@,

BiolVled Central

Research article

The P450 oxidoreductase, RedA, controls development beyond the
mound stage in Dictyostelium discoideum

Daniela C Gonzalez-Kristeller!, Layla Farage!, Leonardo C Fiorini!,

William F Loomis? and Aline M da Silva*!

BNVIC Developmental Biology

Address: 'Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Av. Prof. Lineu Prestes 748, 05508-000, Sao Paulo,
Brasil and 2Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, USA

Email: Daniela C Gonzalez-Kristeller - danig@iq.usp.br; Layla Farage - layla@iq.usp.br; Leonardo C Fiorini - Icfiorini@hotpop.com;
William F Loomis - wloomis@ucsd.edu; Aline M da Silva* - almsilva@iq.usp.br

* Corresponding author

Published: 24 January 2008
BMC Developmental Biology 2008, 8:8 doi:10.1186/1471-213X-8-8

Received: 28 August 2007
Accepted: 24 January 2008

This article is available from: http://www.biomedcentral.com/1471-213X/8/8

© 2008 Gonzalez-Kristeller et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: NADPH-cytochrome-P450 oxidoreductase (CPR) is a ubiquitous enzyme that
belongs to a family of diflavin oxidoreductases and is required for activity of the microsomal
cytochrome-P450 monooxygenase system. CPR gene-disruption experiments have demonstrated
that absence of this enzyme causes developmental defects both in mouse and insect.

Results: Annotation of the sequenced genome of D. discoideum revealed the presence of three
genes (redA, redB and redC) that encode putative members of the diflavin oxidoreductase protein
family. redA transcripts are present during growth and early development but then decline, reaching
undetectable levels after the mound stage. redB transcripts are present in the same levels during
growth and development while redC expression was detected only in vegetative growing cells. We
isolated a mutant strain of Dictyostelium discoideum following restriction enzyme-mediated
integration (REMI) mutagenesis in which redA was disrupted. This mutant develops only to the
mound stage and accumulates a bright yellow pigment. The mound-arrest phenotype is cell-
autonomous suggesting that the defect occurs within the cells rather than in intercellular signaling.

Conclusion: The developmental arrest due to disruption of redA implicates CPR in the metabolism
of compounds that control cell differentiation.

Background

NADPH-cytochrome-P450 oxidoreductase (CPR, EC
1.6.2.4) is a ubiquitous enzyme that is required for activ-
ity of the microsomal cytochrome-P450 (CYP) monooxy-
genase system [1,2]. This system is involved in the
metabolic activation and/or detoxification of numerous
foreign compounds as well as in the metabolism of
endogenous substrates, such as steroids, alkaloids and
fatty acids [3,4]. CPR belongs to a family of diflavin oxi-

doreductases which also includes the flavoprotein subunit
of bacterial sulfite reductase (SiR) as well as a methionine
synthase reductase and the cytoplasmic NADPH-depend-
ent diflavin oxidoreductase 1 (NDORI1) identified in
eukaryotic cells [5-8]. In addition, the diflavin reductase
domain is found in fusion with cytochromes P-450 or
with hemoprotein forming complex multidomain
enzymes such as the cytochromes P450BM3 and the nitric
oxide synthases [6].
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CPR is a membrane anchored ~78 kDa enzyme which
contains one molecule each of FAD and FMN bound as
prosthetic groups that facilitate transfer of electrons of
NADPH to the prosthetic heme group of CYP [1,2,9]. CPR
is also involved in transferring electrons to other mole-
cules, including heme oxygenase, squalene epoxidase and
cytochrome b [10-12].

Despite the diversity of CYP isoforms that can be found in
a single species [13], CPR in most organisms, except in
certain plants and some zygomycetes, is encoded by only
one gene [14-23]. Inactivation of the single-copy CPR
gene in Saccharomyces cerevisiae results in mutants that
accumulate only 25% as much ergosterol as observed in
wild-type strains which probably accounts for the
increased sensitivity of these mutants to the antifungal
drug ketoconazole [16,24]. Moreover, it has been
reported that cytochrome b, gene can suppress the pheno-
type resulting from disruption of the CPR gene and there-
fore might function as an alternative electron donor for
CYP activity in yeast [25-27]. In the fungus Gibberella
fujikuroi loss of CPR leads to a reduced growth rate and has
a strong influence on gibberellin biosynthesis [20].

CPR gene-disruption experiments in mouse have demon-
strated that absence of this enzyme causes defects leading
to mid-gestational lethality [28-30]. In situ hybridization
studies have shown high levels of CPR expression in mes-
enchymal cells of the limbs and developing olfactory neu-
roepithelia [31]. CPR has been implicated in odorant
clearance in insect antennae [17] and in ecdysone 20-
hydroxylation during insect embryonic development
[32].

Annotation of the sequenced genome of D. discoideum
[33] revealed the presence of three genes that encode
putative members of the diflavin oxidoreductase protein
family. DDB0187719 (redC) on chromosome 5 encodes a
polypeptide of 633 amino acids, which is 56% similar to
human NADPH-dependent diflavin oxidoreductase 1
(NDOR1), a cytoplasmic enzyme highly expressed in can-
cer cell lines with as yet unknown functions [8]. Two
genes, redA (DDB0215407) on chromosome 6 and redB
(DDB0190667) on chromosome 1, show about 50% sim-
ilarity to CPR proteins in humans, rats, Drosophila and
yeast. We found that inactivation of redA in Dictyostelium
results in developmental arrest at the mound stage.

Results and Discussion

Identification of the disrupted gene in the REMI mutant
redA-

The mutant described in this work was isolated from a
REMI-mutagenic library screen for morphological
mutants of Dictyostelium discoideum. Strain DG1047 was
picked because it forms yellow mounds that fail to make
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proper fruiting bodies. A portion of the disrupted gene
was isolated from this strain by plasmid rescue in E. coli
[34]. This fragment was used to screen a cDNA library pre-
pared from vegetative cells. The largest cDNA insert (2094
bp) was sequenced and found to encode a putative pro-
tein of 631 amino acids with ~50% similarity to CPRs
from human, rat, Drosophila, and yeast (Figure 1). The
gene was designated redA as a mnemonic that it is likely to
act in a redox reaction.

The D. discoideum CPR encoded by redA shows considera-
ble conservation in the regions proposed to be involved in
binding FMN, FAD and NADPH [2,9,18,35-37]. It is
worth mentioning that the NADPH-2 region pointed out
in Figure 1 contains the three residues Ser-596, Arg-597
and Lys-602 (positions numbered according human CPR)
involved in the binding of the enzyme to the 2' phosphate
of NADPH [2,38]. In addition, the conserved carboxi ter-
minal motif G/K/N-R-Y-x-x-D-V/T-W is present in D. dis-
coideum CPR. It has been demonstrated that the
tryptophan in this motif plays a major role in discrimina-
tion of NADPH [36].

Analysis of the predicted RedA amino acid sequence by
Signal P and TMHMM programs [39,40] revealed a N-ter-
minal hydrophobic segment of ~20-25 amino acids (Fig-
ure 1) that should be sufficient for its anchorage to a
membrane. Despite the fact that the hydrophobic N-ter-
minal of mammalian CPRs is approximately 56 amino
acids long [2], in plants and in fungi a shorter hydropho-
bic N-terminal is sufficient for membrane interaction
[24,41-43]. Moreover, it has been proposed that interac-
tion of human CPR to membranes and to CYPs is likely to
involve additional hydrophobic patches on CPR surface
[2,44].

Southern blot analysis of D. discoideum genomic DNA
cleaved with a variety of restriction enzymes showed that
RedA is encoded by a single copy gene (data not shown).
Comparison of redA ¢cDNA sequence with the Dictyostel-
ium genome sequence [33] confirmed this result and
showed that redA is an intronless gene located on chromo-
some 6. In most organisms analyzed, such as humans,
mouse, Drosophila, S. cerevisiae and filamentous fungi, the
CPR gene is present as a single copy and in the fruit fly two
alternative splicing isoforms have been identified [14-
18,20,45]. On the other hand, plants and certain fungi
often have multiple copies of CPR gene
[21,22,41,43,46,47]. We found two CPR genes in the Dic-
tyostelium genome, redA and redB. Even though the amino
acid sequences of redA and redB are 52% similar to each
other, their nucleotide sequences are highly diverged and
the genes appear to have evolved independently for a long
time. D. discoideum genome has a third gene (redC) that
encodes an additional member of diflavin oxidoreduct-
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Alignment of CPR aminoacid sequences. Comparison of Dictyostelium discoideum (Dd) NADPH cytochrome P450 oxi-
doreductase (RedA) aminoacid sequence with orthologs from Homo sapiens (Hs, P16435), Rattus norvegicus (Rn, P00388), Dro-
sophila melanogaster (Dm, CAA63639) and Saccharomyces cerevisiae (Sc, P16603) using CLUSTAL W program. ldentical and
conserved amino acids are denoted with (*) and (:), respectively. Semi-conservative changes are indicated with a single dot.
Binding domains for FMN, FAD and NADPH are indicated. Closed circles indicate highly conserved aromatic amino-acid resi-
dues that are particularly important in flavin binding. Open triangle points residues involved in NADPH discrimination. The ~56
aminoacid and the ~20 aminoacid hydrophobic segments at the N-terminal are indicated by dashed line in human CPR and dot-
ted line in Dictyostelium CPR, respectively.
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ases family which conserves sequences defined as binding
domains for FMN, FAD and NADPH but lacks the N-ter-
minal hydrophobic region found in RedA and RedB.

Expression of redA during growth and development

The expression of redA was monitored by Northern blot
using a redA cDNA fragment as probe. As shown in Figure
2, a single mRNA species of 2.3 kbp was present in grow-
ing cells and decreased in abundance upon starvation of
the cells on filter pads. No redA mRNA could be detected
late in development (Figure 2 and 3A) in agreement with
the redA expression profile determined on microarrays
[48]. As a control, we probed for the csaA mRNA encoding
the cell adhesion protein gp80 which is highly expressed
during early aggregation [49]. This mRNA accumulated
rapidly to reach peak levels by 2 hours and decreased after
4 hours of development (Figure 2).

In contrast, we found that redB is constitutively expressed
throughout development of AX4 cells, while redC is
expressed at detectable levels only in vegetative growing
cells being repressed upon cell starvation. As a late devel-
opment marker we monitored expression of ecmA [50], a
prestalk-specific gene (Figure 3A).

CPR mRNA has distinct expression patterns during the
development of several tissues and organs in mice, and
this expression is not coordinated with expression of CYP
genes [29,31,51,52]. The CPR gene is expressed in the
early stages of embryonic development, suggesting that
CPR-dependent processes may be important at this stage
of the embryogenesis [28,31,32,53]. In Drosophila mela-

Veg 0 05 1 2 4

IG7 Se—— == —— = —— —
csaA < L s d— e
Figure 2

Expression of redA during growth and development
of wild type AX4 cells. Exponentially growing AX4 cells
(Veg) were starved on filter pads and harvested at the indi-
cated times (h) after starvation. Identical Northern blots of
total RNA samples were probed with redA, IG7 and csaA
cDNA:s as indicated. IG7 transcript is expressed at similar
levels throughout the D. discoideum development [59].
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nogaster the CPR gene shows high levels of expression in
various embryonic tissues as well as in the antenna of
adults [17]. In parsley and Arabidopsis there are two CPR
genes, one of which is constitutively expressed while the
other is induced by biotic and abiotic stresses [21,47].

Phenotype of the redA minus mutants

To confirm that the redA- phenotype is due to the disrup-
tion of redA, we generated new mutant strains by homol-
ogous recombination with the original plasmid pRED
isolated from redA REMI mutant. Effective redA disruption
was checked by Southern blot analyses of genomic DNA
from blasticidin-resistant clones (data not shown) and six
independent knockout clones were isolated which
showed the same mound-arrest phenotype. One strain
(redA-KO) was selected for further analyses. As shown in
Figure 4A, when compared to wild type AX4 strain, the
majority of cells of redA- and redA-KO mutants failed to
make mature fruiting bodies after 24 h development on
filters, and was arrested at the mound stage where they
accumulated a yellow pigment (Figure 4B). It should be
pointed out that the redA-KO mutants form a few tipped
aggregates in the mound population after 48 hours starva-
tion (data not shown). On the other hand, the original
REMI and the recapitulated mutants did not show any sig-
nificant differences in their growth curves when compared
to the wild type AX4 (data not shown).

As expected, redA- and redA-KO mutants did not express
redA mRNA (Figure 5A). Despite their developmental
defect, redA- cells expressed csaA during development on
filter pads (Figure 5B). Moreover, redC transcriptional
profile is reasonably similar in wild type AX4 and in redA-
cells (Figure 3) as its transcript levels strongly decrease
upon starvation. On the other hand despite being
expressed throughout development both in AX4 and redA-
cells, redB transcript accumulates at higher levels in the
latter (Figure 3). Also the peak of expression of ecmA was
found to be advanced by four hours in the redA- strain as
compared to the wild type (Figure 3).

The developmental defect of redA- mutant is not rescued
by mixing with AX4 wild type cells. As shown in Figure 6,
mixing 10% or 20% of AX4 with redA- mutant did not
overcome the mutant mound arrest indicating autonomy
of the mutant phenotype. Moreover, the mutant cells did
not inhibit wild type cells from forming fruiting bodies
when they were developed together in equal numbers
(not shown).

As mentioned above both redA- and redA-KO mutants
form yellow mounds upon starvation (Figure 4B). We
have observed that after 48 hours filter starvation the
mounds and even the filter turn a strong yellow colour.
This does not reflect premature spore formation since the
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Transcriptional profile of redA, redB, redC and ecmA. Exponentially growing AX4 (A) and redA- (B) cells were starved
on filter pads and harvested at the indicated times (h) after starvation. Transcript levels for redA, redB and redC genes are rela-
tive to 0 h cells. Fold change for ecmA are relative to transcript levels detected at 16 h. Error bars represent the standard devi-
ation from two independent experiments where qPCR assays were performed in triplicate.
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AX4

redA’

redA-KO

Figure 4

Disruption of redA impairs development at mound
stage. (A) Exponentially growing AX4 wild type cells and
the mutants redA- and redA-KO were starved on filter pads
and photographed at the indicated times (h) after starvation.
(B) AX4 fruiting bodies and redA- yellow mounds after 48
hours starvation on filter pads are shown at lower (left) and
at 5% higher magnification (right).

yellow mounds do not contain any viable spores (data not
shown). Chloroform extracts of redA- mounds collected
after 48 hours starvation show an absorption peak at 400
nm which is not observed in AX4 cells (Figure 7). We did
not succeed in characterizing the metabolites that accu-
mulate in redA-mutants despite many attempts.

CPR is a key enzyme in many metabolic processes, as a
consequence of its close interactions with cytochrome
P450 heme oxygenases. In particular, its participation in
synthesis and/or degradation of important cellular com-
pounds, such as retinoic acid, cholesterol and steroid hor-
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Figure 5

Disruption of redA results in cells lacking redA tran-
script. (A) Total RNA was prepared from exponentially
growing AX4 cells (AX4) and from two independent clones
of the mutants redA- and redA-KO. Identical Northern blots
were probed with redA and IG7 cDNA:s as indicated. (B)
Exponentially growing redA- cells (Veg) were starved on filter
pads and harvested at the indicated times (h) after starvation.
Identical Northern blots of total RNA samples were probed
with redA, IG7 and csaA cDNAs as indicated.

mones [2,29,30,35,36,54] may be related to
abnormalities observed in development of organisms
where CPR expression is abolished [28,32,55]. Develop-
ment of homozygous mouse embryos carrying inactivat-
ing mutations in both alleles of the CPR gene is severely
impaired, but lethality is only observed 10 to 13 days after
zygote formation [28,29]. These findings indicate the
importance of CPR in early animal development. Our
results point to a role for a D. discoideum CPR in the
metabolism of factors which control its cellular differenti-
ation.

Conclusion

The D. discoideum genome encodes three genes (redA, redB
and redC) for enzymes of diflavin oxidoreductases family.
Disruption of redA led to mutant cells that form yellow
mounds that fail to make proper fruiting bodies. The
developmental arrest shown by this mutant implicates
redA-encoded P450 oxidoreductase in the metabolism of
compounds that control cell differentiation.
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Figure 6

AX4 cells do not rescue redA- phenotype. Exponentially
growing redA-and AX4 wild type cells were starved on filter
pads mixed at the indicated proportions. At the indicated
times (h) after starvation cells were photographed.

Methods

Cells and culture conditions

Dictyostelium discoideum strain AX4 and derived transform-
ants were grown in axenic medium (HL-5) or in SM agar
plates on lawns of Klebsiella aerogenes [56]. Complete and
synchronous developmental program was undertaken by
washing cells with 20 mM phosphate buffer (pH 6.4) and
depositing them at 5 x 107 on nitrocellulose filters sup-
ported on buffer-saturated pads as previously described
[56]. Strain DG1047 (redA-) was selected from a HindIll
REMI-mutagenised library of strain AX4 selected for inte-
gration of the pBSR3 vector which carries the blasticidin S
resistance cassette [34,57]. Morphological mutants were
recognized by the structures formed within plaques gener-
ated by the blasticidin-resistant cells grown on SM agar in
association with K. aerogenes.

Cloning of Dictyostelium redA cDNA

Regions flanking the plasmid insertion site in the REMI-
mutant were isolated by plasmid rescue as described [34].
Genomic DNA from redA- strain was digested with HindlIII
ligated and electroporated into Escherichia coli SURE cells
(Stratagene). The rescue plasmid pRED was isolated from
the ampicillin-resistant bacterial transformants and
sequenced. A 2190 bp sequence partially encoding redA
gene has been deposited in GenBank (access number
AF012946). Hindlll-linearized pRED was used to recapit-
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Figure 7

UV and visible spectra of the chloroform extracts
from AX4 and redA-. Chloroform extracts of AX4 and
redA- cells collected after 48 hours starvation were analyzed
using a UV/Visible spectrophotometer. The arrow points the
absorption peak at 400 nm observed in the redA- cell extract.

ulate redA mutation by homologous recombination as
described [34].

A 1.8 kbp genomic fragment obtained from pRED by
digestion with HindIIl and Smal was used as probe to
screen a Lambda-ZAP (Stratagene) cDNA library derived
from AX4 D. discoideum vegetative cells (kindly provided
by Dr. Hudson Freeze, The Burnham Institute, La Jolla,
USA). Screening of 200,000 plaques under high strin-
gency conditions yielded twenty positives clones that were
subjected to in vivo excision from a phagemid by transfor-
mation of Escherichia coli XL-1 blue MRF' (Stratagene). The
pBluescript SK clone (2B) with the largest cDNA insert
was completely sequenced on both strands and the

Page 7 of 10

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF012946

BMC Developmental Biology 2008, 8:8

sequence was deposited in GenBank (access number

DQ344637).

Molecular cloning procedures were essentially as
described [58], unless otherwise noted. DNA sequencing
was performed on an ABI 377 automated sequencer (Per-
kin-Elmer).

Northern Blots

Total RNA was isolated from 5 x 107 D. discoideum cells at
various developmental stages by using the Trizol (Invitro-
gen). Formaldehyde-agarose gel electrophoresis of RNA
(20 pg) and transfers to nylon membranes (Amersham),
were performed as described [58]. Probes were prepared
with gel-purified DNA fragments radiolabeled with [a-
32P]dATP and [a-32P]dCTP by the random hexanucleotide
priming method (Random Primers DNA Labeling System,
Invitrogen).

RT-qPCR

Reverse transcription was carried out with 5 pg of D. dis-
coideum total RNA primed with a mixture of oligo dT and
random hexamers using SuperScript First-Strand Synthe-
sis System (Invitrogen). A 20 pug amount of the resulting
cDNA were subjected to quantitative PCR using Platinum
SYBR Green qPCR SuperMix UDG (Invitrogen) on a
GeneAmp 5700 System (Applied Biosystems) using the
default thermocycler program for all genes. Threshold val-
ues were normalized according to C, of D. discoideum
mitochondrial large subunit rRNA (IG7), which is
expressed at similar levels throughout the D. discoideum
development [59]. The fold change of each gene was cal-
culated using the 2-4Ctmethod [60]. qPCR assays were per-
formed in triplicate with the following gene-specific
primer pairs: redA (5'-CCTATGGTGATGGTGTTCCAC-
CAAC-3' and 5'-CCCCACTAAATTGAATATGTGAAA-
GATTTAAACGA-3), redB (5"
GCAACCGAAGAAGCAAACGAAGAATACAAT-3' and 5'-
CAAAGGTTGAAGACCTGGGAAAGATTCTAA-3'),  redC
(5'-AGGTGGAGTCTTTGAAAGATGTTGTAAAAATCC-3'
and 5'-GGTCCAGGTACTGGTGITGCAC-3'), ecmA (5'-
AGCTGATAGTITGCGATTCCA-3' and 5'-TACCTCCTG-
TACCACCACCA-3") and mlA (IG7) (5-GTGGITCG-
GCACCTCGAT-3"' and 5'-CACCCCAACCCITGGAAACT-
3").

Chloroform extraction

5 x 10% AX4 and redA- cells developed on filters for 48
hours were extracted with 1 ml chloroform and the
organic phase was collected by centrifugation at 3000 x g
for 5 min at 4°C. UV/Visible spectra of the chloroform
extracts were obtained in UV-2401PC Shimadzu spectro-
photometer.

http://www.biomedcentral.com/1471-213X/8/8

Sporulation efficiency assay

Mutants and wild-type cells were allowed to develop on
nitrocellulose filters. At 0, 8, 12, 16, 20, 24 and 48 hours
the cells were harvested from the filters with 20 mM phos-
phate buffer (pH 6.4) and sporulation efficiency was
determined by detergent and heating treatment of the
cells following plating on SM agar in association with K.
aerogenes [56]. The number of plaques in the bacterial
lawn indicated the number of viable spores. Wild-type
AX4 cells submitted to 5-day starvation were used as a
positive control for these experiments, to ensure recovery
of fruiting bodies with viable spores.

List of abbreviations used
CPR, NADPH-cytochrome P450 oxidoreductase; FAD, fla-
vin adenine dinucleotide; FMN, flavin mononucleotide.
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