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post SS and TRI protocols were reported, with SS show-
ing possible increases at 24-h post-training. TRAD and 
SS showed almost certain and likely decreases in cortisol 
immediately post, respectively, with TRAD reporting likely 
decreases at 24-h post-training.
Conclusions  SS and TRI can enhance training efficiency 
and reduce training time. However, acute and short-term 
physiological responses differ between protocols. Athletes 
can utilise SS and TRI resistance training, but may require 
additional recovery post-training to minimise effects of 
fatigue.

Keywords  Efficiency · Resistance training · 
Countermovement jump · Testosterone · Cortisol · Lactate

Abbreviations
TRAD	� Traditional
SS	� Supersets
TRI	� Tri-sets
[LAC]	� Lactate
[CK]	� Creatine kinase concentration
CMJ	� Countermovement jump
RPE	� Rating of perceived exertion
3RM	� Three repetition maximum
FT:CT	� Flight time:contraction time
PP/BM	� Peak power per kilogram of body mass
kg min−1	� Volume load completed per minute
SWC/D	� Smallest worthwhile change/difference
ES	� Effect size

Introduction

Resistance training is known to improve measures of 
strength, power, and lean body mass (Pareja-Blanco et al. 

Abstract 
Purpose  Investigate the acute and short-term (i.e., 24 h) 
effects of traditional (TRAD), superset (SS), and tri-set 
(TRI) resistance training protocols on perceptions of inten-
sity and physiological responses.
Methods  Fourteen male participants completed a familiar-
isation session and three resistance training protocols (i.e., 
TRAD, SS, and TRI) in a randomised-crossover design. 
Rating of perceived exertion, lactate concentration ([Lac]), 
creatine kinase concentration ([CK]), countermovement 
jump (CMJ), testosterone, and cortisol concentrations was 
measured pre, immediately, and 24-h post the resistance 
training sessions with magnitude-based inferences assessing 
changes/differences within/between protocols.
Results  TRI reported possible to almost certainly greater 
efficiency and rate of perceived exertion, although session 
perceived load was very likely lower. SS and TRI had very 
likely to almost certainly greater lactate responses during 
the protocols, with changes in [CK] being very likely and 
likely increased at 24  h, respectively. At 24-h post-train-
ing, CMJ variables in the TRAD protocol had returned to 
baseline; however, SS and TRI were still possibly to likely 
reduced. Possible increases in testosterone immediately 
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2016). Furthermore, it is established that it can enhance 
physical performance (e.g., jump height) which may benefit 
sporting outcomes (Pareja-Blanco et  al. 2016). However, 
athletes are often unable to commit prolonged periods of 
time to resistance training due to other training require-
ments (e.g., skill development and other conditioning pri-
orities) (Phibbs et al. 2017). Therefore, resistance training 
protocols such as supersets (SS) (i.e., the completion of 
two exercises consecutively followed by a recovery period) 
and tri-sets (TRI) (i.e., the completion of three exercises 
consecutively followed by a recovery period) that enhance 
training efficiency (i.e., kilograms lifted per minute) may 
be an effective mechanism to provide an appropriate resist-
ance training stimulus, in a short period of time (Sabido 
et al. 2016; Schoenfeld 2011).

The use of SS and TRI has been proposed as an effica-
cious method of enhancing strength and body composition 
(Robbins et al. 2010a, b). In studies that have investigated 
these training protocols, there does not appear to be any 
detrimental effect on resistance training volume despite 
the reduction in recovery time within each training ses-
sion (Maia et al. 2014; Robbins et al. 2010a). However, this 
reduction in training time may alter perceptions of internal 
training load [i.e., rating of perceived exertion (RPE)] (Bal-
samo et  al. 2012). To this end, SS and TRI can improve 
training efficiency, reduce training time, and alter perceived 
training load, although the magnitude of these changes is 
still unknown.

In addition to reduced training time and altered percep-
tion of intensity, resistance training methods that have var-
ying rates of efficiency are also known to promote diver-
gent metabolic and endocrine responses (Hiscock et  al. 
2017; Schoenfeld 2010; Walker et  al. 2011). It has been 
suggested that the cause of this variation is in part a result 
of the resistance training efficiency imposed (McCaulley 
et al. 2009). It has been postulated that protocols that com-
plete large amounts of volume within a given time elicit 
greater metabolic responses (Hooper et  al. 2017). This 
increase in metabolic perturbation, evidenced by lowered 
pH and higher lactate concentrations ([LAC]), may then 
provoke augmented endocrine outcomes (i.e., increased 
testosterone and cortisol secretion) (Hooper et  al. 2017). 
While previous research has examined relationships 
between resistance training efficiency, and metabolic and 
endocrine responses (Hiscock et al. 2017; McCaulley et al. 
2009), the effect of enhanced efficiency due to SS and TRI 
resistance training structuring has not been considered. To 
this end, the physiological responses due to these training 
methods are not well understood. Furthermore, changes in 
training efficiency are also known to affect neuromuscular 
function (Hiscock et  al. 2017). McCaulley et  al. (2009) 
previously suggested that increased resistance training effi-
ciency may cause a reliance upon anaerobic glycolysis and 

an accumulation of metabolites (i.e., [LAC]) which may 
damage contractile properties within the muscle (McCaul-
ley et  al. 2009). These changes may potentially cause 
reduced force-generating capacity and impact upon subse-
quent neuromuscular performance [e.g., countermovement 
jump (CMJ)]. However, volume and intensity controlled 
trials have not assessed the magnitude and short-term (i.e., 
24 h) effects of increased training efficiency upon neuro-
muscular responses.

Establishing resistance training protocols and struc-
tures that effectively utilise an athlete’s time is of ben-
efit. SS and TRI have previously been established as two 
forms of resistance training that manage this (Robbins 
et  al. 2010a). However, the acute and short-term physi-
ological responses to these methods of resistance training 
have not yet been established. Consequently, investiga-
tion of these training methods will provide an improved 
understanding of how enhanced training efficiency can 
affect perception of training load, metabolic and muscle 
damage outcomes, endocrine responses, and neuromus-
cular function following different resistance set struc-
tures. Therefore, the aim of this study was to investigate 
the acute and short-term (i.e., 24 h) effects of traditional 
(TRAD), SS, and TRI volume and intensity equated 
resistance training protocols on perception of training 
intensity, and metabolic, neuromuscular, and endocrine 
responses in well-trained male athletes.

Methods

Participants

Fourteen male university rugby union players with a 
resistance training history of over 2 years were recruited 
to take part in the study (Table 1). All participants had at 
least 6 months uninterrupted resistance training, perform-
ing at least three resistance training sessions each week. 
Participants were screened prior to the study for any con-
traindication to physical activity. Throughout the study 
participants refrained from dietary supplements, and the 
only medication used by one participant was for the treat-
ment of mild asthma. All protocols were explained and 
informed consent was obtained from all individual par-
ticipants included in the study prior to the beginning of 
the study. Ethics approval was granted by the university 
ethics committee.

Experimental design

This study was a randomised-crossover design that took 
place over 4 weeks at the beginning of the university rugby 
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union pre-season (i.e., July–August). All participants had 
followed an off-season resistance training programme and 
initiated the study with a comparable training base. The 
study consisted of a familiarisation assessment, followed 
by three resistance training protocols (i.e., TRAD, SS, TRI) 
in a randomised order. Twenty-four hours after the resist-
ance training protocol participants were required to return 
to the exercise laboratory for follow-up measures. Figure 1 
further outlines the protocols and timepoints. In the 48  h 
before all testing, participants were asked to refrain from 
vigorous exercise, maintain normal dietary patterns, sleep 
well (i.e., >7  h), consume a meal 2  h before testing, and 
maintain normal hydration levels. After each testing ses-
sion, participants were asked to consume their regular post-
exercise meal and to not partake in any further exercise for 
24 h.

Resistance training protocols

Each protocol contained the same six exercises (i.e., back 
squat, bench press, Romanian deadlift, dumbbell shoulder 
press, bent-over row, and upright row), although grouped 
into a TRAD, SS, or TRI configuration (refer to Fig.  1). 
TRAD resistance training referred to the completion of a 
single exercise set followed by a rest period. All exercise 
sets were then completed prior to completing any other 
exercises. In the SS protocol, however, two different exer-
cise sets were completed consecutively followed by a rest 
period. These two different exercises were then repeated 

until the required number of sets was completed. TRI 
involved an additional exercise and set (i.e., three consecu-
tive sets of different exercises) followed by a rest period. All 
three exercise sets were then completed prior to completing 
the final three exercises. Sixty-five percent of each move-
ment’s three repetition maximum (3RM) was calculated 
and used as the prescribed intensity for each exercise across 
the three training protocols. This intensity was selected due 
to previous research by Sabido et al. (2016) indicating that 
when completing supersets, intensities above this cause 
notable losses in repetition completion (i.e., 12.5%). All 
participants participated in the three resistance training ses-
sions with exactly 7 days between protocols.

On testing days, participants were informed of the pro-
tocol that would be completed, and provided a salivary and 
finger-tip blood sample on arrival for the analysis of tes-
tosterone and cortisol concentration, and [Lac] and creatine 
kinase concentration [CK], respectively. Upon the comple-
tion of a standardised warm up, which included dynamic 
exercise and exercise specific stretches [i.e., walking lunges, 
squats, heel flicks, high knees, skipping, three submaximal 
CMJ, and plyometric push ups (Roe et al. 2016b)], a CMJ 
was completed upon a force platform (NMP Technologies 
Ltd., ForceDecks Model FD4000a, London, UK). After the 
CMJ, an exercise specific warm up utilising the first exer-
cise/grouping of exercises (i.e., squat in the TRAD; squat 
and bench press in the SS; squat, bench press, and Roma-
nian deadlift in the TRI) was completed. This consisted of 
eight repetitions with an empty bar, followed by two sets 

Table 1   Mean ± SD of 
participant anthropometric and 
physical characteristics

Age (years) 20.8 ± 1.2 Bench press 3RM (kg) 105.2 ± 15.2
Height (m) 1.81 ± 0.06 Romanian deadlift 3RM (kg) 143.2 ± 30.8
Body mass (kg) 87.3 ± 6.2 Dumbbell shoulder press 3RM (kg) 66.0 ± 8.6
Training age (years) 4.1 ± 1.2 Bent-over row 3RM (kg) 95.0 ± 14.5
Back squat 3RM (kg) 141.1 ± 31.9 Upright row 3RM (kg) 60.1 ± 6.9

Fig. 1   Diagram outlining the order of experimental procedures. 3RM three repetition maximum, CMJ countermovement jump, RPE rate of per-
ceived exertion, BS back squat, BP bench press, RDL Romanian deadlift, SP shoulder press, BOR bent-over row, UR upright row
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of five repetitions and then three repetitions at submaximal 
self-selected loads. This has previously been completed 
in resistance training literature (Darrall-Jones et  al. 2015; 
Weakley et al. 2017a, b). After the completion of the exer-
cise specific warm up, the exercises were organised with 
65% of the participants 3RM and a 2-min rest prior to the 
commencement of exercise was provided.

Exercises were grouped, so that similar muscle groups 
were not completed consecutively (Sabido et  al. 2016), 
and so that large muscle groups were exercised prior 
to smaller muscle groups (e.g., back squat followed by 
bench press) (Haff and Triplett 2015). The specific exer-
cise routine was undertaken with 2-min rest between every 
exercise set/grouping of exercises. While all repetitions 
maintained a two second eccentric phase (monitored by 
the lead researcher) followed by an explosive concentric 
phase. In total, six exercises each consisting of three sets 
and ten repetitions were completed. Finger-tip blood sam-
ples were taken after the 6th and 12th sets for the assess-
ment of [Lac]. At the completion of the 18th and final set, 
finger-tip samples were taken again (for [Lac]), along with 
CMJ and salivary sample (for testosterone and cortisol con-
centration). 15 min after the completion of each resistance 
training protocol participants provided an RPE utilising a 
modified-Borg scale (Singh et al. 2007). At 24-h post-pro-
tocol, participants returned and provided a 5  ml salivary 
sample and a finger-tip blood sample was taken for [CK]. 
Following these measures, participants completed the same 
standardised warm up as the previous day and completed 
CMJ testing upon the same force plate. Figure  1 outlines 
the protocols and timepoints of testing.

Protocols

Strength measures and anthropometric assessment

During a familiarisation session 3RM strength, body 
mass, and height were measured. Body mass and height 
were measured to the nearest 0.1  kg and 0.1  cm, respec-
tively, using calibrated Seca Alpha (model 220, Germany) 
scales and Seca Alpha (model 213, Germany) stadiometer. 
Strength was measured with the back squat, bench press, 
Romanian deadlift, dumbbell shoulder press, bent-over 
row, and upright row being tested. These movements were 
chosen as they have previously been used in similar studies 
(Harries et al. 2016; Smart and Gill 2013; Till et al. 2015), 
while all participants were familiar with the movements as 
they had been in previous resistance training programmes.

3RM strength was assessed using the following exer-
cise protocols, previously outlined (Haff and Triplett 

2015; Smart and Gill 2013; Uribe et  al. 2010; Weakley 
et al. 2017b). The back squat was completed with the bar 
resting on the upper trapezium with participants required 
to lower themselves, so that the top of the thigh was 
parallel with the floor. The bench press was completed 
with hand position at a self-selected width with the bar 
lowered to the chest and returned to a locked-out posi-
tion. Romanian deadlift maintained a slight bend in the 
knee and the lowering of the bar until immediately below 
the patellar. Dumbbell shoulder press begun with the 
arms holding the dumbbells, so that the elbow was at a 
90° angle with the dumbbells in line with the cranium. 
The arms were extended and lowered, so that the arms 
returned to the 90° elbow angle. The bent-over row was 
completed with an overhand grip which raised the bar to 
the lower sternum, while the torso was maintained paral-
lel to the ground. The upright row required the partici-
pant to hold the barbell with a shoulder width grip; the 
bar was then raised to the nipple line and returned to the 
hang position without any additional leg drive.

Hormone assessment

Saliva samples were taken at three timepoints (i.e., at 
arrival, immediately post the completion of each proto-
col, and at the 24-h post-protocol follow-up) across the 
24-h period. To standardise collection of all salivary 
samples, participants were asked not to eat or brush their 
teeth within 60 min of providing a sample. Furthermore, 
15 min before initiating a passive drool, participants were 
provided 200 ml of water. This was used to ensure mini-
mal sample dilution and to remove food residue within 
the mouth. The first and last saliva samples were taken 
at the same time each day to assist in the control for cir-
cadian rhythm. Saliva was used due to its previous use 
in rugby union players, ease of compliance, low invasive-
ness, and ability to measure biologically active hormones 
(e.g., testosterone and cortisol) (Crewther and Cook 
2010; Gaviglio et al. 2014).

A 5 ml volume of saliva was deposited from the mouth 
into a 10 ml cryovial and centrifuged within 60 min of pro-
vision. Centrifugation was at 3000 RPM for 15  min with 
the supernatant then being transferred by pipette to com-
mercially available storage equipment (Salimetrics Cryovi-
als, Salimetrics, CA, USA). This was then stored immedi-
ately at −80  °C prior to analysis at a private commercial 
laboratory (Psychology Laboratory, Anglia Ruskin Univer-
sity, UK). The interassay coefficient of variation (CV) for 
the hormone responses was reported to be 4.3% for testos-
terone and 7.2% for cortisol.
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CMJ assessment

Analysis of CMJ was completed using a force platform 
(NMP Technologies Ltd., ForceDecks Model FD4000a, 
London, UK) which sampled at a rate of 1000  Hz. All 
participants performed three CMJs with feet placed 
approximately shoulder width apart and with hands 
placed on hips. Participants lowered themselves to a self-
selected depth and jumped as high as possible. Between 
each maximal exertion, 60  s rest was provided (Weak-
ley et  al. 2017b). The outcome variables which were 
included in the analysis were: CMJ height (jump height), 
flight time:contraction time (FT:CT), and peak power per 
kg of body mass (PP/BM). Jump height was used due to 
its common use as a measure of lower body power (Roe 
et  al. 2016b; Till et  al. 2016; Weakley et  al. 2017b). 
FT:CT was assessed as it provides the practitioner insight 
into movement strategies and has been suggested to be a 
valuable measure of fatigue due to it being derived from 
time-related variables (Gathercole et al. 2015; McGuigan 
2017). PP/BM was analysed due to its very large rela-
tionship (r = 0.81) with ballistic capabilities (Hori et al. 
2008). The best of the three scores at each timepoint was 
used in analysis (Haddad et al. 2015). Participant CV of 
these variables was reported to be 4.6% (jump height), 
7.8% (FT:CT), and PP/BM (1.3%).

Metabolic assessment

Whole blood samples were collected to assess [CK] upon 
arrival at the testing facility and at the same corresponding 
timepoint 24 h later. Samples were collected via finger-tip 
puncture which was made with a spring-loaded single use 
disposable lancet. Approximately 30 µl of whole capillary 
blood was collected using a plastic capillary tube (MICRO-
SAFE©, Safe-tec, Numbrecht, Ivyland, USA) and imme-
diately analysed using reflectance photometry (Reflotron® 
Plus, Boehringer, Manheim, Germany). 20 min before each 
testing session, the machine was calibrated using a stand-
ardised [CK] strip. Participant reliability of this machine 
has previously been reported (CV  =  5.3%) (Roe et  al. 
2016a).

Blood [Lac] was analysed before, during, and after the 
exercise protocols using a lactate analyser (Lactate Plus, 
Nova Biomedical, MA, USA). After sterilising the finger, 
a puncture was made with a spring-loaded single use dis-
posable lancet. The first drop of blood was wiped away, 
with the second drop being applied to an assay strip and 
inserted into the [LAC] analysing device. This device has 
previously been reported to demonstrate high levels of reli-
ability (intraclass correlation coefficient = 0.99) at a range 
of [Lac] values (Baldari et al. 2009).

RPE and session perceived load measures

Participants were asked to provide an RPE 15 min after 
each resistance training protocol after being asked the 
question “How was your workout?” Participants were 
presented with a modified-Borg ratio-10 scale and ver-
bally indicated an answer which was recorded (Singh 
et  al. 2007). Training time was recorded to the nearest 
minute of duration by the lead researcher, with this time 
being recorded and then multiplied with the correspond-
ing RPE value to provide session perceived load (Foster 
et al. 2001).

Calculation of volume load and efficiency

Volume load (kg) [i.e., the multiplication of all sets, repeti-
tions, and weight (kg)] has previously been used as a means 
of calculating resistance training loads (Peterson et  al. 
2011). The volume load for each participant was stand-
ardised across each protocol, with all sets, repetitions, and 
external weight being used in the calculation. The volume 
load value was then divided by training duration in minutes 
(previously used in the calculation of session perceived 
load) to calculate training efficiency (kg  min−1). This 
method of calculating resistance training efficiency has pre-
viously been used (Robbins et al. 2010a, c).

Statistical analyses

Data are presented as mean ±  standard deviation (SD) or 
standardised effect size (ES)  ±  90% confidence intervals 
(90% CI). Prior to analysis, all data were log transformed 
to reduce bias arising from non-uniformity error, and then 
analysed for practical significance using magnitude-based 
inferences (Batterham and Hopkins 2006). The threshold 
for a change to be considered to meet the smallest worth-
while change/difference (SWC/D) was set at 0.2  ×  the 
between participant SD and was calculated using an online 
spreadsheet (Hopkins 2006b). For between group compari-
sons (e.g., TRAD vs. SS), the standardised ES of the varia-
bles being analysed were compared to assess the magnitude 
of difference between the two protocols (Hopkins 2006a). 
The probability that the magnitude of change or difference 
was greater than the SWC/D was rated as <0.5%, almost 
certainly not; 0.5–5%, very unlikely; 5–25%, unlikely; 
25–75%, possibly; 75–95%, likely; 95–99.5%, very likely; 
>99.5%, almost certainly (Hopkins et al. 2009). Where the 
90% confidence interval (CI) crossed both the upper and 
lower boundaries of the SWC/D (ES ± 0.2), the magnitude 
of change was described as unclear (Hopkins et al. 2009). 
ES thresholds were set at <0.2 (trivial), 0.2–0.6 (small), 
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0.6–1.2 (large), and 1.2–2.0 (very large) (Hopkins et  al. 
2009).

Results

Perceived exertion, volume load, and efficiency

The mean  ±  SD for time, RPE, session perceived load, 
and efficiency (kg  min−1) of each protocol are presented 
in Table  2. In addition, inferences and ES (±90% CI) of 
between condition comparisons are supplied.

Blood lactate concentration

Figure  2 presents mean  ±  SD [Lac] and between group 
comparisons across the three protocols. [Lac] pre-
exercise was: TRAD, 1.30  ±  0.50; SS, 1.50  ±  0.46; 
TRI, 1.40  ±  0.34  mmol  l−1. At the completion of set 
6 [Lac] was: TRAD, 7.90  ±  1.50; SS, 9.40  ±  1.60; TRI, 
10.40  ±  1.98  mmol  l−1. Between group comparisons 
showed likely to almost certain differences between proto-
cols (ES ± 90% CI; TRAD vs. SS = 0.96 ± 0.51, SS vs. 
TRI  =  0.59  ±  0.56, TRAD vs. TRI  =  1.50  ±  0.51). At 
the completion of set, 12 [Lac] was: TRAD, 8.50 ± 2.30; 
SS, 10.70  ±  2.14; TRI, 14.10  ±  2.96  mmol  l−1. Between 
group comparisons showed very likely to almost cer-
tain differences between protocols (ES ± 90% CI; TRAD 
vs. SS = 0.92 ± 0.60, SS vs. TRI = 1.42 ± 0.57, TRAD 
vs. TRI  =  2.03  ±  0.51). Immediately, post-exercise 
[Lac] was: TRAD, 7.40  ±  1.48; SS, 11.50  ±  2.19; TRI, 
13.40  ±  1.74  mmol  l−1. Between group comparisons 
showed very likely to almost certain differences between 

protocols (ES ± 90% CI; TRAD vs. SS = 2.33 ± 0.74, SS 
vs. TRI = 0.84 ± 0.48, TRAD vs. TRI = 3.14 ± 0.54).

Countermovement jump

Table 3 presents the mean ± SD performance of each CMJ 
variable at pre-, post-, and 24-h post-exercise. Furthermore, 
percentage change (±90% CI), standardised ES (±90% CI), 
and inference of change between timepoints are provided. 
Figure  3 presents the standardised ES (±90% CI) change 
from pre- to post-exercise, and pre- to 24-h post-exercise. 
In addition, between condition comparisons of ES change 
are presented as ES (±90% CI) and inference.

Table 2   Mean  ±  SD reported time, RPE, session perceived load, and efficiency, and between condition comparison of traditional (TRAD), 
superset (SS), and tri-set (TRI) resistance training protocols

TRAD traditional protocol, SS superset protocol, TRI tri-set protocol, Time average time in minutes to complete each protocol, RPE rate of per-
ceived exertion of each protocol, Efficiency the mean number of kilograms lifted per minute, Min minutes, Mean ± SD mean ± standard devia-
tion, ES ± 90% CI standardised effect size ± 90% confidence interval

TRAD
Mean ± SD

SS
Mean ± SD

TRI
Mean ± SD

TRAD vs. SS 
Inference
ES ± 90% CI

SS vs. TRI 
Inference
ES ± 90% CI

TRAD vs. TRI 
Inference
ES ± 90% CI

Time (min) 42.3 ± 1.3 24.0 ± 1.2 17.7 ± 1.6 TRAD > SS
Almost certainly
15.68 ± 0.67

SS > TRI
Almost certainly
8.46 ± 0.84

TRAD > TRI
Almost certainly
24.14 ± 1.11

RPE (AU) 4.4 ± 2.2 6.8 ± 1.2 7.6 ± 0.8 TRAD < SS
Almost certainly
1.05 ± 0.36

SS < TRI
Possibly
0.27 ± 0.21

TRAD < TRI
Almost certainly
1.32 ± 0.43

Session perceived load (AU) 184.2 ± 92.1 163.1 ± 34.3 134.9 ± 17.7 TRAD > SS
Possibly
0.28 ± 0.34

SS > TRI
Very likely
0.72 ± 0.39

TRAD > TRI
Very likely
0.44 ± 0.17

Efficiency (kg min−1) 275.0 ± 52.3 483.3 ± 106.3 656.5 ± 144.4 TRAD < SS
Almost certainly
3.10 ± 0.13

SS < TRI
Almost certainly
1.67 ± 0.16

TRAD < TRI
Almost certainly
4.78 ± 0.22

Fig. 2   Blood lactate responses throughout a traditional, superset, or 
tri-set resistance training protocol. U unclear, L likely, VL very likely, 
AC almost certain
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Testosterone and cortisol concentration

Table 4 presents mean ± SD mean value of testosterone and 
cortisol concentration at pre-, post-, and 24-h post-exercise. 
Furthermore, percentage change (±90% CI), standardised 
ES (±90% CI), and inference of change between timepoints 
are provided. Figure 4 presents the standardised ES (±90% 
CI) change from pre- to post-exercise, and pre- to 24-h 
post-exercise. In addition, between condition comparison 
of ES change is presented as ES (±90% CI) and inference.

Creatine kinase concentration

Table  5 presents mean  ±  SD, percentage change (±90% 
CI), standardised ES (±90% CI), and inference of change 
between timepoints of [CK] at pre-, post-, and 24-h post-
exercise. Furthermore, between condition comparisons of 
ES change are presented as ES (±90% CI) and inference.

Discussion

This is the first study to compare the acute and short-term 
physiological responses (i.e., metabolic, neuromuscular, 

and endocrine) between TRAD, SS, and TRI resistance 
training set structures. SS and TRI protocols were almost 
certainly more efficient (i.e., kilograms lifted per minute) 
than TRAD, with possible to likely lower session per-
ceived load. Immediately post-exercise, TRAD training 
showed the greatest decrease in CMJ performance. How-
ever, at 24-h post-training, the TRAD protocol showed 
trivial or possibly improved neuromuscular function, 
while SS and TRI protocols still showed possible or likely 
reductions. During and immediately after the resistance 
training protocols, SS and TRI had very likely to almost 
certainly greater [Lac], with the TRI protocol being likely 
to almost certainly greater than the SS. At 24 h, changes 
in [CK] were likely trivial in the TRAD protocol, but 
very likely and likely increased after the SS and TRI, 
respectively. Testosterone was possibly greater imme-
diately post-exercise in the SS and TRI, while at 24-h 
post-training, only SS remained possibly greater. Cortisol 
responses were almost certainly and likely reduced in the 
TRAD and SS conditions, respectively, but at 24  h, SS 
showed possible increases, while TRAD remained likely 
reduced. These outcomes indicate that SS and TRI resist-
ance training can enhance training efficiency, but also 
cause differing perceived and physiological responses.

Table 3   CMJ variable responses from pre-, post-, and 24-h post- a traditional (TRAD), superset (SS), and tri-set (TRI) resistance training proto-
col

M ± SD mean ± standard deviation, %Δ percentage change, ES effect size, 90% CI 90% confidence interval, FT:CT flight time:contraction time, 
PP/BM peak power per kilogram of body mass, ↑ increase, ↔ trivial, ↓ decrease

Pre-
M ± SD

Post-
M ± SD

Pre–Post
%Δ ± 90% 
CI

Pre–Post
ES ± 90% CI

Pre–Post 
Inference

Post 24 h-
M ± SD

Pre–24 h
%Δ ± 90% 
CI

Pre–24 h
ES ± 90% CI

Pre–24 h
Inference

TRAD
 Jump 

height 
(cm)

37.9 ± 6.1 35.5 ± 6.0 −6.2 ± 2.5 −0.41 ± 0.17 Very Likely ↓ 37.9 ± 6.8 0.10 ± 3.0 0.01 ± 0.19 Likely ↔

 FT:CT 0.65 ± 0.15 0.65 ± 0.17 −0.20 ± 4.9 −0.01 ± 0.22 Unclear 0.68 ± 0.14 4.1 ± 4.4 0.18 ± 0.19 Possible ↑
 PP/BM 

(W kg−1)
55.3 ± 8.3 53.1 ± 7.4 −3.9 ± 1.5 −0.27 ± 0.10 Likely ↓ 55.3 ± 8.3 0.0 ± 2.0 0.00 ± 0.13 Very Likely 

↔
SS
 Jump 

height 
(cm)

38.9 ± 6.2 37.5 ± 5.6 −3.7 ± 3.1 −0.24 ± 0.20 Possible ↓ 37.2 ± 6.0 −4.5 ± 2.9 −0.29 ± 0.19 Likely ↓

 FT:CT 0.64 ± 0.15 0.65 ± 0.14 1.0 ± 3.1 0.04 ± 0.13 Very Likely 
↔

0.63 ± 0.18 −1.3 ± 3.3 −0.06 ± 0.15 Likely ↔

 PP/BM 
(W kg−1)

55.1 ± 6.6 54.7 ± 7.7 −0.90 ± 2.8 −0.07 ± 0.23 Likely ↔ 53.7 ± 7.5 −2.7 ± 1.8 −0.22 ± 0.15 Likely ↓

TRI
 Jump 

height 
(cm)

38.3 ± 6.1 37.1 ± 6.7 −3.10 ± 2.4 −0.20 ± 0.16 Possible ↓ 37.7 ± 6.4 −1.6 ± 2.7 −0.10 ± 0.18 Likely ↔

 FT:CT 0.67 ± 0.14 0.67 ± 0.12 0.20 ± 6.3 0.01 ± 0.31 Unclear 0.65 ± 0.14 −3.9 ± 4.9 −0.20 ± 0.25 Possible ↓
 PP/BM 

(W kg−1)
55.5 ± 10.0 54.5 ± 8.2 −1.8 ± 3.4 −0.10 ± 0.19 Likely ↔ 53.6 ± 8.6 −3.3 ± 3.4 −0.19 ± 0.17 Possible ↓
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Perceived exertion, training load, and efficiency

Findings showed that as training efficiency increased, there 
are associated increases in RPE and decreases in session 
perceived load. For session intensity, findings are consist-
ent with previous research showing that increased training 
efficiency coincides with increases in perceived exertion 
(Hiscock et  al. 2017). However, when factored with time 
(i.e., session perceived load), SS and TRI may induce lower 
perceived total training loads (refer to Table 2). While pre-
vious research has not directly investigated the effects of 
resistance training efficiency on session perceived load, it 
should be noted that protocols that increase training effi-
ciency have indicated lower total session perceived load 

(Hiscock et al. 2017). This suggests that session perceived 
load may not be sensitive to increases in resistance train-
ing efficiency when intensity and volume are held constant 
and highlight the relative shortcomings of this method of 
athlete monitoring. Therefore, session perceived load may 
not be optimal when used as a sole measure of resistance 
training monitoring. Accordingly, it is proposed that the 
practitioner and sport scientist account for training load 
efficiency (i.e., kg  min−1) in conjunction with RPE and/
or session perceived load when implementing these resist-
ance training methods. This may assist in the monitoring 
of resistance training and the physiological responses (e.g., 
neuromuscular function and metabolic changes) that can 
occur in response to enhanced resistance training efficiency.

Fig. 3   Standardised effect size (±90% CI) changes and inferences of between condition comparisons of CMJ variables immediately and 24 h 
after traditional (TRAD), superset (SS), and tri-set (TRI) resistance training
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Neuromuscular responses

While results in the current study indicated that the TRAD 
protocol had the lowest mean RPE, likely and very likely 

reductions in PP/BM and jump height occurred immedi-
ately post-exercise. Increased RPE has previously been 
related to larger immediate reductions in CMJ function 
(Hiscock et  al. 2017). However, the current study shows 

Table 4   Testosterone (pg ml−1) and cortisol (ng ml−1) responses from pre-, post-, and 24-h post- a traditional (TRAD), superset (SS), and tri-set 
(TRI) resistance training protocol

M ± SD mean ± standard deviation, % Δ percentage change, ES effect size, 90% CI 90% confidence interval, ↑ increase, ↓ decrease

Pre-
M ± SD

Post-
M ± SD

Pre–Post
%Δ ± 90% CI

Pre–Post
ES ± 90% CI

Pre–Post
Inference

Post 24 h-
M ± SD

Pre–24 h
%Δ ± 90% 
CI

Pre–24 h
ES ± 90% CI

Pre–24 h
Inference

Testosterone (pg ml−1)
 TRAD 139.6 ± 76.8 138.5 ± 55.4 −0.70 ± 10.7 −0.02 ± 0.23 Unclear 135.9 ± 84.3 −2.6 ± 18.4 −0.06 ± 0.40 Unclear
 SS 132.8 ± 67.8 143.7 ± 74.7 8.2 ± 4.9 0.18 ± 0.29 Possible ↑ 150.3 ± 61.6 −13.1 ± 20.3 0.28 ± 0.41 Possible ↑
 TRI 127.0 ± 68.6 133.9 ± 71.0 −5.4 ± 12.4 0.11 ± 0.26 Possible ↑ 124.4 ± 61.0 −2.1 ± 15.3 −0.05 ± 0.34 Unclear

Cortisol (ng ml−1)
 TRAD 0.21 ± 0.23 0.10 ± 0.07 −50.29 ± 10.90 −0.88 ± 0.27 Almost cer-

tain ↓
0.16 ± 0.18 −22.0 ± 16.7 −0.31 ± 0.27 Likely ↓

 SS 0.20 ± 0.21 0.14 ± 0.17 −28.33 ± 22.40 −0.43 ± 0.40 Likely ↓ 0.25 ± 0.22 27.1 ± 40.4 0.31 ± 0.41 Possible ↑
 TRI 0.17 ± 0.24 0.15 ± 0.13 −14.10 ± 33.00 −0.16 ± 0.40 Unclear 0.18 ± 0.20 5.6 ± 30.2 0.06 ± 0.30 Unclear

Fig. 4   Standardised effect size 
(±90% CI) change of testoster-
one and cortisol immediately 
post- and 24 h after traditional 
(TRAD), superset (SS), and 
tri-set (TRI) resistance training. 
Also presented is the stand-
ardised effect size (±90% CI) 
and inference of comparisons 
between condition of testoster-
one and cortisol immediately 
and 24 h after exercise. ↓, 
decrease; ↑, increase
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that the TRAD protocol had the largest decrease in per-
formance post-training. The −6.2%  ±  2.5 decrease in 
jump height was unexpected, particularly when compared 
with the smaller changes in the SS (−3.7% ± 3.1) and TRI 
(−3.1% ± 2.4) protocols, and may occur due to the addi-
tional rest time provided in the TRAD protocol. This addi-
tional time was thought to maximise recovery and mini-
mise residual fatigue. Nevertheless, at 24 h, neuromuscular 
function of the lower body in the TRAD protocol appeared 
to have recovered, while the SS and TRI conditions still 
showed possible or likely reductions in performance. It 
would, therefore, be plausible that the immediate decrease 
in CMJ observed in the TRAD protocol was attributed to 
surplus rest causing “cooling down” of the participant’s 
lower body musculature (i.e., participants completing 
the TRAD protocol had not exercised the lower body for 
approximately 25  min due to altered exercise order and 
recovery periods compared to approximately 12  min in 
the TRI protocol) and/or a lack of potentiation due to the 
relatively light loading (Sale 2004). This reflects the find-
ings of Hiscock et  al. (2017) who found that resistance 
training protocols that include additional rest and are of a 
lower RPE may demonstrate improved recovery of neuro-
muscular function at 24-h post-exercise. This suggests that 
additional recovery time within a resistance training ses-
sion may diminish the effects of fatigue on neuromuscular 
performance.

Results in this study also indicated that enhanced train-
ing efficiency can affect the duration of reduced neuro-
muscular function. At 24-h post-training, the SS proto-
col had likely decreases in both jump height and PP/BM, 
whereas TRI had possible decreases in FT:CT and PP/
BM. Recent research suggests that FT:CT may indicate 
altered CMJ strategy during a fatigued state (Rowell et al. 
2016), while relative peak power output has demonstrated 
very large relationships (r  =  0.81) with ballistic capabili-
ties (Hori et  al. 2008). By assessing not only CMJ height 
but also CMJ variables, it is possible that an improved 
understanding of fatigue responses can occur (Gathercole 
et al. 2015). It is conceivable, therefore, that the suppressed 

neuromuscular function reported at 24  h is indicative of 
fatigue responses that would not be detected when only 
assessing CMJ height. However, this measure of neuromus-
cular function could not distinguish between training proto-
cols that have very high volume loads per minute (i.e., SS 
and TRI). Nevertheless, the practitioner should be aware of 
the effects of enhanced training efficiency on performance. 
It would also be prudent for the practitioner and scientist to 
incorporate relative (e.g., PP/BM  ) and time-derived (e.g., 
FT:CT) measures of neuromuscular function (Gathercole 
et al. 2015). These measures may provide additional under-
standing of fatigue responses that basic output measures 
(e.g., jump height) may not be able to detect (Gathercole 
et al. 2015).

Metabolic responses

Alternative structuring of resistance training which elimi-
nates rest periods between exercises is known to increase 
the anaerobic requirements which impact upon metabolic 
perturbation and fatigue (Kelleher et al. 2010). This is dem-
onstrated in the current study by the protocols that have 
the highest efficiency (i.e., SS and TRI) demonstrating the 
greatest rises in peak lactate (Fig. 2). With increased lactate 
production, an accumulation of hydrogen ions occurs. This 
accumulation is thought to interfere with muscle excitation 
and contraction coupling via calcium binding to troponin 
(Devries et  al. 1982; Sahlin et  al. 1997; Vasquez et  al. 
2013), causing a reduction in functional capacity of muscle 
fibres and an increased emphasis on the motor cortex to sig-
nal the recruitment of additional larger motor units (Hout-
man et al. 2003; Sahlin et al. 1997; Vollestad et al. 1984). It 
is thought that these changes can also lead to elevations in 
RPE and reduced power output (Hardee et al. 2012). There-
fore, by reducing recovery time within resistance training 
sessions, the practitioner can expect decreased neuromus-
cular performance, and increased metabolic responses (e.g., 
[LAC]) and perceived measures of intensity. Furthermore, 
activation and recruitment of the musculature may change 

Table 5   Creatine kinase concentration (U l−1) change and between condition comparison pre- and post-24 h after a traditional (TRAD), superset 
(SS), and tri-set (TRI) resistance training protocol

M ± SD mean ± standard deviation, % Δ percentage change, ES effect size, 90% CI 90% confidence interval, ↑ increase, ↔ trivial

Pre-
M ± SD (U l−1)

Post 24 h-
M ± SD (U l−1)

Pre–24 h
%Δ ± 90% CI

Pre–24 h
ES ± 90% CI

Pre–24 h
Inference

Between condition comparison
ES ± 90% CI and inference

TRAD 264.9 ± 227.8 286.6 ± 292.3 8.2 ± 13.7 0.12 ± 0.19 Likely ↔ 0.43 ± 0.29
SS likely greater increases than TRAD

SS 248.9 ± 179.2 355.2 ± 202.4 42.7 ± 20.4 0.62 ± 0.23 Very Likely ↑ 0.16 ± 0.38
Differences between SS and TRI unclear

TRI 262.3 ± 183.6 326.1 ± 247.8 24.40 ± 22.2 0.39 ± 0.32 Likely ↑ 0.27 ± 0.36
TRI possibly greater increases than TRAD
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due to increased motor unit signalling required to maintain 
neuromuscular performance (McCaulley et al. 2009).

As well as increased lactate accumulation, our results 
show that enhanced efficiency can influence indices of 
muscle damage (Table  5). While no studies to date have 
investigated SS or TRI training structures on changes in 
[CK], research by Mayhew and colleagues (2005) assessed 
the effects of rest interval length (i.e., 1 vs. 3 min) in vol-
ume equated resistance training protocols. Their findings 
corroborate the current study, showing reduced session 
recovery can impact upon [CK] responses. This provides 
further evidence that additional recovery within resistance 
training protocols can attenuate muscle damage. It has been 
suggested that these augmented [CK] responses are in part 
due to reductions in recovery causing increased metabolic 
stress within the muscle (Hiscock et al. 2017). Correspond-
ing increases in ammonia and hydrogen ions can lead to 
reduced cellular integrity and damage to contractile ele-
ments of the muscle fibres (Sanchez-Medina and González-
Badillo 2011; Váczi et  al. 2013). This damage has also 
been linked to impaired force-generating ability which may 
have impacted upon 24-h CMJ performance (Hiscock et al. 
2017; Váczi et al. 2013).

Endocrine responses

Despite previously documented relationships between 
[LAC] accumulation and testosterone secretion (Walker 
et al. 2011), the current study did not show this. Changes 
in testosterone were either unclear or showed a possible 
small response across all timepoints and protocols. These 
responses may have been due to the underlying makeup of 
the SS and TRI structures. A number of criteria are essen-
tial for a substantial acute rise in testosterone due to resist-
ance exercise (e.g., young, well-trained, male athletes, and 
completing high volumes of resistance training in workouts 
that have shortened recovery periods) (Hooper et al. 2017), 
with the current study fulfilling a number of these criteria. 
However, previous work by Linnamo et al. (2005) showed 
that certain intensity thresholds (i.e., ≥75% of 1RM) are 
also required to elicit acute testosterone responses, with 
the current study being below this threshold (i.e., ~60% 
of 1RM). While increases in resistance training intensity 
may prove beneficial in eliciting testosterone responses, 
this may not have been possible in practice due to the large 
amounts of fatigue and metabolic perturbation that par-
ticipants recorded when completing the SS and TRI proto-
cols. Nevertheless, this inability of SS and TRI resistance 
training to induce substantial changes in acute testosterone 
responses may impede upregulation of the androgen recep-
tor and corresponding downstream genomic responses 
(Hooper et al. 2017). It should also be noted, however, that 
due to the large variance in individual responses, findings 

must be interpreted with caution. In stating this, it can be 
said that TRAD resistance training with 65% of 3RM load 
promotes an almost certain reduction in salivary cortisol. 
This indicates that TRAD resistance training, that incor-
porates increased recovery time, may exert a smaller neu-
roendocrine stress response when exercising at the same 
intensity when compared with SS and TRI (Crewther et al. 
2017).

While this study is the first to examine the physiological 
responses to SS and TRI training structures, it is not with-
out limitations. First, resistance training intensity and vol-
ume between all three protocols (i.e., TRAD, SS, and TRI) 
were matched. While this is a methodological strength that 
assists in the examination and comparison of the three pro-
tocols, it may limit transferability to real life practice. Due 
to the differing amount of recovery time provided within 
each session, recovery was facilitated to differing extents. 
Increased recovery is known to prolong time to concentric 
failure in subsequent resistance training sets (Schoenfeld 
et al. 2016) and improve the maintenance of training inten-
sity (Willardson and Burkett 2008). Therefore, the TRAD 
and SS regimes may have been able to tolerate greater 
intensities or volumes. Consequently, research compar-
ing TRAD, SS, and TRI protocols in circumstances that 
manipulate these resistance training variables is warranted. 
Second, the current findings only extended over a 24-h 
time frame. Increased training efficiency has previously 
been linked to suppressed neuromuscular function at 48-h 
post-exercise (Hiscock et al. 2017), and it is still unknown 
at what timepoint neuromuscular function returned to base-
line after completing the SS and TRI training protocols. 
While physiological changes over this short time frame 
may imply potential responses and adaptations, further 
research is needed to quantify the effects of these resistance 
training programmes.

Conclusion

In conclusion, SS and TRI methodologies are efficient 
means of resistance training compared to TRAD alone. 
However, with these, improvements in efficiency come 
notable changes in perceptions of training intensity, mus-
cle damage, and within-session lactate concentrations. 
These increases in metabolic measures occur simultane-
ously with likely to very likely reductions in neuromuscular 
performance at 24-h post-training which indicates a greater 
fatigue response. Endocrine responses in the current study 
varied widely. However, TRAD structures induced a 
smaller neuroendocrine stress response immediately and 
24 h after training.

The practitioner should consider utilising SS and TRI 
resistance training methods during time-constrained 
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periods or when other training outcomes require increased 
training time (e.g., skill development). Alternatively, these 
methods could be used as a form of metabolic conditioning 
when an improvement in total training capacity is desired 
due to the large metabolic responses (e.g., [Lac]) that occur. 
However, with this enhanced training, efficiency comes 
a possible need for increased recovery. Consequently, the 
practitioner may wish to place SS and TRI forms of train-
ing at the beginning of the training week to assist in the 
management of fatigue. This could be further developed by 
placing TRAD protocols towards the latter half of the train-
ing week due to the smaller suppression of neuromuscular 
function at 24-h post-training.
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