising assignments of sham and
stimulation to each condition (see methods). We found that our real slope was significantly less than the mean of
the randomised slope distribution (p =0.021, proportion of iterations less than real slope), confirming that our
influence of RT on ART is not caused by a statistical effect of regression towards the mean.

In order to examine the relation between RT and ART within subjects, taking the visual hemifield and
response hand conditions into account, we fitted a linear mixed-effects model with the dependent variable
as the change in RT between sham and stimulation. The factors in this case were the baseline RT in the sham
condition, visual hemifield, response hand and their interactions. We also included a random effects term for
the offset and slope dependent on subject. We found this test to yield a significant dependence of ART on RT
(slope=—0.2440.08, p=0.003), signifying that the variation in RT within subjects is an important factor for the
susceptibility of the subject’s RT to stimulation. We also found no significant effect of any other factor or inter-
action (see Table 2). In order to visualise the impact that stimulation has dependent on the baseline RT within
subjects, in Fig. 3b we plot ART against RT for each subject and condition, after subtracting the average across
conditions respectively for each subject. A line is then fitted to the centred ART across the four conditions for
each subject. The black line in Fig. 3b, corresponding to the vertical black line in Fig. 3c has a slope set to be the
average of these fits, with the full distribution shown in Fig. 3¢ (Wilcoxon signed-rank test, p=0.0015). This once
again shows that on average, for each subject ART is more negative for larger RT.

Influence on accuracy. Figure 2c shows the percentage of mistakes in each condition averaged across sub-
jects. Clearly, incongruent trials produce more mistakes, although it is difficult to discern a systematic influence
of stimulation on the pooled data. Subjects generally performed to a very high standard, and made very few mis-
takes as is shown in the inset of Fig. 2¢, with the median percentage of incorrect responses being approximately
6%.

In order to investigate more rigorously whether stimulation impacts accuracy, we used a generalised linear
mixed-effects model to account for the average accuracy of subjects in each condition. The model was built with
factors of visual hemifield, response hand, stimulation as well as their interactions. Once again, we also included
arandom effects term for subject-specific constants and slopes. The summary statistics are shown in Table 3. The
strongest influence on the accuracy is dependent on the response hand (p =0.003). We also detected a signifi-
cant influence of the interaction between response hand and stimulation (p =0.028), however we are cautious to
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Figure 3. The influence of stimulation on RT depends on the baseline RT. (a) Negative ART corresponds

to shorter RT during stimulation, each point represents a single subject where their RT, as well as the change

in RT due to stimulation has been averaged across conditions. Change in RT between sham and stimulation
appears to be negatively correlated to the baseline RT (black line: slope = —0.141 £ 0.057, p =0.023). (b) Within
subjects, baseline RT also has a large impact on the influence of stimulation. Each point corresponds to a single
condition for each subject. A slope is fitted to explain ART in terms of RT for each subject, and the black line
shows the average across all subjects. (¢) The distribution of slopes fitted in (b) across subjects. The vertical
black line corresponds to the slope of (b) and the dashed line is centred at zero. The distribution is significantly
asymmetrical (Wilcoxon signed-rank test, p=0.0015, mean= —0.31). (d) Histogram of centred RT, showing
the relatively longer RT of the conflict conditions.

Response time (RT) —0.24 0.08 0.003
Visual hemifield (V) —0.05 0.04 0.271
Response hand (H) —0.02 0.05 0.687
V-RT 0.12 0.09 0.201
H-RT 0.05 0.10 0.623
V-H —0.03 0.07 0.692
V-H-RT 0.06 0.15 0.696

Table 2. Mixed-effects linear model statistics for fixed effects on ART, with factors visual hemifield, response
hand, and RT, as well as using random effects for subject-specific constants and slopes. Model is fitted to within
subject and condition averages (n=88).

Visual hemifield (V) —0.105 0.260 0.688
Response hand (H) —0.645 0.213 0.003
Stimulation (S) —0.228 0.126 0.071
V-H 0.642 0.462 0.167
V-S 0.190 0.171 0.269
H-S 0.359 0.162 0.028
V-H-S —0.394 0.236 0.098

Table 3. Statistics for generalised linear mixed-effects model to account for accuracy with factors of visual
hemifield, response hand, and stimulation and their interactions, as well as using random effects for subject-
specific constants and slopes. Model is fitted to within subject and condition averages (n=176).

interpret this due to the additional complexity introduced in the model by the non-linear component, together
with the relatively small range of accuracies across subjects which is close to the maximum possible accuracy
(100%).

tRNS does not detectably influence the Simon effect. The Simon effect is composed by taking the
difference between the incongruent condition and the congruent condition, however this can be considered from
two points of view: the stimulus Simon effect where we fix the stimulus laterality, and the response Simon effect
where we fix the required response hand®.
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If we consider the stimulus Simon effect (equation 4) for the left side: V;Hy — V;H;, RT from both conditions
are reduced, making the difference due to tRNS largely unchanged, while for the right side: Vi H; — VHp, stim-
ulation does not appear to change RT. Fitting a linear mixed-effects model (n = 88), with visual hemifield as a
factor, and subjects as random effects, on the mean differences in RT we find no significant effect of stimulation.
Specifically, we find an influence of visual field (slope = —0.041 4 0.010, p = 6.0 x 107°), suggesting an asymmetry
in the stimulus Simon effect, and no influence of stimulation (slope =0.000 & 0.004, p =1.00), or its interaction
with visual field (slope =0.005 £ 0.005, p =0.32).

If we consider the response Simon effect (equation 5) for the left side: Vi H; — V, H|, then stimulation acts
to increase this value (as the congruent RT moves further from the incongruent RT), while for the right side:
Vi Hy — VyHy, stimulation acts to decrease this difference (as the incongruent RT moves closer to the congruent
RT). A linear mixed-effects model fit was repeated as above, however now with response hand as a factor instead
of stimulus laterality. In this case, we find an influence of response hand (slope = —0.041 £0.010, p=5.7 x 107,
but no influence of stimulation (slope =0.005 £ 0.003, p =0.16), and no influence in the interaction term
(slope =0.005 £ 0.005, p=0.30).

It appears then that our application of tRNS does not have a systematic influence on the Simon effect, and
that we should therefore interpret our changes in RT either in a condition dependent way, or dependent on the
baseline RT.

Model captures the Simon effect and predicts dependence on response time. We were interested
in whether a simple model of the Simon effect could incorporate tRNS and replicate our findings. Our model (see
equations (6-9), depicted in Fig. 4a) when fitted to our sham data (Fig. 4b,c, [ =0.279, x,;, = 0.404, t % =10.358,
¢,4=0.0615, b=4.93, and xé’ s —0.00913) describes the RT in correct and incorrect trials, as well as the percent-
age of correct trials in each RT bin between congruent and incongruent conditions. Our model captured a key
feature of the Simon effect: a weakening of the effect at long RT, including a reversal at the highest percentile we
investigated (i.e. the RT distribution has a smaller tail for the incongruent conditions than for the congruent
conditions, despite a later mean). The value of the median, as well as the relative increase in RT in the congruent
conditions of the mistake distribution RT are also captured. The model may also capture other percentiles of the
mistake distribution, but we did not attempt to fit these as variability between the two congruent conditions, and
between the two incongruent conditions suggests that our data would not sufficiently constrain the model due to
the low number of mistakes. It is interesting to note that one of the main failings of the model is to capture the
asymmetry in our data - left vision left hand responses appear to be slightly slower than right vision right hand
responses, a robust feature of the Simon effect®. Of course, this is not possible in the current implementation as
the model is forced to be perfectly symmetrical, however it may be possible to capture asymmetries by allowing
small variations in the drift term dependent on condition (as discussed in the following section).

With our fitted model we can address our central question regarding how a DDM based interpretation of the
Simon effect reacts to tRNS, which we model simply as additional independent noise (Fig. 4d). We chose a small
value of stimulation strength A, by scanning this parameter while fixing all other parameters to those previously
fitted on the sham data and evaluating the X statistic for the entire data set (sham and stimulation). Figure 4e
shows how the model fit has a local optimum at a value of 0.022, which we then set as our stimulation strength.
Of course, our estimate of the value for A is highly dependent on the initial model structure and fit, we therefore
use simulations that incorporate the stimulation strength to make qualitative rather than quantitative judgements
regarding the influence of stimulation.

It is clear from Fig. 4d, that a general influence of the addition of noise is to reduce RT, although it is
unclear whether there is an additional dependence on congruence. Analysis of 100 repeated simulations
(each composed of average RT generated from 25 x 10 iterations) demonstrated an expected impact of con-
gruence (slope =0.0176, 95% Cls [0.0175, 0.0177] assessment by linear model without mixed-effects), stimu-
lation (slope = —0.0020, 95% Cls [—0.0021, —0.0019]), and of the interaction of congruence and stimulation
(slope =0.0005, 95% Cls [0.0004, 0.0007]). However, the influence of the interaction term is an order of magni-
tude weaker than the direct impact of stimulation, and hence it seems unlikely that it would be detectable under
normal experimental conditions.

We were also interested in whether variation in the RT across subjects would impact the ART when ignoring
within subject factors, as we showed for our experimental data in Fig. 3a. To investigate this, we fitted our model
to individual subjects and then used a stimulation strength A =0.022 as calculated for the pooled data. This is
shown in Fig. 4f, where it is clear that simulated subjects with higher RT are associated with a stronger reduc-
tion in RT when subjected to tRNS of equal strength. In order to distil the relevant parameter that impacts RT
and ART across subjects, we calculated the correlation between RT and each model parameter across subjects.
Figure 4g shows that across subjects the drift, non-decision time and variability in non-decision time are strong
contributors to the variance in RT. To specifically investigate the influence of tRNS when subject RT is changed
due to changes in drift, we used the parameters fitted in the pooled sham model, and varied only the drift term
(using a range spanning 0.75 times the minimum fitted drift value across the subjects, to 1.25 times the maximum;
Fig. 4h). Given the relatively clear relation between RT and ART induced by changes in drift, and the fact that
a change in drift is a strong driver for a change in RT in our subject fits, we suggest that this may be a dominant
factor in our experimental observations. We note that the slopes of our simulations in both Fig. 4f,h are not as
pronounced as the slope of Fig. 3a, this may be explainable due to an underestimation of the stimulation strength
in the model, a plausible explanation if the underlying model structure is not entirely accurate, or simply due to
statistical variability in the data or the fitting procedure. We do not show ART dependent on non-decision time
(£ or non-decision time variability (c,;) since, as might be expected they do not clearly interact with tRNS.
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Figure 4. Model fit and influence of stimulation. (a) Structure of our model as described in equations (6-8).
(b) Model fit across conditions for both correct (left: 10, 30", 50", 70" and 90" percentiles), and incorrect
(right: 50" percentile) responses. Empty circles represent simulation results connected via grey lines, while filled
dots represent the corresponding data. Model fit captures percentiles accurately, although it does not account
for asymmetries in the Simon effect. (c) Same model fit as in (b) showing the accuracy in each RT bin, dots
mark the proportion of correct responses for each RT bin determined as in (b) while the model fit is shown as

a dashed line. The congruent condition corresponds to the average of V;H; and V;Hp, while the incongruent
condition corresponds to the average of V;Hp and ViH;. (d) Average RT before and after the application of
tRNS in our population fitted model. tRNS appears to reduce the average RT in all conditions. The stimulation
strength parameter was chosen by examination of (e). (e) Average x? across conditions including trials with
stimulation, when the model fitted in (b) is evaluated for different stimulation strengths. A stimulation strength
parameter of 0.022 appears to be the optimal choice. (f) When stimulation (A =0.022) is applied to the model
fitted to individual subject sham data, an approximately linear dependence emerges between the influence of
stimulation and the baseline sham RT (p =0.008). (g) Correlation coefficients between each parameter of our
model and the sham RT across subjects. The drift term, non-decision time and variability appear to impact

the sham RT the most across our model fits (asterisk represents A =0.022). (h) The influence of simulated
tRNS (A =0.022) on the population fit for different drift parameters (range 0.75 x min to 1.25 X max subject
fits). If the real changes in subject RT stem from changes in the drift parameter, then the model predicts

that stimulation should be largely ineffective for subjects with low RT, but that at higher RT the influence of
stimulation on the change in RT is approximately linear. The inset shows how the drift term (y-axis) varies with
sham RT (x-axis consistent with base figure). Note that the simulation was generated using 300 x 10° iterations
for improved estimates.

Within subject response time dependence. IfRT is the dominant explanatory variable for ART then it
might be expected that when examining within subject changes in RT, congruent conditions should be less influ-
enced by stimulation than incongruent conditions simply because they have lower average RT. This does appear
to be the case in our data, as shown in Fig. 3b. However, our model in the form that has been presented so far
cannot explain this within subject behaviour. While we can coarsely attribute ART sensitivity to RT, it may be
more accurate to consider ART to be driven by changes of many parameters across subjects and conditions.
Across subjects, the drift term (I) is a strong driver for variability in RT, and it is therefore easy to ignore the con-
tribution of other parameters to ART. However, within a single subject in the model that we have so far proposed,
the variation in RT is not driven by changes in the drift term, but rather by the starting decision-variable bias
x0, and the slope b which differentiate congruent from incongruent trials. It should be noted that the impact of
the slope term (1 — V- H)b/2 is high in incongruent trials, reducing RT (in order to partially counter the effect of
the bias x*") effectively acting similarly to an increased drift term and making the condition slightly less (not
more) susceptible to stimulation.

We considered how we might reconcile the behaviour of our model within individual subjects with our results
of Fig. 3b. We noted that the main difference between the average RT of our data (Fig. 2b), and the average RT in
our model (Fig. 4d) is that the experimental data displays clear asymmetries within congruent, and separately
within incongruent conditions, while the model does not. This is a feature of the Simon effect that has been pre-
viously studied®. We hypothesised that capturing such asymmetries by allowing for variability in the drift term
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Figure 5. Symmetrical model and extended model predictions for different methods of calculating RT
sensitivity. (a) Symmetrical model predictions for different b and xé’ " values for different sensitivities. From left
to right, Sensitivity, to Sensitivity; as defined in the methods section. With the exception of b and x*, all
parameters were fixed to the values used for Fig. 4b (pooled data presented for illustration of the rationale
behind the sensitivity calculations). Parameters ranges for b and xé’ " were chosen based on individual subject
fits, x* min: 0.000, max: 0.018, mean: 0.009; b min: 4.011, max: 5.21, mean: 4.79. (b) Same as (a) but for
extended model with g=0.022, determined as the average from individual subject fits and I, =1 from the
symmetrical model. Note that for Sensitivity,, values are predicted to be consistently negative, while this is not
the case in any other condition. (¢) Histogram representation of (a). Sensitivity; median: —0.768 (note that the
range of values is large here as between condition RT are very similar, resulting in a denominator near zero);
Sensitivity, median: —0.020; Sensitivity; median: —0.016. (d) Histogram representation of (b). Sensitivity,
median: —0.200; Sensitivity, median:—0.015; Sensitivity; median: —0.016. Note that for clarity in these
simulations, a stimulation strength of A =0.044 was used, and colours in (a and b), as well as x-axis in (c and d)

were clipped.

across conditions, either due to response hand or visual hemifield dominance could additionally explain a sensi-
tivity of ART to RT within subjects. For example, upon inclusion of a visual hemifield dominance implemented
as a modification of the drift term dependent on condition, it would be expected that the condition with the
higher drift (for example VyHy) would have a shorter RT than its corresponding lower drift condition (V;H; in
this case), and consequently predict within subject dependence of ART on RT. In other words, the variability
between congruent RT and incongruent RT is dominated by x/™ and b however, in the extended model within
congruent and separately within incongruent conditions, the variability is dominated by drift asymmetry.

As discussed in the methods section, we found that when explaining the pooled RT data much of the asym-
metry could be explained by using only a single additional parameter to cater for an additional drift component
dependent on which visual hemifield the stimulus was presented to. We refer to this model including visual drift
asymmetry as the extended model. Upon the assumption that the extended model captures key aspects of our
data, not only between subjects but also within subjects, we considered how we might most clearly detect within
subject sensitivity of ART to RT. At first sight, it may seem that the most direct approach to determine the pres-
ence of this relationship would be to perform individual subject fits, and search for a correlation between RT
and ART as we did in Fig. 3b. Interpretation of both our simple model, and extended model warn against this
approach however: several parameters with different influences on ART are changing to explain differences in RT
between congruent and incongruent conditions. Consequently, a large part of the difference between congruent
and incongruent conditions may be insensitive to stimulation. Furthermore, these parameters may not be per-
fectly recovered in performing individual subject fits which further motivates the need to use a robust feature of
our model to compare to our data.

To this end, we investigated how the simple model behaviour compares to the extended (drift-asymmetry)
model with respect to different methods for calculating ART sensitivity. Each plot in Fig. 5a shows ART sensitiv-
ity for model simulations with all parameters kept the same as in Fig. 4b, apart from x/™ and b which are varied
systematically. In the leftmost sub-figure ART sensitivity (see methods) is calculated as the ART difference,
divided by RT difference within the congruent condition, and averaged with the same calculation repeated within
the incongruent condition (Sensitivity,). In the central figure it is calculated using pairs across congruent and
incongruent conditions, but with stimuli presented to the same visual hemifield (Sensitivity,). Finally, in the
rightmost figure, pairs are also taken to be across congruent and incongruent conditions but selected for the same
response hand (Sensitivity;). The figure shows that under the simple model structure, systematic predictions of
ART are highly dependent on the specific model parameters (see Fig. 5¢). In Fig. 5b we introduce visual drift
asymmetry (maintaining all other parameters fixed as in Fig. 5a). We can see that Sensitivity, and Sensitivity; still
generate highly parameter dependent values. However, when taking the average of within congruent and within
incongruent pairs (Sensitivity,), we find that the model consistently predicts values less than zero (see Fig. 5d). In
other words, we would predict that the influence of stimulation should be most consistent when examining the
sensitivity of ART with respect to changes in RT within congruent, and separately within incongruent conditions
(Sensitivity,). This is not the case for Sensitivity, and Sensitivitys, since they are calculated from RT that are par-
tially influenced by drift-asymmetry, but dominated by x“*and b which vary across subjects. On the other hand
Sensitivity, is predominantly sensitive to drift-asymmetry, and so generates a stable consistently negative value
across subjects which is a signature that we can search for in our data. We decided to re-examine our data from
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Figure 6. Prediction error of models of different complexity. (a) Cross-validated x? statistic (average across
subjects) for base model (level 0), and all proposed model extensions (levels 1-4, corresponding to 1-4
additional parameters). Dashed-red lines indicate the best model at each level. Underlying green outline
represents the models used throughout this manuscript. Symbols correspond to additional parameters
used in each model (see legend). (b) Same X statistic as in (a), with black nodes representing every model
configuration. Red and green colours as in (a).

Fig. 3b in this light by calculating the various ART sensitivity measures for each subject. This yields a clear nega-
tive Sensitivity, (median = —0.76, Wilcoxon signed-rank test, p=0.007, n =22, z= —2.678). Sensitivity, also
appears to be negative (median = —1.01, p=0.039, z= —2.062), although we note that this effect is not as strong
as for Sensitivity,. Finally, Sensitivity; is not detectably asymmetrical around zero (median =0.46, p =0.81,
2=0.244).

When repeating the same test using the extended model fitted to individual subjects (A =0.022, see Fig. 4e),
we find Sensitivity, to be negative (median = —0.05, Wilcoxon signed-rank test, p =0.013, n =22, z= —2.484) as
expected, we also find Sensitivity; to be negative (median = —0.02, p =0.006, z= —2.743), but not Sensitivity,
(median = —0.02, p=0.131, z=—1.510). As discussed in the previous section, A =0.022 may be an underesti-
mate of stimulation strength, so we also investigated the behaviour of the model when the simulated stimulation
strength was doubled (A =0.044). In this case, we once again found Sensitivity, to be clearly negative
(median = —0.17, p=0.0006, z = —3.425) while Sensitivity, (median =0.00, p =0.223, z=—1.218) and
Sensitivity; (median = —0.01, p=0.249, z= —1.153) did not appear to be detectably asymmetrical around zero.
We note that within reasonable bounds, the exact choice of stimulation strength does not impact our main model
prediction of a negative Sensitivity, across subjects, which is a robust feature matched in our behavioural data. On
the other hand, the fact that Sensitivity, and Sensitivity; are inconsistent between model and data is not unex-
pected since their RT differences are dominated by x*and b, making their predictions highly dependent on
individual subjects and individual subject fits as demonstrated in Fig. 5.

Model selection. In order to provide a statistically rigorous assessment of the different models, we evaluated
every combination of progressively more complex model in going from the base model to our extended model
(as defined in the Methods section). Every model candidate was associated with a x? statistic, calculated by per-
forming an 8-fold cross-validated fit, and then averaging for each subject. When computed using cross-validation,
the x? quantifies the model prediction error which can be directly minimized for model selection without the
necessity of any additional penalty for model complexity (i.e. number of model parameters).

Figure 6a shows how the ? statistic changes as model parameters are introduced from left to right. For exam-
ple, the dashed red line shows the progression for the models that we propose and test throughout this manu-
script. We start with 0 additional parameters and reduce our x? the most by adding the xé’ s parameter, followed
by the b parameter (our simple Simon effect model), followed by the g parameter (our extended Simon effect
model). The black line in figure Fig. 6b, is equivalent to this progression with all other parameter progressions
shown in grey.

Performing Wilcoxon signed-rank tests on the cross-validated subject x* values, we can see that the addition
of the x/'® parameter improves the model substantially (chosen level 1 vs level 0, p=0.022, z=2.29, n=22), the
further addition of b as the second parameter further improves the model (chosen level 2 vs level 1, p=0.001,
z=3.30). While the x? is lower for our chosen level 3 model, than level 2 this difference is not high enough to
reach statistical significance (chosen level 3 vs level 2, p =0.661, z=0.44). The level 4 model which captures both
visual and response hand asymmetries yields only a slight, statistically not significant reduction in the x? statistic
over our chosen level 3 model (level 4 vs level 3, p=0.548, z=0.60). Model complexity is implicitly penalised in
our method, so a reduction in x? when moving from level 2 to level 4 is not guaranteed. Our aim in moving from
alevel 2 model to a level 3 model was to capture individual subject asymmetry as we found it in our data (Fig. 3b)
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and as it has been reported previously®. The observed reduction in prediction error supports using the level 3
model, although statistical significance cannot be established with the experimental data of this study. Despite the
lack of rigorous statistical support, we consider the choice of the level 3 model justified given its explanatory
power regarding the well-established effect of individual subject asymmetry*. We note that among level 3 models
there is a second level 3 model (using response hand instead of visual hemifield asymmetry) which yielded a very
similar prediction error as the chosen level 3 model (Fig. 6). Which of these two level 3 models is indeed superior
remains to be resolved in future studies. Likewise we consider whether a level 4 model would be a superior choice
over a level 3 model to be work for future studies. Our choice of using a level 3 model over the level 4 model was
on the grounds that the level 4 model introduces additional complexity without explaining a new feature of our
data. We would like to note however, that the choice of the level 4 model over our level 3 model is unlikely to be
critical for our interpretation of tRNS. This is because the additional response hand asymmetry parameter acts in
a similar way to the already present visual-hemifield asymmetry to change the evidence accumulation rate across
conditions and therefore induce baseline RT dependent changes in RT.

Conscious and unconscious detection of tRNS.  We asked each of our subjects to report on any sensa-
tion they felt after each session within an experiment. Out of our 24 subjects, four claimed to notice an unusual
sensation in one, or two sessions (‘tingling, one subject, one session; ‘pressure, two subjects, two sessions for both;
‘slight burning sensation, one subject, one session). The sensation of ‘pressure, is likely to come directly from the
electrode montage and be unrelated to the stimulation itself, although the tingling and light burning sensation
reported are likely to be in response to the stimulation. Since tRNS clearly went consciously unnoticed by most
subjects, in the vast majority of sessions, we do not consider direct conscious sensation to be a likely explanation
for our experimental results. It is also not clear why conscious detection should decrease RT only when RT is
already long. The lack of conscious sensation in our experiment is consistent with Terney et al.!’ who claim that in
their tRNS experiment with the same amplitude, 78 out of 80 subjects were not aware of stimulation.

Although we do not believe that conscious detection plays a significant role in our experiment, it may be that
some form of unconscious process (for example, modulation of arousal level by tRNS) is an alternative to a direct
influence of tRNS on cortical neurons. While this cannot be ruled out we consider it a less plausible explanation
for our results than one involving changes of decision-variables given the fact that we found the influence of tRNS
in our paradigm to be dependent on the baseline RT.

Discussion

We initially hypothesised that tRNS applied across the hemispheres might predominantly disrupt conflict res-
olution in the Simon task. More specifically we hypothesised that interhemispheric processing is important for
conflict processing, and that by applying tRNS across the two hemispheres we might disrupt this processing. Our
experiment replicated the typical Simon effect behaviour, however we did not observe a specific influence of tRNS
on changes in RT dependent on whether the task condition was congruent or incongruent. Instead, we observed
a more general influence of tRNS, which acted to reduce RT.

Interestingly, we also observed a dependence of the influence of stimulation on the baseline RT both between
subjects and across conditions in individual subjects. In light of recent work linking the Simon effect to mecha-
nisms similar to those described by models of perceptual decision making®’, and additional work linking mecha-
nistic interpretations of the influence of tCS to decision making models®® we decided to recast our interpretation
in terms of a conflict DDM. We found that the DDM based models that we developed can provide a mechanistic
interpretation of a reduction of RT due to the addition of noise to the system, and also display changes in RT that
depend on baseline RT. The general concept that tRNS may influence RT dependent on the baseline RT, is also
supported by explaining the Simon task in terms of a DDM.

A potential explanation for a general mechanism by which tRNS could interact with cortex is by stochastic
resonance. This concept has been used to modify tactile sensation in monkeys via aperiodic ICMS?, and was
used in recent work!? to compare visual noise to tRNS, demonstrating an initial increase, followed by a decrease
in accuracy in a visual perception task as noise of either modality is increased. While stochastic resonance is an
appealing explanation for changes in accuracy, it is a general property displayed by some non-linear systems,
and does not incorporate mechanisms of decision making directly, rather stochastic resonance is a property that
some decision making mechanisms may exhibit. Here, we are interested in explaining changes in RT so we avoid
making direct links to stochastic resonance, and explain our results directly in terms of a DDM based model.
While an increase in noise in a DDM should result in a transition along a speed-accuracy curve we chose to focus
on RT, despite some indication that accuracies in our paradigm were modified. This is because our subjects were
able to consistently perform near 100% accuracy which means that increases, and more subtly, decreases in per-
formance might be undetectable. To see why reductions in accuracy might be undetectable, consider the example
that in a DDM operating at 100% accuracy a sufficiently high drift can immunise the choice from an increase in
noise. Given this, and the narrow range of accuracies that our subjects displayed, we are cautious to interpret our
detected change in accuracy in a single condition with analysis dependent on non-linear models.

In our model, the addition of tRNS, which we incorporate simply as uncorrelated noise acts to reduce the
average RT. Essentially this occurs because the addition of noise enhances the asymmetry in the RT distribution

which results in a shift of the mean to earlier times. For the basic DDM, it is known that the mean of the RT dis-

Ixxy,

tribution can be written as®: TS Llfhtanh —% ). It is then clear that as the noise c is increased, the average RT

gy decreases. Other studies have previously attcempted to investigate mechanisms of perceptual decision making,
with tDCS or tACS. For example, Bonaiuto et al.”’” model the change in RT due to tDCS during a two-alternative
forced choice random dot motion task using a biophysically plausible network model®. Their model is based on
the model proposed by Wang* represents a decision variable in terms of firing rates of two competing
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populations with the dominant source of noise in the system being generated from large populations of external
neurons. We hypothesise that our conflict DDM could have a similar interpretation at the level of individual neu-
rons and populations of neurons. tRNS would then act to enhance noise in the two populations (and potentially
in the external population) by small changes to membrane potentials over very large number of neurons. At the
level of our conflict DDM, we speculate that this would manifest as an additional noise term. We believe that our
study adds support for the concept that perceptual decision-making models incorporating threshold crossings
and evidence accumulation can be probed on-line using transcranial current stimulation techniques. Our pri-
mary aim was to explain the influence of tRNS in terms of evidence accumulator models, and not to develop a
new model for the Simon effect. Despite that, we believe that the model we have outlined warrants further inves-
tigation as a contender for the Simon effect due to its high explanatory power (including the reversal of the Simon
effect at high RT, not captured by the DMC?’), and relative simplicity. It remains to be seen whether like the DMC,
our model can also capture the RT distributions in the Eriksen flanker task, or indeed whether it generalises to
different variations of the Simon task.

The average left visual hemifield RT change due to stimulation appears to be larger than the average right
visual hemifield RT when examining Fig. 2b. The explanation for this may be predominantly due to the weak
effects of stimulation, and large experimental noise, combined with the fact that the average left visual hemifield
RT are longer than the average right visual hemifield RT. However, we consider the possibility that the influence
of stimulation as well as being dependent on RT, is also dependent on the visual hemifield to which a stimulus is
presented. This is because the Simon effect itself has been previously shown to display asymmetries which broadly
agree with what is shown in Fig. 2b, where generally the left stimuli and left response Simon effect are smaller than
the converse®. It is therefore possible that natural asymmetries in the processing of visual stimuli under conflict
partially explain the different RT that we observe based on visual field dependence. These different RT may then
modify the influence of tRNS via the mechanism proposed in our model, however the stimulation itself may also
act on asymmetrical processing leading to a mixture of these two effects. In this light, an asymmetrical influence
of tRNS on behaviour would not be surprising despite our symmetrical application, although we consider this to
be a secondary effect to the general influence of the baseline RT.

The positioning of the stimulation electrodes at FT7 and FT8 in the EEG International 10-20 system, was
chosen to interfere with information transfer via corpus-callosum which, if successful may have caused a change
in RT predominantly in the incongruent trials. Aside from our initial consideration that tCS might be relatively
effective at targeting across the hemispheres due to long axonal projections, the reason for this hypothesis was
that incongruent trials require additional inter-hemispheric communication, most likely via corpus-callosum,
for example, left visual information is initially processed in the right hemisphere, so if the required response is for
a right finger movement, information must additionally cross to the left hemisphere. The idea that there may be
an additional delay in inter-hemispheric transfer was demonstrated in the Poffenberger paradigm*#2. Here, the
authors demonstrated that when healthy subjects are asked to react to a stimulus with the same hand as the side
of the visual hemifield in which it appears (congruent condition), their RT are faster than when their reaction
must occur on the opposite side (incongruent condition). This result was interpreted as “Splitting the normal
brain with reaction time”, the title of work by Filbey et al.*’. This interpretation with its background in split brain
research simply suggested that information in the crossed condition must travel via the corpus-callosum, conse-
quently increasing RT. However, the reasons for the delay in the incongruent conditions in the Simon effect task
are likely to be different at least in part, as the transmission delay caused by corpus-callosum is much smaller than
the changes visible between conditions in the Simon effect task. We consequently consider that tRNS is having a
more general influence on decision making circuits. If we are indeed correct regarding our targeting of decision
making circuits, then a likely candidate is left dorsolateral prefrontal cortex (DLPFC), which would be covered
by our large sponge electrodes, and has been previously implicated as an important region for decision making,
which is independent of response modality**, and has been previously targeted in perceptual decision making
tasks with tDCS*.

In our experiment we used broad-spectrum tRNS. Other tRNS studies have been interested in differentiating
between high-frequency noise (100-640 Hz) and low frequency noise!®!! (up to 100 Hz). For example, it has
been shown!® that motor excitability after application of high-frequency tRNS, as well as broad-spectrum tRNS
(high and low frequency) was enhanced, but not for low-frequency tRNS. Fertonani ef al.!* showed a significant
improvement in task performance in an orientation discrimination task when using high-frequency tRNS, and
not for low-frequency tRNS, although a direct significant difference in effect strength between the two tRNS
types could not be determined. We note that while our model generates qualitatively the same results for all tRNS
modalities, it predicts stronger influence of stimulation for low-frequency tRNS, than for high-frequency tRNS
due to the low pass filter quality of evidence accumulators. One explanation which may reconcile these various
results, is that tRNS exhibits an instantaneous effect caused by direct changes in membrane potential of neurons,
consistent with our data and model, as well as additionally having a longer term effect particularly sensitive to
high-frequency noise!’.

We have shown that tRNS can reduce RT in a Simon effect task, particularly when baseline RT are long. We
believe that the interaction of noise with models of evidence accumulation that give rise to different baseline
responses can explain our results most parsimoniously and have demonstrated this in a novel model of the Simon
effect. We did not find any specific influence on the processing of conflicting evidence. We hypothesise that our
experimental result may generalise to other types of task, such as two alternative forced choice tasks in decision
making during coherent random dot motion that can similarly be described in terms of drift-diffusion models.
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