
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t    t p : / / c r e  a   t i 
v e  c  o  m  m  o n s . o r g / l i c e n s e s / b y - n c - n d / 4 . 0 /     .   

Yue et al. BMC Cancer         (2024) 24:1381 
https://doi.org/10.1186/s12885-024-13149-x

BMC Cancer

†Qiuyuan Yue, Mingwei Zhang, Wenying Jiang and Lanmei Gao work 
and share first authorship.

*Correspondence:
Jinsheng Hong
13799375732@163.com
Yueming Li
fjmulym@163.com

Full list of author information is available at the end of the article

Abstract
Background Cuprotosis has been identified as a novel way of cell death. The key regulator ferredoxin 1 (FDX1) 
was explored via pan-cancer analysis, and its prediction models were proposed across seven malignancies and two 
imaging modalities.

Methods The prognostic value of FDX1 was explored via 1654 cases of 33 types of cancer in the Cancer Genome 
Atlas database. The MRI cohort of hepatocellular carcinoma in the First Affiliated Hospital of Fujian Medical University, 
and CT and MRI images from the Cancer Imaging Archive, REMBRANDT and Duke databases were exploited to 
formulate radiomic models to predict FDX1 expression. After segmentation of volumes of interest and feature 
extraction, the recursive feature elimination algorithm was used to screen features, logistic regression was used to 
model features, immunohistochemistry staining with FDX1 antibody was performed to test the radiomic model.

Results FDX1 was found to be prognostic in various types of cancer. The area under the receiver operating 
characteristic curve of radiomic models to predict FDX1 expression reached 0.825 (95% CI = 0.739–0.911). Cross-
tissue compatibility was confirmed in pan-cancer validation and test cohorts. Mechanistically, the radiomic score was 
significantly correlated with various immunosuppressive genes and gene mutations. The radiomic score was also 
found to be an independent prognostic factor, making it a potentially actionable biomarker in the clinical setting.

Conclusions The expression of FDX1 could be non-invasively predicted via radiomics. The radiomic patterns with 
biological and clinical relevance across histology and modalities could have a broad impact on a larger population of 
patients.
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Background
The global burden of cancer is increasing [1]. Currently, 
biomarkers for cancer are primarily assessed based on 
pathology. However, in addition to difficulties in obtain-
ing specimens and its invasiveness, biopsy may also 
be biased, resulting in selection bias in the evaluation 
results. Hence, a noninvasive, convenient, and whole-
lesion evaluation method is urgently needed for clinical 
use [2, 3]. Medical imaging meets all the three aforemen-
tioned requirements. It has become an indispensable 
part of cancer diagnosis and treatment and is used to 
evaluate macroscopic morphology, hemodynamics, and 
lesion metabolism [4]. Radiomics goes a step further and 
evaluates the microscopic molecular expression status by 
extracting quantitative information about the lesion and/
or its surroundings. It can be used to assess gene muta-
tions, molecular expression status, and tumor micro-
environments (TME) [5]. However, current radiomic 
signatures have limited reproducibility and generalizabil-
ity because most features are dependent on the imaging 
modality and tumor histology, which exhibit considerable 
variations [6]. Nevertheless, pan-cancer studies may help 
to identify commonly conserved patterns and unify bio-
logical themes across cancers.

Recent studies have identified cuprotosis as a novel 
way of cell death, distinct from other regulated cell death 
(RCD) [7]. RCD-associated genes and tumor mutational 
burden (TMB) are prime examples of tissue-agnostic bio-
markers. Molecules involved in RCD, especially the key 
regulator ferredoxin 1 (FDX1), are expected to have huge 
potential as new biomarkers. FDX1 is an electron car-
rier involved in mitochondrial aerobic respiration and 
in the synthesis of iron-sulfur clusters, which play a key 

role in multiple physiological and pathological processes. 
Research on this biomarker is limited, and no relevant 
research has been conducted in radiomics.

In this study, multiple datasets and dual modalities 
were used to construct a radiomic model for predicting 
FDX1 expression. We aimed to identify the underlying 
radiomic features across multiple tumor phenotypes and 
ensure compatibility across diverse tissues and imaging 
contrasts.

Methods
Data source and patients
The flow of this study was depicted in Fig. 1. Transcrip-
tome RNA sequencing data were downloaded: data on 
33 cancer types from the Cancer Genome Atlas (TCGA), 
(https:/ /tcga-d ata.nci .nih .gov/docs/publications/tcga/), 
non-small cell lung cancer (NSCLC) from Gene Expres-
sion Omnibus  (   h t  t p s  : / / w  w w  . n c  b i .  n l m .  n i  h . g o v / g e o / q u e r y 
/ a c c . c g i ? a c c = G S E 1 0 3 5 8 4     ) , and brain lower grade glioma 
(LGG) from the Chinese Glioma Genome Atlas  (   h t  t p :  / / w 
w  w .  c g g a . o r g . c n . p o r t a l . p h p g     ) ; corresponding CT or MRI 
images were retrieved from the Cancer Imaging Archive, 
Gene Expression Omnibus, and REMBRANDT (http:// 
cainteg rator-i nfo. nci.nih.gov/rembrandt). Duke breast 
cancer MRI images  (   h t  t p s  : / / s  i t  e s .  d u k  e . e d  u /  m a z u r o w s k i / 
r e s o u r c e s / b r e a s t - c a n c e r - m r i - d a t a s e t /     ) and clinical vari-
ables were retrieved as an independent test dataset for 
the prognostic value of the radiomic score.

For pan-cancer analysis, RNA sequencing data from 
TCGA, covering 33 types of cancer, were exploited. Cor-
responding clinical variables and survival outcomes 
were retrieved from TCGA to investigate the association 

Fig. 1 The flow of this study

 

https://tcga-data.nci.nih.gov/docs/publications/tcga/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103584
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE103584
http://www.cgga.org.cn.portal.phpg
http://www.cgga.org.cn.portal.phpg
http://caintegrator-info.nci.nih.gov/rembrandt
http://caintegrator-info.nci.nih.gov/rembrandt
https://sites.duke.edu/mazurowski/resources/breast-cancer-mri-dataset/
https://sites.duke.edu/mazurowski/resources/breast-cancer-mri-dataset/
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between FDX1 expression and overall survival (OS) 
across cancer types.

The inclusion criteria were as follows: (1) primary 
tumors, (2) complete clinical data and (3) overall survival 
time over 30 days. The exclusion criteria were as follows: 
(1) bilateral lesions and (2) cases with unknown race, his-
tologic grade, pathologic stage.

The inclusion and exclusion criteria for the public 
imaging cohorts were based on the previous studies [8]. 
The inclusion criteria were as follows: (1) solid tumors, 
(2) available important clinical data, (3) survive over 30 
days. The exclusion criteria were as follows:1) non-pri-
mary tumors, 2) bilateral lesions, 3) no venous phrase 
images for CT cohorts or contrast-enhanced images for 
MRI cohorts, (4) poor image quality, and (5) postopera-
tive imaging.

The expression of FDX1 in different cell types was 
explored using single-cell sequencing datasets from the 
scTIME portal website [9]. Mutation annotation for-
mat files deposited in the TCGA data portal for somatic 
mutations were downloaded for analysis  (   h t  t p s  : / / p  o r  t a l . g 
d c . c a n c e r . g o v /     ) .  

The data of the HCC cohort diagnosed at the First 
Affiliated Hospital of Fujian Medical University between 
January 2017 and December 2020 was used to develop 
the MRI model. The inclusion criteria were (1) contrast-
enhanced MRI images (3.0T) within 1 month before 
surgery; (2) complete pathological, imaging, and clinical 
data; and (3) good image quality. The exclusion criteria 
were (1) MRI images suggesting that the lesions invaded 
blood vessels, bile duct tumor thrombus, or extrahepatic 
metastasis and (2) a history of partial hepatectomy or 
interventional therapy. In patients with multiple lesions, 
the largest lesion was the preferred study object.

Preprocessing
The images were resampled to 1 × 1 × 1 mm3 pixels to 
eliminate the interference of inconsistent spatial resolu-
tion among the various models of imaging procedures.

VOIs segmentation
VOIs were outlined along the tumor contour by a radi-
ologist (YQY, with > 9 years of experience) under double-
blind conditions and verified by another radiologist (YRP, 
with > 6 years of experience in radiology). The entire 
tumor region was drawn manually using 3D Slicer soft-
ware (https://download.slicer.org). During the  s e g m e n 
t a t i o n , we made a comprehensive evaluation combined 
with other sequence/phase images, determined the lesion 
location by adjusting the appropriate window width 
and window position, and checked whether there were 
abnormal tissue masses, structural asymmetry, different 
density or signal, and abnormal enhancement areas to 
determine the tumor area.

Feature extraction
We extracted radiomic features using PyRadiomics 
(https:/ /pyradi omics.r eadt hedocs.io/en/latest/), and 
Z-score normalization was performed. It allowed us to 
derive both first-order statistics and higher-order tex-
ture features from the tumor volumes. Specifically, the 
extracted features included: 1) first-order statistics, which 
capture basic intensity values, such as mean, variance, 
skewness, and kurtosis; 2)shape features, which describe 
the geometry and size of the tumor, including metrics 
such as volume, surface area, and compactness; 3) texture 
features, derived from Gray-Level Co-occurrence Matrix 
(GLCM), Gray-Level Run Length Matrix (GLRLM), and 
Gray-Level Size Zone Matrix (GLSZM), which reflect 
spatial patterns and the heterogeneity of pixel intensities 
within the tumor.

CT radiomic model for predicting FDX1 expression
Given that the borders of the tumor in the venous phase 
were more distinct, features were screened on contrast 
enhanced KIRC CT images during the venous phase. To 
address the high dimensionality of the extracted features, 
we employed the Recursive Feature Elimination (RFE) 
algorithm to select the most relevant features. RFE itera-
tively ranks the features based on their importance in the 
model and removes the least significant ones. After this 
selection process, we reduced the number of features to 8 
for the CT-based model and 13 for the MR-based model, 
retaining only the most relevant features for predicting 
FDX1 expression.

After feature selection, the remaining features were 
used to build the radiomic prediction model using logis-
tic regression (LR). The selected features were input into 
the LR algorithm to model the probability of high vs. low 
FDX1 expression. This is a linear classification model 
where the log odds of the binary outcome are modeled 
as a linear combination of the selected radiomic features.

The probability of FDX1 expression predicted by the 
radiomic model was designated as the rad_score. To eval-
uate the radiomic model, ROC and precision-recall (PR) 
curves were plotted. The AUC and other diagnostic indi-
ces, including the BS, ACC, sensitivity, specificity, PPV, 
and NPV, were used to evaluate diagnostic performance. 
Calibration of the predictive model was demonstrated 
with calibration curves, and the Hosmer–Lemeshow test 
was used to assess the model fitness. Clinical usefulness 
was assessed using net benefits at different threshold 
probabilities determined by DCA.

We mitigated the risk of overfitting by applying RFE 
to select the most predictive features and ensuring a 
clear separation between training and test datasets. This 
allowed the model to generalize well to unseen data. In 
addition, we carefully split the datasets to ensure that 
the model was trained on one cohort and then validated 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://download.slicer.org
https://pyradiomics.readthedocs.io/en/latest/
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and tested on independent cohorts from different can-
cer types. This approach ensured that the model was not 
overfitted to the training data and could generalize well 
across different cancer types and imaging modalities. By 
separating the training, validation, and test datasets, we 
minimized the risk of overfitting and provided a robust 
evaluation of the model’s performance on unseen data.

The kidney renal clear cell carcinoma (KIRC) cohort 
from TCGA served as the training dataset. The model 
was then validated using the liver hepatocellular carci-
noma (LIHC) cohort from TCGA. The purpose of the 
validation was to fine-tune the model and evaluate its 
performance on an independent dataset from a different 
cancer type. To assess the generalizability of the model, it 
was tested on additional external cohorts, including the 
OV (ovarian cancer), HNSCC (head and neck squamous 
cell carcinoma), and NSCLC cohorts from TCGA. These 
test datasets provided a robust evaluation of the model’s 
performance across different cancer types and ensured 
that the model could generalize well to unseen data.

MR radiomic model for predicting FDX1 expression
The MRI procedure for the hospital HCC cohort was as 
follows: T1C sequence after contrast agent injection was 
used for analysis, which had clearer comprehension of 
the anatomy. All MRI images were corrected using the 
N4 bias field correction algorithm, a popular method for 
correcting low-frequency intensity non-uniformity pres-
ent in MRI image data, known as bias. The model was 
constructed using AP T1C images of the hospital HCC 
cohort. Then, the RFE algorithm was used to screen 
features, LR algorithm was used to model features, and 
rad_score was constructed to predict the expression level 
of FDX1. The model evaluation index was the same as 
that of the CT model. The model was verified using the 
TCGA-LGG cohort to check its performance on an inde-
pendent dataset from a different cancer type. Finally, the 
model was tested on the REMBRANDT cohort (glioma 
dataset) and the Duke breast cancer cohort to evaluate 
its ability to generalize across additional cancer types and 
imaging modalities.

According to the exclusion criteria (poor image quality 
and postoperative imaging), 52 OV patients, 60 HNSCC 
patients, 104 NSCLC patients, 36 LIHC patients, 11 
REMBRANDT patients, 29 BRCA patients, zero Duke 
patients were eliminated from patients with images.

IHC
HCC tissues from the First Affiliated Hospital of Fujian 
Medical University were fixed, embedded in paraffin, 
and sectioned for IHC staining by an FDX1 antibody 
(Abmart, Shanghai, China). IHC was performed with 
antibodies targeting FDX1 (dilution 1:100), determined 
based on preliminary optimization experiments to ensure 

specific and robust staining. The stained tissue sections 
were counterstained with hematoxylin. Secondary bioti-
nylated antibodies specific to the species of the primary 
antibody were used, followed by a horseradish peroxidase 
(HRP)-conjugated streptavidin for signal amplification.

Staining Protocol was as follows: Formalin-fixed, par-
affin-embedded (FFPE) tissue sections from the HCC 
cohort were used for IHC. Tissue sections were cut at 
4 μm thickness and mounted on glass slides. The tissue 
sections were deparaffinized using xylene and rehydrated 
through graded alcohols.

Antigen retrieval was performed using a citrate buffer 
(pH 6.0) at 95  °C for 20  min to enhance the accessibil-
ity of the FDX1 epitopes. Endogenous peroxidase activ-
ity was blocked with 3% hydrogen peroxide for 10 min at 
room temperature. Tissue sections were incubated with 
the FDX1 primary antibody (1:100 dilution) overnight at 
4  °C. The sections were then incubated with a species-
specific biotinylated secondary antibody for 30  min at 
room temperature, followed by the HRP-conjugated 
streptavidin for 15 min. The signal was developed using a 
diaminobenzidine (DAB) substrate, resulting in a brown 
color for positive staining. The sections were counter-
stained with hematoxylin for contrast.

AIPATHWELL (Wuhan Servicebio Technology Co.), 
serves as a sophisticated tool for the comprehensive 
panoramic assessment of FDX1 IHC stained Sect.   [10]. 
H-Score were calculated as (percentage of weak inten-
sity*1) +(percentage of moderate intensity*2) +(per-
centage of strong intensity*3) [11]. Then H-Scores were 
categorized as low or high for further statistical analysis, 
based on the median cut-off.

Quantification and statistical analysis
Normally and non-normally distributed quantitative data 
are presented as mean ± standard deviation and median 
(interquartile range), respectively, whereas categorical 
data are shown as percentages. The Wilcoxon rank-sum 
test was used to compare differences in quantitative data 
between the groups, whereas the chi-square and Fisher 
exact tests were used to compare differences in categori-
cal variables between the groups.

All qualified cases were divided into two groups accord-
ing to high and low FDX1 expression levels separated by 
the median value. Spearman or Pearson correlation coef-
ficients were calculated using correlation analysis. Sur-
vival analysis was performed using Kaplan-Meier curves 
to compare the OS between high and low expression 
groups, and the log-rank test was used for significance 
testing. Univariate and multivariate Cox regression were 
applied to identify the hazard ratio (HR) of FDX1 expres-
sion in each cancer type. The prognostic significance of 
FDX1 was visualized through forest plots, depicting the 
hazard ratios. To identify differentially enriched pathways 
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between FDX1high and FDX1low groups, gene set variation 
analysis was employed to calculate enrichment scores for 
the 50 hallmark pathways from the molecular signature 
database (MSigDB version 6.0).

Both immune and stromal scores were calculated 
using R packages “limma” and “estimate.” The correla-
tion of FDX1 expression level with TMB was conducted 
via the R package “fmsb.” The rad_score was calculated, 
and patients were dichotomized by the R package “surv-
Misc” for survival and correlation analysis. To compare 
the mutation differences between the high- and low-rad_
score groups, visualizations of the highest frequency of 
mutations were performed in R using the maftools pack-
age. Each point on the x-axis of the waterfall plot repre-
sents an individual patient, used to calculate mutation 

frequency and quickly identify genes with high mutation 
frequencies in the sample.

The statistical significance level was set at a P-value 
(two-tailed) of < 0.05, except when specifically stated.

Results
Pan-cancer analysis
FDX1 expression was significantly lower in tumor tissues 
than in normal tissues (P < 0.05; Fig. 2A). As depicted in 
Fig. 2B, the FDX1 expression level was significantly asso-
ciated with OS in patients with various cancers. The TME 
score was significantly correlated with the FDX1 expres-
sion level (Fig.  2C). Various cuprotosis-related genes 
were also significantly correlated with FDX1 expression 

Fig. 2 Pan-cancer analysis of the significance of FDX1 in various cancer types. (A) Comparison of FDX1 expression levels across 33 cancer types, high-
lighting potential differences in expression patterns. (B) Cox regression analysis of overall survival to evaluate the prognostic significance of FDX1 across 
multiple cancers. (C) Correlation analysis between FDX1 expression and tumor microenvironment scores, exploring the impact of FDX1 on immune infil-
tration and the TME. (D) Analysis of FDX1’s relationship with cuprotosis-related genes, identifying FDX1’s role in copper-induced cell death. (E) Correlation 
between FDX1 expression and tumor mutational burden, exploring FDX1’s influence on genomic instability in different cancer types
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(Fig. 2D). TMBs in LGG and KIRC were significantly cor-
related with FDX1 expression (Fig. 2E).

In the programmed cell death protein 1 (PD1) immu-
notherapy cohort of the KIRC cohort (Table S1), there 
was a significant difference in OS between the FDX1 high 
and low expression groups (P = 0.036) (Fig.  3A). FDX1 
expression was an independent predictor of OS (hazard 
ratio [HR], 0.697; 95% CI = 0.558–0.869) (Fig.  3B). Gen-
eral distributions of FDX1 expression across multiple cell 
types were manifested in Fig.  3C and D. Differentially 
expressed genes between the high and low expression 
groups of FDX1 were enriched in oxidative phosphory-
lation, fatty acid metabolism, IL-2/STAT5 signaling and 
IL-6/JAK-STAT3 signaling pathways (Fig. 3E).

In the LIHC cohort (Table S2), univariate Cox regres-
sion analysis showed that high FDX1 expression was 
significantly correlated with OS in patients with LIHC 
(HR 0.685, 95% CI = 0.513–0.906 (Fig.  4A). General dis-
tributions of FDX1 expression across multiple cell types 
were manifested in Fig. 4B and C. Differentially expressed 
genes between the high and low expression groups of 
FDX1 were enriched in multiple pathways, also includ-
ing oxidative phosphorylation, IL-2/STAT5 signaling and 
IL-6/JAK-STAT3 signaling pathways (Fig. 4D).

In the Cancer Genome Atlas Low Grade Glioma Col-
lection (TCGA_LGG) cohort (Table S3), univariate Cox 
regression analysis showed that high expression of FDX1 
was significantly associated with OS in patients with 
LGG (Fig.  5A). General distributions of FDX1 expres-
sion across multiple cell types were manifested in Fig. 5B 
and C. Differentially expressed genes between the high 
and low expression groups of FDX1 were enriched in 
multiple pathways, also including oxidative phosphory-
lation, fatty acid metabolism, IL-2/STAT5 signaling and 
IL-6/JAK-STAT3 signaling pathways (Fig.  5D). In the 
Chinese Glioma Genome Atlas Low Grade Glioma Col-
lection (CCGA_LGG) cohort (Table S4), high expression 
of FDX1 was also an independent risk factor (Fig.  5E). 
Differentially expressed genes between the high and low 
FDX1 expression groups are depicted in Fig. S1, includ-
ing oxidative phosphorylation, IL-2/STAT5 signaling and 
IL-6/JAK-STAT3 signaling pathways.

CT radiomic model to predict FDX1 expression
Initially, we extracted 107 radiomic features per imaging 
modality across the tumor regions. Finally, eight features 
were screened and entered the logistic regression (LR) 
model; the weight coefficients of each feature are listed 
in Table S5. The accuracy (ACC), sensitivity, specificity, 
negative predictive value (NPV), positive predictive value 
(PPV), and Brier score (BS) were 0.767, 0.786, 0.727, 
0.615, 0.859, and 0.155, respectively. The area under the 
receiver operating characteristic curve (AUROC) was 
0.825 (95% CI = 0.739–0.911, Fig. 6A), and the calibration 

and decision curves demonstrated good calibration and 
clinical benefit (Fig.  6B and C). The LIHC cohort was 
used as the validation set, and the ACC, sensitivity, speci-
ficity, NPV, PPV, and BS were 0.788, 0.947, 0.571, 0.75, 
0.889, and 0.191, respectively. The AUROC was 0.748 
(95% CI = 0.568–0.929, Fig.  6D), and the calibration 
curves and decision curves demonstrated good calibra-
tion and clinical benefit (Fig. 6E and F). To confirm the 
cross-tissue compatibility that this study sought to har-
ness using the radiomic platform, the prediction model 
was tested in the ovarian cancer (OV), head and neck 
squamous cell carcinoma (HNSCC), and non-small cell 
lung cancer (NSCLC) cohorts. The AUROCs were 0.779 
(95% CI = 0.660–0.899), 0.738 (95% CI = 0.607–0.869), 
and 0.805 (95% CI = 0.680–0.931), respectively (Fig.  6G, 
J, and M). All calibration and decision curves demon-
strated good calibration and clinical benefit (Fig. 6H, I, K, 
L, N and O).

MR radiomic model for predicting FDX1 expression
The recursive feature elimination (RFE) algorithm 
screened out 13 features from initial 107 radiomic fea-
tures extracted, whose coefficients in the LR model are 
shown in Table S6. The ACC, sensitivity, specificity, 
NPV, PPV, and BS were 0.693, 0.51, 0.88, 0.638, 0.812, 
and 0.21, respectively. The AUROC was 0.717 (95% 
CI = 0.617–0.816, Fig.  7A). The calibration and decision 
curves demonstrated good calibration and clinical benefit 
(Fig. 7B and C). As validation in the TCGA_LGG cohort, 
the ACC, sensitivity, specificity, NPV, PPV, and BS were 
0.709, 0.529, 0.887, 0.656, 0.822, and 0.206, respectively. 
The AUROC was 0.737 (95% CI = 0.653–0.821, Fig.  7D). 
Similarly, the prediction model was tested using the 
Repository of Molecular Brain Neoplasia Data (REM-
BRANDT) and TCGA breast cancer (BRCA) cohorts; the 
AUROCs were 0.763 (95% CI = 0.637–0.889) and 0.742 
(95% CI = 0.620–0.863), respectively (Fig.  7G and J). All 
calibration and decision curves demonstrated good cali-
bration and clinical benefit, respectively (Fig. 7E, F, H, I, 
K, and L).

Clinical application of the radiomic score (rad_score)
For further evidence of the application of the rad_score, 
immunohistochemistry (IHC) of FDX1 between the 
high- and low-rad_score specimens are shown in Fig. 8.

Significant differences were observed between the 
groups. In the KIRC, HNSCC, LGG, and Duke cohorts, 
the rad_score was identified as an independent predictor 
of patients’ OS (P = 0.008, 0.006, 0.013, and 0.010, respec-
tively) (Fig. 9).

Biological correlation analysis of the rad_score
In the KIRC, HNSCC, TCGA_LGG, and BRCA cohorts, 
the rad_score was significantly correlated with the 
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Fig. 3 Data mining in the KIRC cohort to assess the prognostic role of FDX1 in kidney renal clear cell carcinoma. (A) Kaplan-Meier curve showing the 
difference in OS between high and low FDX1 expression groups. (B) Cox regression analysis of OS in the KIRC cohort to determine the prognostic impact 
of FDX1. (C) FDX1 expression across different cell types in KIRC, illustrating its cellular distribution. (D) Heatmap of FDX1 expression values, categorized by 
high and low expression groups. (E) Gene set variation analysis of pathways enriched between FDX1 high and low expression groups
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expression levels of inhibitory immune genes (Figs. 
S2–6). Like the broad cross-tissue compatibility of the 
radiomic model, some common ground was found 
among different histology, such as lymphocyte activation 
gene-3. In the KIRC, LIHC, OV, HNSCC, TCGA_LGG, 
and BRCA cohorts, significantly different mutation 
rates were observed between patients with high and 
low rad_scores, most of which were missense mutations 
(Figs.  10A–C and S7–9). In addition, common features 
among different histology were identified, such as muta-
tions in the phosphatidylinositol 3-kinase (PI3K)/AKT/
mammalian target of rapamycin pathway and C3.

Discussion
The hallmarks of cancer connect all types of cancer 
cells at the cellular phenotype level, [12] including resis-
tance to cell death, remodeling of cellular metabolism, 
and immune escape. The TME plays an integral role in 
tumorigenesis. Feedback loops can be formed between 
RCD and the TME, and targeting RCD provides new 
intervention strategies and targets for cancer therapy. 
Cuprotosis is a recently identified form of RCD [7]. As a 
key regulator, FDX1 is expected to have significant poten-
tial as a biomarker in oncology. In the present study, we 
found that (1) FDX1 is closely related to the prognosis of 

Fig. 4 Data mining in the LIHC cohort to evaluate FDX1’s prognostic significance in liver hepatocellular carcinoma. (A) Cox regression analysis of overall 
survival to assess FDX1’s impact on survival in the LIHC cohort. (B) Distribution of FDX1 expression across different cell types in LIHC, illustrating its expres-
sion pattern. (C) Heatmap of FDX1 expression values, categorized by cell type. (D) GSVA revealing the pathways enriched in FDX1 high and low expression 
groups, exploring FDX1’s biological role in liver cancer
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various cancers; (2) radiomics based on CT could non-
invasively predict FDX1 expression across cancer histol-
ogy, with an AUROC reaching 0.825; (3) the area under 
the curve (AUC) of radiomic prediction receiver operat-
ing characteristic (ROC) curves based on T1 contrast-
enhanced (T1C) MRI was 0.763 for FDX1 expression 
across cancer types; and (4) rad_scores were associated 

with immune checkpoints, gene mutations, and patient 
prognosis.

FDX1 is in the mitochondrial matrix and is closely 
associated with mitochondrial metabolism through the 
transferring of electron chains [7]. FDX1 regulates the 
lipid metabolism and phosphorylation, increases the lev-
els of interleukin-2 and interferon-, and boosts the anti-
tumor immunity in certain circumstances. However, 

Fig. 5 Data mining in the LGG cohort to evaluate the prognostic role of FDX1 in lower-grade glioma. (A) Cox regression analysis of overall survival in 
the TCGA-LGG cohort, assessing FDX1’s prognostic value. (B) FDX1 expression across different cell types in LGG, indicating the cellular distribution. (C) 
Heatmap of FDX1 expression values across different cell types in LGG. (D) GSVA of pathways enriched in FDX1 high and low expression groups in the LGG 
cohort. (E) Cox regression analysis of overall survival in the CCGA-LGG cohort to further validate FDX1’s prognostic role
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Fig. 6 Evaluation and validation of the CT-based radiomic model for predicting FDX1 expression across multiple cancer types. (A-C) Performance evalu-
ation in the KIRC training cohort, using the ROC curve, calibration curve, and decision curve analysis to assess model accuracy. (D-F) Validation of the 
radiomic model in the LIHC cohort, with performance metrics including ROC, calibration, and decision curve analysis. (G-I) Testing of the model in the 
OV cohort, showing the generalizability of the model. (J-L) Performance metrics for the HNSCC cohort, including ROC, calibration, and decision curve 
analysis. (M-O) Testing of the model in the NSCLC cohort, with corresponding performance metrics
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FDX1 may contribute to immunosuppressive TME via 
copy number variation events. As immune-directed 
therapies rapidly reshape the landscape of clinical oncol-
ogy, FDX1 has been reported to be a potential predictor 

of response to immunotherapy. For example, FDX1 is a 
source of genetic variation and is a potential prognostic 
factor for KIRC [13]. According to our findings, FDX1 
expression is correlated with TMB in several types of 

Fig. 7 Evaluation and validation of the MRI-based radiomic model for predicting FDX1 expression in different cancer types. (A-C) Performance of the 
radiomic model in the HCC cohort (training set), including ROC curve, calibration curve, and decision curve analysis. (D-F) Validation of the MRI-based 
model in the TCGA-LGG cohort. (H-J) Testing the model in the REMBRANDT cohort, showing its ability to generalize across different cancers. (K-M) Evalu-
ation of the model’s performance in the BRCA cohort, including ROC, calibration, and decision curve analysis
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cancers. Previous studies have shown that the trigono-
metric relationship among oncogene signaling pathways, 
immunosuppressive networks, and metabolic remodeling 
affects cancer immunogenicity and immunotherapeutic 
effects. FDX1 promotes adenosine tri-phosphate produc-
tion and regulates metabolism in the TME. In addition 
to lung cancer, [14] we found that FDX1 is prognostic in 
various types of cancer and could serve as a biomarker 
for cancers across histology. TME and specific genetic 
mutations in different cancers can influence how cupro-
tosis is regulated. This variability in the TME and genetic 
context likely contributes to the differences observed in 
the pan-cancer analysis. Tumors with metabolic repro-
gramming that heavily relies on mitochondrial function, 
like KIRC, are more likely to be affected by FDX1 expres-
sion, potentially explaining why FDX1 shows a stronger 
prognostic impact in these cancers [15].

The enriched pathways are crucial in shaping the met-
abolic environment of tumor cells, which in turn can 
influence tumor progression, metastasis, and response 
to therapies [16]. Tumor cells often undergo metabolic 
reprogramming to sustain rapid growth, and FDX1’s 
involvement in mitochondrial function suggests it may 
play a broader role in cancer cell metabolism and sur-
vival [15]. Also, FDX1 is related to immune-associated 
pathways, such as the IL-2/STAT5 and IL-6/JAK-STAT3 
signaling pathways, both of which are crucial for T cell 

activation. Given the growing body of literature linking 
metabolism and immunity, as well as mitochondria and 
immune responses, we believe that FDX1 may indeed 
have an important role in immune regulation [17].

Yet, the current assessment of biomarkers is based on 
pathological examinations, which are unsuitable for in 
vivo dynamic monitoring. Genomic instability enables 
the plasticity of tumor phenotypes, [12] which demands 
dynamic monitoring. Hence, some researchers have 
resorted to radiomics and assessed genomic mutations, 
molecular expression status, and TME by extracting 
quantitative information from the lesion and/or its sur-
roundings [18–21]. Here, we formulated a noninvasive 
prediction of FDX1 status across histological and imaging 
modalities, with an AUROC of 0.825. Likewise, the dis-
crimination of CT-based radiomics to predict epidermal 
growth factor receptor mutations in lung cancer reached 
0.85, [22] and the AUROC of MRI-based radiomics to 
predict the positive rate of Ki67 in nasopharyngeal car-
cinoma reached 0.85 [23]. Zhang et al. used CT-based 
radiomics to predict Ki67 levels in gastrointestinal stro-
mal tumors [24]. A fully automated CT model was con-
structed to predict mutations in isocitrate dehydrogenase 
(IDH) gliomas [25].

Most importantly, we discovered unifying radiomic 
phenotypes that are conserved across multiple can-
cer types and imaging modalities, which could have a 

Fig. 8 Immunohistochemistry staining of FDX1 in high and low rad_score specimens: (A and B) a representative MRI image with high rad_score and its 
corresponding immunohistochemistry staining of FDX1; (C and D) a representative MRI image with low rad_score and its corresponding immunohisto-
chemistry staining of FDX1
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broad impact on a larger population of patients. Cur-
rent radiomic signatures have limited reproducibility 
and generalizability because most features are depen-
dent on the imaging modality and tumor histology, mak-
ing them sensitive to variations in the scan protocol 
[18]. Pan-cancer studies may help to identify commonly 
conserved patterns and unify biological themes across 
cancers. TMB is a prime example of a tissue-agnostic 
biomarker used to select patients for specific treatment 
regardless of tumor histology. The lack of standardiza-
tion and diverse tissue contrasts in different modalities 

has hampered pan-cancer studies. Several international 
multi-institutional studies have reported efforts in the 
context of radiological imaging [26]. For instance, four 
unifying imaging subtypes across three malignancies and 
two major imaging modalities have been proposed [27]. 
These tumor subtypes demonstrate distinct molecular 
characteristics and prognoses after conventional thera-
pies. Our analysis indicated common cross-tissue com-
patibility of radiomic features. Thus, this study provides 
a conceptual framework that allows for the aggregation 
of datasets with disparate modalities and cancer types, 

Fig. 9 Cox regression analysis of overall survival based on radiomic scores in various cancer types. (A) KIRC cohort, (B) HNSCC cohort, (C) NSCLC cohort, 
and (D) BRCA cohort, illustrating the prognostic significance of the radiomic scores across these cancer types
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similar to the integration of molecular data in pan-cancer 
studies using TCGA.

Despite the good performance, there is still room for 
improvement. According to previous studies, combin-
ing different phases in CT and multiple magnetic reso-
nance sequences may further improve prediction. In 
advanced rectal cancer, the discrimination of the effect 
prediction of neoadjuvant chemotherapy by multimodal 
radiomics was as high as 0.93, compared with 0.859 for 
the T2-weighted imaging model, 0.828 for the apparent 

diffusion coefficient (ADC) model, 0.812 for the dynamic 
contrast-enhanced T1 model, and 0.766 for the CT 
model [25]. In addition to the modality, a multiregional 
radiomic model may further improve the performance 
of the models. As indicated by the single-cell sequenc-
ing results, FDX1-expressing cells were widely distrib-
uted. Previous studies have demonstrated the advantages 
of multi-region models. In addition to the tumor region, 
peritumoral features are significantly associated with the 
efficacy of targeted therapy in breast cancer [28]. When 

Fig. 10 Analysis of differential mutation patterns between high and low rad_score groups. (A) Mutation analysis in the OV cohort, (B) LGG cohort, (C) 
BRCA cohort, identifying key mutations associated with high and low radiomic scores across these cancers
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predicting IDH mutation status in gliomas, the AUROC 
of the multi-region model reached 0.96, whereas the 
maximum area under the curve of the single-region 
model was 0.88 [29].

Moreover, our study found that radiomic models were 
related to disease prognosis. Thus, they may be used for 
the risk stratification of patients with cancer. The CT-
based radiomic model constructed by Roger Sun could 
similarly predict tumor infiltration lymphocytes (TIL) 
in solid tumors and the efficacy of anti-PD1 and pro-
grammed cell death ligand 1 [30]. MRI-based radiomic 
markers can be used to calculate the recurrence risk in 
patients with breast cancer [31]. Radiomic prediction 
outperformed clinical and genomic models in patients 
with lung cancer.

Driven by data, radiomics often lacks interpretabil-
ity. Most studies have failed to explore the relationship 
between imaging features and underlying biological 
processes. Given that radiological changes are believed 
to be driven by genomic alterations, the same situation 
also applies to -omics, that is, radiomics. In this study, 
rad_scores were significantly correlated with suppres-
sive immune molecules. Owing to aberrant genetic 
alterations, the gain-of-function of proto-oncogenes or 
the loss-of-function of tumor suppressor genes are the 
dominant driving forces underlying tumorigenesis. We 
compared the mutation frequencies between the high 
and low rad_score groups and found significant differ-
ences in various genes, such as phosphatase and tensin 
homolog deleted on chromosome 10 (PTEN) and PI3K. 
As reported by other studies, dysregulation of the PI3K/
AKT pathway occurs frequently in cancer and can lead to 
metabolic reprogramming; additionally, the loss of PTEN 
can promote cancer. These results provide a molecu-
lar explanation for our radiomic models. Similarly, Bao 
et al. found that contrast-enhanced ultrasound imag-
ing could predict changes in the expression of apoptotic 
molecules in liver metastases [32]. Grossmann found that 
MRI radiomics could predict changes in apoptosis and 
immune response-related pathways in glioblastoma [33]. 
In head and neck squamous cell carcinoma, radiomics 
could identify molecular expression and the TME [34].

Limitation of the study
First, the image acquisition equipment and sequences 
in the public database were homogeneous; hence, fur-
ther verification using a standardized prospective cohort 
is required. Secondly, the inclusion of cancer types was 
limited. Therefore, future studies should expand the 
number of diseases and sample sizes and evaluate the 
generalization ability of the model. Combining multiple 
imaging phrases, modals, and volumes of interest (VOIs) 
may further improve prediction. Meanwhile, the lack of 
expression difference and significant OS association does 

not preclude FDX1 from being involved in other aspects 
of tumor biology, such as metabolic reprogramming or 
immune response modulation, which could be crucial 
in understanding the tumor microenvironment. Thirdly, 
while it is indeed economical, there are limitations of 
relying solely on public scRNA sequencing data, and 
caution against drawing strong conclusions about selec-
tive expression based on these results. Such data may 
not always capture the full complexity of gene expression 
across different tumor microenvironments. Further stud-
ies with more targeted experimental validation (e.g., flow 
cytometry or immunohistochemistry) would be neces-
sary to accurately determine FDX1 expression in specific 
cell populations.

Conclusions
In conclusion, FDX1 expression is a prognostic marker 
for patients with cancer and can be estimated using 
radiomic models across imaging modalities and histol-
ogy. The rad_score is interpretable and has the potential 
to become a clinically actionable biomarker.
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