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Abstract: Eating disorders are directly or indirectly influenced by gut microbiota and innate immunity.
Probiotics have been shown to regulate gut microbiota and stimulate immunity in a variety of species.
In this study, three kinds of probiotics, namely, Lactobacillus plantarum, Lactobacillus rhamnosus and
Clostridium butyricum, were selected for the experiment. The results showed that the addition of
three probiotics at a concentration of 108 colony forming unit/mL to the culture water significantly
increased the ratio of the pellet feed recipients and survival rate of mandarin fish (Siniperca chuatsi)
under pellet-feed feeding. In addition, the three kinds of probiotics reversed the decrease in serum
lysozyme and immunoglobulin M content, the decrease in the activity of antioxidant enzymes
glutathione and catalase and the decrease in the expression of the appetite-stimulating regulator
agouti gene-related protein of mandarin fish caused by pellet-feed feeding. In terms of intestinal
health, the three probiotics reduced the abundance of pathogenic bacteria Aeromonas in the gut
microbiota and increased the height of intestinal villi and the thickness of foregut basement membrane
of mandarin fish under pellet-feed feeding. In general, the addition of the three probiotics can
significantly improve eating disorders of mandarin fish caused by pellet feeding.

Keywords: eating disorders; feeding behavior; gut microbiota; Siniperca chuatsi; innate immunity;
appetite; Lactobacillus plantarum; Lactobacillus rhamnosus; Clostridium butyricum

1. Introduction

Eating disorders mainly refer to a group of syndromes characterized by abnormal
feeding behaviors, accompanied by significant weight changes or physiological dysfunc-
tions [1–3]. The main clinical types include anorexia nervosa, bulimia nervosa, binge eating
disorder and avoidance/restrictive food intake disorder. Moreover, eating disorders occur
throughout the age groups and have an essential impact on physical and mental health [4].
They increase the likelihood of anxiety, obesity, suicidal intentions, depression, drug abuse
and health problems [5]. Eating disorders are associated with the establishment of food
preferences and aversions and are influenced by the sensorial characteristics of food [6].
A better understanding of food preferences and aversions can improve the prevention and
treatment of eating disorders [7].

Food preference is an innate behavioral trait which is affected by both genes and
the environment [8,9]. The hypothalamus contains orexigenic neurons that express neu-
ropeptide Y (NPY) and agouti-related peptide (AgRP), which participate in food intake
control and are regulated by the peripheral hormone leptin and ghrelin [10,11]. NPY is a
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peptide composed of 36 amino acids. As an appetite-stimulating factor, it plays a crucial
role in regulating energy homeostasis and food intake [12]. AgRP increases food intake
by antagonizing the effect of the anorexigenic POMC product, α-melanocyte stimulating
hormone (α-MSH) [13,14]. There seems to be a species-specific variability in the functions
of leptin and ghrelin with regards to the regulation of feeding and metabolism in fish [15].
Ghrelin acts as an appetite stimulant in a variety of fish species, but there is also conflicting
evidence, such as in Salmoniformes [16].

As an essential modulator of host physiology and behavior, intestinal bacteria have
been shown to influence feeding behavior and food choice [17–25]. Gut microbiota can
influence host eating behavior by directly affecting nutrient sensing, appetite and satiety-
regulating systems through the production of neuroactive substances and short-chain
fatty acids or indirectly manipulating intestinal barrier function, interacting with bile acid
metabolism, modulating the immune system and influencing host antigen production [26].
Gut microbiota play a vital role in regulating host eating disorders’ behavioral comorbidi-
ties, such as obesity, anorexia nervosa and severe acute malnutrition. A growing body
of evidence links the gut microbiota with nutrition, immune, anti-oxidative stress and
appetite. Influencing one of these factors will most likely lead to changes in the others,
thereby making the gut microbiota easily accessible and manipulable for targeting host
food preferences [26].

Administration of probiotics is an effective strategy to maintain the balance of the
gut microbiota [27]. Probiotics are defined as microbial cells or compounds that have a
beneficial effect on the health of the host. In aquaculture, probiotics can prevent the spread
of diseases, increase food conversion efficiency and stimulate growth by improving the
composition of the gastrointestinal microbiota, strengthening the immune system and
increasing the resistance to farmed stressors [28–30]. In addition, probiotics have become
an alternative to antibiotics and other drug treatments in the aquaculture industry and are
considered a new tool for disease control [28,31,32]. Microorganisms commonly used as
probiotics in aquaculture include bacteria, yeast and algae [33].

Among several probiotic bacterial species, numerous reports have been published
on the beneficial role of Lactobacillus plantarum, Lactobacillus rhamnosus and Clostridium
butyricum as probiotics in aquaculture [34–40]. L. plantarum is a rod-shaped, gram-positive,
non-spore-forming facultative anaerobic bacteria that belong to the Lactobacillaceae family.
It has been reported to reduce the adhesion and growth of harmful bacteria via producing
antimicrobial compounds [41–43], improve the growth and feed efficiency of carp (Catla
catla) [44,45], grouper (Epinephelus coioides) [46], tilapia (Oreochromis niloticus) [47], shrimp
(Penaeus indicus) [48] and pacific white shrimp (Litopenaeus vannamei) [49] and enhance
the immunity and survival rate of pacific white shrimp (Litopenaeus vannamei) [50,51]
and tilapia [52]. Previous studies have shown that L. rhamnose can affect the appetite
and energy metabolism of the host by regulating the expression of γ-aminobutyric acid
and its receptors in the central nervous system [53–57]. C. butyricum is a spore-forming
bacterium belonging to Gram-positive anaerobe that can produce butyric acid and exists
in the intestine of healthy animals and human [58–60]. Compared with other probiotics,
C. butyricum has a more vital tolerance ability to higher temperature environments, lower
pH, bile salt and several antibiotics. Therefore, C. butyricum has always been regarded as a
good and safe food additive [58]. C. butyricum has a positive effect on immune function and
is connected with increased population of Bifidobacterium and Lactobacillus and decreased
concentration of pathogenic bacteria in the intestinal tract of humans, mice, piglets and
broiler chickens [61,62]. C. butyricum can inhibit intestinal inflammation and regulate gut
microbiota through the immune pathway [63–65].

Mandarin fish (Siniperca chuatsi) is a precious freshwater farmed fish with unique
live bait feeding habits, and it does not easily accept dead bait or pellet feed [10,66]. The
preference for a live bait diet increases the cost of mandarin fish farming and the risk of
infectious diseases, limiting the development of mandarin fish farming. For this problem,
previous studies mainly focused on optimizing the domestication process and breeding
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conditions (such as temperature), strengthening the training of learning and memory and
using attractants, which promoted the development of pellet feed for mandarin fish [67–70].
However, there are still problems such as high mortality and slow growth of mandarin
fish fed with pellet feed. Recently, relationships among gut microbiota, host immunity and
feeding preference behavior have attracted research attention [71]. Probiotics intervention is
an effective way to regulate the gut microbiota [27]. In this study, three probiotics that have
been shown to be safe for aquatic animals, L. plantarum, L. rhamnosus and C. butyricum, were
selected to investigate whether probiotics can improve the eating disorders of mandarin
fish caused by pellet feed diet by modulating the gut microbiota, immune parameters,
appetite and intestinal morphology, which may contribute to the theoretical foundation of
probiotics intervention in the treatment of dietary disorders.

2. Materials and Methods
2.1. Bacteria Strains

The three probiotic strains, L. plantarum (ATCC 8014), L. rhamnosus (ATCC 7469) and
C. butyricum (ATCC 19398), were purchased from Guangdong Microbial Culture Collection
Center (GDMCC). The bacteria were cultured as described previously [36,72,73]. Briefly,
the two activated bacterial suspensions of L. plantarum and L. rhamnosus were separately
incubated into MRS liquid broth (Merck, Darmstadt, Germany). The activated bacterial
suspension of C. butyricum was incubated into the reinforced clostridial medium (RCM)
and then placed in an anaerobic workstation at 37 ◦C for 12 h. The bacterial titers were
measured by making tenfold dilution series in triplicate on agar plates. Optical densities
(OD) were measured using a spectrophotometer (Spectroscan UV 2600, Thermo Scientific,
Waltham, MA, USA) at 600 nm. The strains were harvested via centrifugation at 4000× g for
10 min, washed twice with normal saline (0.9% NaCl) and resuspended at 2 × 1010 colony
forming unit (CFU)/mL in sterile normal saline. Culture bacterial cells were afterward
kept at 4 ◦C until usage.

2.2. Animal Treatments

All experimental procedures were approved by the Institutional Animal Care and
Use Committee of Sun Yat-sen University and performed according to the guidelines for
experimental animals established by this committee. One thousand and five hundred
healthy mandarin fish were obtained from a fish farm in Foshan, Guangdong, China.
All experimental fish were acclimatized for two weeks in 3200 L rectangular aquaria to
laboratory conditions before pellet-feed feeding.

After the adaptive feeding, a total of 1350 healthy mandarin fish weighing 2.5 ± 0.1 g
(mean ± standard error of mean (SEM)) were randomly allocated into one of five groups
(270 fish per group): live bait fish feeding group (LBFD), pellet-feed feeding group with
probiotics free (PFD), pellet-feed feeding group with L. plantarum plus (PFDLP), pellet-
feed feeding group with L. rhamnosus plus (PFDLR) and pellet-feed feeding group with
C. butyricum plus (PFDCB). Each group of experimental fish was randomly assigned to
three 800 L replicated water tanks (90 fish per tank). Mandarin fish in the PFDLP, PFDLR
and PFDCB groups were treated with L. plantarum, L. plantarum and C. butyricum at a final
concentration of 108 CFU/mL for one week, while the remaining two groups, LBFD and
PFD, were not treated. In this time, all fish received a live bait fish diet twice a day (at 06:00
and 18.00 h) at 5% of initial body weight. Mud carp (Cirrhinus molitorella) was used as the
live bait fish in this study.

During the period of pellet-feed feeding, the PFD, PFDCB, PFDLR and PFDLP groups
of experimental fish were overfed from dead fish (1 week) to commercial feed (4 weeks)
following the domestication process established by Liang et al. [67], while the LBFD group
of experimental fish maintained a live bait diet. Each group of experimental fish was fed
twice a day (at 06:00 and 18.00 h) at 5% of initial body weight to approximate satiation.
The main nutritional composition of the commercial feed purchased from Foshan Nanhai
Jieda Feed Co., LTD. (Lishui, China), is 48% crude protein, 5% crude fat, 3% crude fiber,



Microorganisms 2021, 9, 1288 4 of 24

19% crude ash, 10% water, 4% calcium, 2% total phosphorus, 3%NaCl and 2.7% lysine. The
soft pellet feed with a diameter of 50 mm was made with a feed machine and stored at
−20 ◦C until use. Part of the water tank was replaced daily to remove waste and feces.
When partially replacing the aquaculture water, an appropriate amount of L. plantarum,
L. plantarum and C. butyricum was added to the PFDLP, PFDLR and PFDCB groups to
maintain the concentration at 1 × 108 CFU/mL. The water quality of each tank was kept
within the best physical parameter range, temperature (24.13 ± 0.52 ◦C), pH (7.41 ± 0.15),
ammonia-nitrogen (0.27 ± 0.05 mg/L) and dissolved oxygen (7.52 ± 0.15 mg/L), during
the experiment.

2.3. Proportion of Pellet Feed Recipients and Survival Analysis

The number of pellet feed recipients in groups PFD, PFDLP, PFDLR and PFDCB were
counted on days 7, 14 and 28 after pellet-feed feeding, and the proportion of pellet feed
recipients (POPFR) was calculated according to the following formula: POPFR (%) = [Num-
ber of pellet feed recipients/Number of initial mandarin fish] × 100. During the feeding
trial, the number of deaths in each group was recorded every day, and Kaplan Meyer’s
(KM) survival analysis was used to evaluate the survival differences between groups.

2.4. Sample Collection

On days 7, 14 and 28 of pellet-feed feeding, twelve mandarin fish were randomly
collected from each tank and then anesthetized with tricaine methanesulfonate (MS-222)
for subsequent sampling. Blood samples collected from the tail vascular vein of each fish
were placed in centrifuge tubes and centrifuged at 4 ◦C and 4000 rpm for 15 min to separate
the serum. The separated serum was stored at−80 ◦C for further determination of immune
parameters. Brain and gut samples were collected and placed in RNA Later® (Qiagen,
Hilden, Germany) at 4 ◦C overnight and then stored at−80 ◦C for gene expression analysis.
A separate liver, intestine and gills were homogenized with cold phosphate buffer saline
(PH 7.5). The homogenate was then centrifuged at 4 ◦C and 8000 rpm for 10 min, and the
supernatant was taken and stored at −20 ◦C for analysis of antioxidants and oxidative
stress parameters. Intestinal samples containing the inclusion were collected and placed in
sterile Eppendorf tubes, immediately frozen in liquid nitrogen, and then stored at −80 ◦C
for microbiome analysis. Intestinal tissue was collected and fixed in Bouin’s solution for
24 h before histological analysis was performed.

2.5. Serum Parameter Analysis
2.5.1. Serum Lysozyme Content

According to the instruction manual, lysozyme content in serum was strictly analyzed
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

2.5.2. Measurement of IgM and CRP

Reagent kits for immunoglobulin M (IgM) and C-reactive protein (CRP) were obtained
from Shanghai Enzyme-linked Biotechnology Co., Ltd., Shanghai, China. Each parameter
was strictly analyzed in accordance using a double-antibody sandwich ELISA with the
manufacturer’s instructions.

2.6. Antioxidant and Oxidative Stress Parameters

The superoxide dismutase (SOD) activity, CAT activity, glutathione (GSH) content and
malondialdehyde (MDA) content were determined according to the instructions provided
in the commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). SOD,
GSH, CAT and MDA measurements were based on the WST-1 method [74], xanthine
oxidase method [75], ammonium molybdate colorimetric method [76] and thiobarbituric
acid method [77], respectively.
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2.7. Gene Expression Analysis
2.7.1. Extraction of total RNA and Reverse Transcription

According to the manufacturer’s instructions, total RNAs were extracted from each
tissue sample (50–100 mg) using RNAiso Plus reagent (Takara, Shiga, Japan). RNA con-
centrations and purity were determined using a Nanodrop 2000 c spectrophotometer
(Thermo Fisher, Waltham, MA, USA). RNA was used as a templet for cDNA synthesis us-
ing PrimeScriptTM reverse transcription (RT) reagent kit (TaKaRa, Shiga, Japan) following
the manufacturer’s guidelines and stored at −80 ◦C until analysis.

2.7.2. Real-Time Quantitative PCR (RT-qPCR)

Total RNA was isolated from different tissues by using RNAiso Plus reagent (Takara,
Shiga, Japan) according to the manufacturer’s instructions. First-strand complementary
DNAs (cDNAs) were synthesized using PrimeScriptTM RT reagent kit (Takara, Shiga, Japan)
following the manufacturer’s guidelines. The expression levels of ghrelin, leptin, npy, agrp
and β-actin were detected using the corresponding forward and reverse primers, which
were designed using Primer Express software (Applied Biosystems, Waltham, MA, USA)
(Table 1). β-actin served as a housekeeping gene in order to normalize the expression levels.
Quantitative PCR (qPCR) was performed on a total reaction volume of 10 µL, containing
0.2 µM primers, 1µL of cDNA, 5 µL of 2 × SYBR premix ExTaq™ (Takara, Shiga, Japan)
and 3.6 µL of ultrapure water using the following setting: 40 cycles of amplification (5 s at
95 ◦C, 40 s at 60 ◦C and 1 s at 70 ◦C). All RT-qPCR reactions were performed in triplicate
on a LightCycler 480 instrument (Roche Diagnostics, Rotkreuz, Switzerland). Data were
analyzed using the 2-∆∆Ct method [78].

Table 1. Sequences of primer pairs used for real-time quantitative PCR in this study.

Gene Primer Name Primer Sequence (5′-3′) Annealing Temp (◦C)

ghrelin Scghrelin-F GCTTTCTCAGCCCTTCAC 60
Scghrelin-R GGTTGTCCTCAGTGGGTTG

leptin scleptinB-F CGAGAGTCACCTTTACCTG 58
scleptinB-R GTGCAAATAAGCCTCTAAGTG

npy scNPY-F GCAAATCTCCCTCTGACAATC 60
scNPY-R GGTTTCACCGGGTATCCTT

agrp scAgRP-F GAGCCAAGCGAAGACCAGA 58
scAgRP-R GCAGCACGGCAAATGAGAG

β-actin β-actin-F CCCTCTGAACCCCAAAGCCA 59
β-actin-R CAGCCTGGATGGCAACGTACA

2.8. Gut Microbiota Analysis

Total bacterial DNA of the intestine samples with retained contents was extracted
using an E.Z.N.A. ®Stool DNA Kit (Omega, Norcross, GA, USA). After measurement
of the concentration and quality of the extracted DNA using a Nanodrop 2000c spec-
trophotometer (Thermo Fisher, Waltham, MA, USA), the V4-V5 region of the bacte-
rial 16S DNA gene was amplified via the PCR method using the primers of 515F (5′-
GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-CCGTCAATTCCTTTG AGTTT-3′). The
high throughput sequencing for the qualified amplicon was performed on the Illumina
NovaSeq6000 platform at Novogene Biotech Co., Ltd. (Beijing, China). Paired-end reads
were assigned to samples based on a unique barcode and truncated by cutting off the
barcode and primer sequence. The raw tags were then produced via FLASH (V1.2.7) [79].
Sequences were analyzed with the UCHIME algorithm [80] and QIIME [81]. The effective
tags were filtered and clustered into operational taxonomic units (OTUs) under a 97% nu-
cleotide similarity level. The taxonomic annotation of OTUs was performed using Uparse
software [82]. The alpha diversity, including the observed species, Chao 1, abundance-
based coverage estimator (ACE), Simpson, Shannon and PD whole tree, was calculated
using QIIME (Version 1.9.1) to analyze the abundance and diversity. A Venn diagram was
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constructed to describe the core components of the genera. Beta diversity was evaluated
using principal coordinates analysis (PCoA). Linear discriminant analysis effect size (LEfSe)
was used to identify significant differences in the relative abundance of bacterial taxa [83].
Predicted functional pathways were annotated using the Kyoto encyclopedia of genes
and genomes (KEGG) at level 1. Tax4Fun was used to predict the functional profile of the
intestinal microbiota [84]. All figures were drawn using R software (Version 2.15.3).

2.9. Intestinal Histological Assessment

The foregut, midgut and hindgut tissues were fixed in Bouin’s solution for 24 h and
then dehydrated, embedded in paraffin and sectioned into 4-µm transverse cuts following
the axis of the gut lumen. Hematoxylin and eosin (H.E.) were applied for the staining, and
histological examination of the samples was carried out using an optic microscope (Nikon,
Tokyo, Japan) with a digital camera (Nikon, Tokyo, Japan). The intestinal villi height and
basement membrane thickness of each segment was measured with Image-Pro software.

2.10. Statistical Analysis

All the experimental data were tested for normality and homogeneity of variances us-
ing the Shapiro-Wilk’s test and Levene’s test, respectively, and presented as the mean± SEM.
Significant differences were determined using the one-way analysis of variance (ANOVA)
test, followed by Fisher’s least significant difference post hoc test and Duncan’s multiple
range tests, after confirming data normality and homogeneity of variances. Statistical
analysis was performed using SPSS software 19.0 (SPSS Inc., New York, NY, USA) and the
Windows-based Graph pad prism statistical software (San Diego, CA, USA). A p value less
than 0.05 was accepted as statistically significant.

3. Results
3.1. Proportion of Pellet Feed Recipients

The POPFR of mandarin fish in different feeding groups (PFD, PFDCB, PFDLR and
PFDLP) was tested on the 7th, 14th and 28th day of feeding. As shown in Figure 1, on the
28th day of feeding, the POPFR of mandarin fish in the PFDLP, PFDLR and PFDCB groups
was higher than that in the PFD group, and the PFDLP and PFDCB groups reached a
significant level of difference (p < 0.05). The highest POPFR of mandarin fish was recorded
in PFDLP (81%) compared to PFD (68%) on the 28th day of feeding.

3.2. Survival Analysis

Mandarin fish fed with pellet feed without probiotics supplemented had a lower sur-
vival rate than those fed with live bait at the end of the experiment (Figure 2). Application
of L. plantarum, L. rhamnosus and C. butyricum significantly reduced the decrease of the
survival rate of mandarin fish caused by the pellet feed diet at the end of the experiment
(Figure 2).

3.3. Serum Parameter Analysis
3.3.1. Serum Lysozyme Content

Mandarin fish in the PFD group had lower serum lysozyme content than that in the
LBFD group at days 7, 14 and 28 of feeding (Figure 3). The effects of L. plantarum, L. rham-
nosus and C. butyricum on serum lysozyme content are shown in Figure 3. Application of
L. plantarum, L. rhamnosus and C. butyricum reduced the decrease of the serum lysozyme
content of mandarin fish caused by the pellet feed diet (Figure 3). Compared with the
PFD group, the content of serum lysozyme increased significantly on the 7th and 28th day
in the PFDLP group and on the 14th day in the PFDLR group (p < 0.05) (Figure 3). The
highest serum lysozyme content of mandarin fish was noticed in PFDLP after being fed for
28 days (Figure 3).
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3.4. Antioxidant and Oxidative Stress Parameters 
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level in liver, gut and gill was increased (Figure 5D). Compared with the LBFD group, the 
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Figure 3. Serum lysozyme content of mandarin fish in different feeding groups (LBFD, PFD, PFDCB,
PFDLR and PFDLP) at day 7, 14 and 28 of feeding. Data are presented as mean ± SEM (n = 9).
Abbreviations: LBFD, live bait fish feeding group; PFD, pellet-feed feeding group with probiotics
free; PFDCB, pellet-feed feeding group with C. butyricum plus; PFDLR, pellet-feed feeding group
with L. rhamnosus plus; PFDLP, pellet-feed feeding group with L. plantarum plus. A value followed
by a lowercase superscript (a–b) differs significantly from all other values not followed by the same
lowercase superscript at the same time point based on ANOVA followed by the post hoc test (p < 0.05).

3.3.2. Measurement of IgM and CRP

The effects of L. plantarum, L. rhamnosus and C. butyricum on serum IgM and CRP
content are shown in Figure 4. Although the application of L. plantarum, L. rhamnosus and
C. butyricum reduced the decrease of the serum IgM level of mandarin fish at days 14 and
28 of feeding (Figure 4A), serum CRP content was not significantly affected by pellet feed
and probiotics application (Figure 4B). Compared with the PFD group, the serum IgM
content of the PFDLP group supplemented with L. plantarum was significantly increased at
days 14 and 28 of feeding (p < 0.05) (Figure 4A).
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Figure 4. Serum content of IgM (A) and CRP (B) of mandarin fish in different feeding groups (LBFD, PFD, PFDCB, PFDLR
and PFDLP) at day 7, 14 and 28 of feeding. Data are presented as mean± SEM (n = 9). Abbreviations: IgM, immunoglobulin
M; CRP, C-reactive protein; LBFD, live bait fish feeding group; PFD, pellet-feed feeding group with probiotics free; PFDCB,
pellet-feed feeding group with C. butyricum plus; PFDLR, pellet-feed feeding group with L. rhamnosus plus; PFDLP, pellet-
feed feeding group with L. plantarum plus. A value followed by a lowercase superscript (a–b) differs significantly from all
other values not followed by the same lowercase superscript at the same time point based on ANOVA followed by the post
hoc test (p < 0.05).

3.4. Antioxidant and Oxidative Stress Parameters

GSH content and CAT activity in liver, gut and gill of mandarin fish in the PFD group
were decreased compared with that in the LBFD group (Figure 5B,C), while the MDA
level in liver, gut and gill was increased (Figure 5D). Compared with the LBFD group,
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the decrease of GSH content in gut, the decrease of CAT activity in gill and the increase
of MDA content in gill in the PFD group reached significant difference levels (p < 0.05)
(Figure 5B–D). The application of L. plantarum, L. rhamnosus and C. butyricum motivated
an elevation of GSH content and CAT activity (Figure 5B,C) and a reduced MDA content
in the liver, gut and gill of mandarin fish in the PFDLP, PFDLR and PFDCB groups when
compared to the PFD group (Figure 5D). The content of GSH in liver and gill of mandarin
fish in the PFDLP group treated with L. plantarum was significantly higher than that in
the PFD group (p < 0.05) (Figure 5B). Compared with the mandarin fish in the PFD group,
application of L. plantarum, L. rhamnosus and C. butyricum significantly increased CAT
activity in liver and MDA content in gill (p < 0.05) (Figure 5C,D).
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Figure 5. Activities of SOD (A), GSH (B) and CAT (C) and content of MDA (D) in the gut, liver and
gills of mandarin fish in different feeding groups (LBFD, PFD, PFDCB, PFDLR and PFDLP) after
being fed for 28 days. Data are presented as mean ± SEM (n = 9). Abbreviations: SOD, superoxide
dismutase; GSH, glutathione; CAT, Catalase; MDA, malondialdehyde; LBFD, live bait fish feeding
group; PFD, pellet-feed feeding group with probiotics free; PFDCB, pellet-feed feeding group with
C. butyricum plus; PFDLR, pellet-feed feeding group with L. rhamnosus plus; PFDLP, pellet-feed
feeding group with L. plantarum plus. A value followed by a lowercase superscript (a–c) differs
significantly from all other values not followed by the same lowercase superscript at the same time
point based on ANOVA followed by the post hoc test (p < 0.05).

3.5. Expression of Appetite-Related Genes

For appetite control genes expression in the brain and gut of mandarin fish in different
feeding groups (LBFD, PFD, PFDCB, PFDLR and PFDLP) after being fed for 28 days, we
found a significantly increased mRNA level of leptin in the gut of mandarin fish and a
significantly decreased mRNA level of npy and agrp in the brain of mandarin fish in the PFD
group compared to the LBFD group (p < 0.05) (Figure 6A,B). After applying L. plantarum,
L. rhamnosus and C. butyricum, the leptin expression levels in the mandarin fish gut were
significantly down-regulated in the PFDLP and PFDCB groups compared with that in the
PFD group (p < 0.05) (Figure 6A,B). The agrp expression levels in the mandarin fish brain
were significantly up-regulated in the PFDLP, PFDLR and PFDCB groups compared with
that in the PFD group (p < 0.05) (Figure 6A,B).
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Figure 6. Relative mRNA expressions of appetite control genes in the gut (A) and brain (B) of mandarin fish in different
feeding groups (LBFD, PFD, PFDCB, PFDLR and PFDLP) after being fed for 28 days. Data are presented as mean ± SEM
(n = 9). Abbreviations: NPY, nerve peptide y; AgRP, agouti gene-related protein; LBFD, live bait fish feeding group; PFD,
pellet-feed feeding group with probiotics free; PFDCB, pellet-feed feeding group with C. butyricum plus; PFDLR, pellet-feed
feeding group with L. rhamnosus plus; PFDLP, pellet-feed feeding group with L. plantarum plus. Data are presented as
mean ± SEM (n = 9). A value followed by a lowercase superscript (a–c) differs significantly from all other values not
followed by the same lowercase superscript at the same time point based on ANOVA followed by the post hoc test (p < 0.05).

3.6. Gut Microbiota Analysis
3.6.1. Richness and Diversity

The alpha diversity index, including observed species, Shannon, Simpson, Chao 1,
ACE and PD whole tree, was calculated to assess the diversity and richness of intestinal
microbiota of mandarin fish in different groups. No significant difference was observed in
the Shannon and Simpson indices between groups (p < 0.05) (Table 2). The observed species,
Chao1, ACE and PD whole tree indices of the PFDLP group were higher than that of other
groups, and there was significant difference compared with the LBFD and PFDCB groups
(p < 0.05) (Table 2). A Venn diagram was constructed to identify the core and different OTUs
existing in mandarin fish under different feeding strategies. In this regard, 168 OTUs were
shared among all mandarin fish gut samples. In contrast, 430 OTUs, 534 OTUs, 661 OTUs,
269 OTUs and 176 OTUs were unique to LBFD, PFD, PFDLP, PFDLR and PFDCB groups,
respectively (Figure 7). Simultaneously, the intestinal microbiota community structure was
further investigated using PCoA based on the binary jaccard distance (Figure 8). PCoA
analysis showed 16.8% and 12.16% explained variance of principal component analysis
PCoA1 and PCoA2, respectively. PCoA cluster analysis indicated that three clusters were
formed and separated between the bait fish diet group (LBFD), pellet feed group (PFD)
and probiotic-treated pellet feed group (PFDLP, PFDLR and PFDCB) after being fed for
28 days (Figure 8). This suggested that different feeding strategies of mandarin fish led to
different intestinal community structures (Figure 8).

Table 2. Richness and diversity indices of mandarin fish intestinal microbial populations in different feeding groups (LBFD,
PFD, PFDCB, PFDLR and PFDLP) after being fed for 28 days.

Index LBFD PFD PFDCB PFDLR PFDLP

Observed species 418.33 ± 107.84 c 721.00 ± 66.55 a,b 435.75 ± 18.91 c 493.75 ± 85.17 b,c 777.25 ± 35.03 a

Shannon 2.61 ± 125.16 a 2.85 ± 39.55 a 1.88 ± 22.37 a 1.62 ± 126.45 a 2.85 ± 12.40 a

Simpson 0.71 ± 151.35 a 0.59 ± 47.19 a 0.49 ± 16.06 a 0.41 ± 131.67 a 0.55 ± 29.14 a

Chao 1 579.12 ± 0.51 b,c 859.22 ± 0.10 a,b 556.92 ± 0.34 c 692.79 ± 0.35 a,b,c 918.94 ± 0.33 a

ACE 612.28 ± 0.07 b 902.63 ± 0.07 a,b 588.27 ± 0.12 b 722.63 ± 0.12 a,b 993.75 ± 0.05 a

PD whole tree 68.41 ± 15.70 b 85.20 ± 5.46 b 80.21 ± 16.99 b 169.72 ± 44.11 a,b 199.00 ± 36.99 a

ACE: abundance-based coverage estimator; LBFD, live bait fish feeding group; PFD, pellet-feed feeding group with probiotics free; PFDCB,
pellet-feed feeding group with C. butyricum plus; PFDLR, pellet-feed feeding group with L. rhamnosus plus; PFDLP, pellet-feed feeding
group with L. plantarum plus. The numbers represent the mean ± SEM (n = 3). A value followed by a lowercase superscript (a–c) differs
significantly from all other values not followed by the same lowercase superscript at the same time point based on ANOVA followed by the
post hoc test (p < 0.05).
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3.6.2. Community Composition and Biomarker Analysis 
The gut microbiota of mandarin fish in different feeding groups (LBFD, PFD, PFDCB, 
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Figure 7. Venn diagram analysis depicting the numbers of shared and unique OTUs of mandarin
fish intestinal microbial populations in different feeding groups (LBFD, PFD, PFDCB, PFDLR and
PFDLP) after being fed for 28 days. Abbreviations: LBFD, live bait fish feeding group; PFD, pellet-
feed feeding group with probiotics free; PFDCB, pellet-feed feeding group with C. butyricum plus;
PFDLR, pellet-feed feeding group with L. rhamnosus plus; PFDLP, pellet-feed feeding group with
L. plantarum plus.
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Figure 8. PCoA based on the binary jaccard distance of the intestinal bacterial communities of
mandarin fish in different feeding groups (LBFD, PFD, PFDCB, PFDLR and PFDLP) after being fed
for 28 days. Abbreviations: LBFD, live bait fish feeding group; PFD, pellet-feed feeding group with
probiotics free; PFDCB, pellet-feed feeding group with C. butyricum plus; PFDLR, pellet-feed feeding
group with L. rhamnosus plus; PFDLP, pellet-feed feeding group with L. plantarum plus.

3.6.2. Community Composition and Biomarker Analysis

The gut microbiota of mandarin fish in different feeding groups (LBFD, PFD, PFDCB,
PFDLR and PFDLP) showed their unique microbial population structure. At the phylum
and genus level, the top 10 abundant microbiota composition in the intestine of mandarin
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fish in different feeding groups (LBFD, PFD, PFDCB, PFDLR and PFDLP) after being fed for
28 days is represented in Figure 9. The gut microbiota of mandarin fish in the LBFD group
was dominated by Fusobacteriota and Proteobacteria at the phylum level, and Proteobacteria
was the dominant phylum in the gut microbiota of the PFD, PFDLP, PFDLR and PFDCB
groups (Figure 9A). The abundance of Aeromonas in the PFDLP, PFDLR and PFDCB groups
was significantly lower than in the PFD group (Figure 9B). LEfSe analysis revealed 19, 24,
17, 7 and 1 biomarkers with significantly higher relative abundance in the LBFD, PFD,
PFDLP, PFDLR and PFDCB groups, respectively (Figure 10A). Aeromonas was a biomarker
for PFD compared with other groups (Figure 10B).
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Figure 9. The abundance of composition at phylum (A) and genus (B) level in mandarin fish intestinal microbial populations
in different feeding groups (LBFD, PFD, PFDCB, PFDLR and PFDLP) after being fed for 28 days. Abbreviations: LBFD,
live bait fish feeding group; PFD, pellet-feed feeding group with probiotics free; PFDCB, pellet-feed feeding group with
C. butyricum plus; PFDLR, pellet-feed feeding group with L. rhamnosus plus; PFDLP, pellet-feed feeding group with
L. plantarum plus.
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Figure 10. Intergroup variation in the relative abundance of the intestinal microbial communities. (A) Cladogram of
LEfSe. (B) Bacterial taxa differentially displayed in the mandarin fish intestinal microbial populations in different feeding
groups (LBFD, PFD, PFDCB, PFDLR and PFDLP) after being fed for 28 days were identified via LEfSe using an LDA score
threshold of >3. Abbreviations: LBFD, live bait fish feeding group; PFD, pellet-feed feeding group with probiotics free;
PFDCB, pellet-feed feeding group with C. butyricum plus; PFDLR, pellet-feed feeding group with L. rhamnosus plus; PFDLP,
pellet-feed feeding group with L. plantarum plus.
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3.6.3. Functional Prediction

Functional prediction on the KEGG database was annotated based on 16S sequencing
data. As shown in Figure 11, the abundance of functional categories based on KEGG
(level 1) between different feeding groups (LBFD, PFD, PFDCB, PFDLR and PFDLP) after
being fed for 28 days were analyzed. The abundance of human pathogens pneumonia and
human pathogens nosocomial significantly increased in the PFD group compared with
other groups (p < 0.05) (Figure 11).
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Figure 11. Heatmap showing the relative abundances of KEGG ortholog groups of mandarin fish
intestinal microbial populations in different feeding groups (LBFD, PFD, PFDCB, PFDLR and PFDLP)
after being fed for 28 days. The heatmap was made based on Tax4Fun functional annotations, and
the color intensity indicates the abundance information. Abbreviations: LBFD, live bait fish feeding
group; PFD, pellet-feed feeding group with probiotics free; PFDCB, pellet-feed feeding group with
C. butyricum plus; PFDLR, pellet-feed feeding group with L. rhamnosus plus; PFDLP, pellet-feed
feeding group with L. plantarum plus.

3.7. Intestinal Histological Assessment

Histological changes of the intestinal tract were observed in different feeding groups
(LBFD, PFD, PFDCB, PFDLR and PFDLP) after being fed for 28 days (Figure 12). By
comparing LBFD, PFD, PFDCB, PFDLR and PFDLP, the result showed that C. butyricum,
L. rhamnosus and L. plantarum could significantly increase the villi height of the foregut,
midgut and hindgut of mandarin fish fed with pellet feed (p < 0.05; Figure 13A) and
significantly reverse the decrease in the thickness of foregut basement membrane caused
by pellet-feed feeding (p < 0.05; Figure 13B).
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Figure 12. Photomicrographs showing histological sections of the intestinal tract of mandarin fish in
different feeding groups (LBFD, PFD, PFDCB, PFDLR and PFDLP) after being fed for 28 days. (H.E.
staining; scale bar: 50 µm; magnification×200). (A–C) Foregut, midgut and hindgut of mandarin fish
in LBFD group. (D–F) Foregut, midgut and hindgut of mandarin fish in PFD group. (G–I) Foregut,
midgut and hindgut of mandarin fish in PFDCB group. (J–L) Foregut, midgut and hindgut of
mandarin fish in PFDLR group. (M–O) Foregut, midgut and hindgut of mandarin fish in PFDLP
group. Abbreviations: H.E., hematoxylin and eosin staining; LBFD, live bait fish feeding group; PFD,
pellet-feed feeding group with probiotics free; PFDCB, pellet-feed feeding group with C. butyricum
plus; PFDLR, pellet-feed feeding group with L. rhamnosus plus; PFDLP, pellet-feed feeding group
with L. plantarum plus.
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Figure 13. Intestinal villi height (A) and basement membrane thickness (B) of mandarin fish in
different feeding groups (LBFD, PFD, PFDCB, PFDLR and PFDLP) after being fed for 28 days. Data
are presented as mean ± SEM (n = 3). Abbreviations: LBFD, live bait fish feeding group; PFD,
pellet-feed feeding group with probiotics free; PFDCB, pellet-feed feeding group with C. butyricum
plus; PFDLR, pellet-feed feeding group with L. rhamnosus plus; PFDLP, pellet-feed feeding group
with L. plantarum plus. A value followed by a lowercase superscript (a–c) differs significantly from
all other values not followed by the same lowercase superscript at the same time point based on
ANOVA followed by the post hoc test (p < 0.05).
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4. Discussion

Mandarin fish have a food preference for live bait and show certain eating disorders
with dead bait fish or pellet feed. The increased mortality rate of mandarin fish under pellet
feeding conditions seriously affects its economic benefits [10,66]. The eating disorder is
characterized by abnormal feeding behaviors associated with the establishment of food
preference [1–3,6]. Gut microbiota can regulate host food preferences through interactions
with nutritional, immune, antioxidant stress and appetite levels [26,85]. Previous studies
have shown that probiotics can influence the feeding behavior of the host by regulating
the microbiota [26,27,86]. However, few studies have been done on the regulatory effect of
probiotics on eating disorders, especially on the pellet feed intake of mandarin fish [87].
Therefore, the present study was conducted to assess the effects of L. plantarum, L. rhamnosus
and C. butyricum on the POPFR, survival, appetite, gut microbiota, innate immunity,
antioxidant capacity and intestinal histology in mandarin fish and to explore the role of
probiotics in regulating feeding behavior in vivo.

Acceptance of pelleted feed and survival rate are direct indicators of the improvement
of eating disorders during the feeding process of mandarin fish with pellet feed. In this
study, we observed that supplementation with either of the three probiotics effectively
increased the POPFR in mandarin fish compared to those fed the same diet but without
probiotics supplementation. Moreover, pellet feed diet can lead to the reduction of survival
rate of mandarin fish, which is consistent with the previous report that the dietary conver-
sion of Sparus aurata larvae and Solea senegalensis larvae from live bait to alginate microdiets
resulted in a significant decrease in survival rate, which may be related to the changes
of physiological stress and nutritional status of the larvae fish [88–90]. Results showed
that L. plantarum, L. rhamnosus and C. butyricum can significantly reverse the increase in
mortality of mandarin fish caused by feeding pellets at the end of the 28-day experiment.
This finding is consistent with a previous study in which the administration of L. plantarum
to the rainbow trout at a dose of 106 CFU/g for 36 consecutive days significantly improved
the survival rate of rainbow trout when attacked by Lactococcus garvieae [91]. Similarly,
Hooshyar reported that L. rhamnosus ATCC 7469 significantly increased the survival rate
of rainbow trout (Oncorhynchus mykiss) when attacked by Yersinia ruckeri [36]. Duan re-
ported that supplementation of C. butyricum (1 × 109 CFU/g) for 56 days improved the
survival of black tiger shrimp (Penaeus monodon) after exposure to nitrite stress for 24 and
48 h [92]. Proper nutrition can affect intestinal health through several pathways, including
intestinal morphology, microbial diversity, intestinal barriers and oxidative status [93]. The
improvement of survival of cultured animals after applying L. rhamnosus, L. plantarum
and C. butyricum may result from their positive regulation of nutritional status, intestinal
morphology, gut microbiota, oxidative status and immune system [38,94,95]. Therefore, the
administration of probiotics may be a potential method to improve the eating disorders of
mandarin fish caused by pellet feed and increase the POPFR of mandarin fish without side
effects because probiotics such as L. plantarum, L. rhamnosus and C. butyricum are generally
regarded as safe for aquatic animals.

Appetite is one reason influencing the eating preference of mandarin fish [96]. Feeding
behavior is ultimately regulated by central feeding centers of the brain, which receive
and process information from endocrine signals from both the brain and periphery. These
signals, such as hormones that inhibit (e.g., leptin) or increase (e.g., Agrp) ingestion, provide
information about nutritional status and ingestion [97–99]. Npy is considered the most
potent orexigenic molecule in fish, mediated by gut microbiota changes [100,101]. Agrp
is one of the most potent appetite stimulants within the hypothalamus and mediates the
peripheral body weight regulators such as ghrelin and leptin [100,102]. In the present study,
we observed that L. rhamnosus, L. plantarum and C. butyricum could reverse the decrease
of agrp expression in the brain tissue of mandarin fish caused by pellet-feed feeding. At
the peripheral level, ghrelin is a potent appetite stimulant and is highly expressed in the
fish gut [103,104]. Furthermore, the gastrointestinal hormone ghrelin is a vital molecule
that regulates intestinal motility and secretion [105,106]. Leptin plays an anorexic role
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by down-regulating orexigenic signals such as Npy [107]. This study showed that the
treatment of L. rhamnosus, L. plantarum and C. butyricum can reverse the high expression of
the peripheral hormone leptin in the intestinal tissue of mandarin fish caused by feed-pellet
feeding. These results agree with the previous findings on the regulation of appetite of
L. rhamnosus on larval Nile tilapia [38]. All this indicates that probiotics treatment can
promote the appetite of pellet feeding mandarin fish through reducing the expression
of the peripheral appetite-suppressing hormone leptin and increasing the expression of
the central appetite-promoting factor Npy/Agrp. Previous studies have shown that the
gut microbiota can affect host appetite and eating behavior by directly affecting nutrient
sensing and the satiety regulation system [26]. In this study, the appetite-promoting effect
of L. rhamnosus, L. plantarum and C. butyricum may be mediated by their regulation on the
gut microbiota of mandarin fish.

The immune system can influence eating behavior through interactions with gut bac-
teria and appetite [108,109]. As lower vertebrates, fish mainly rely on the innate immune
system to resist pathogens [110]. Lysozyme is responsible for bacterial lysis and activation
of phagocytes and complement systems [111]. IgM mainly exists in the serum, which is
the most essential component of teleost humoral immunity, and it can recognize, bind and
precipitate antigens and activate the complement system [112]. To assess if L. rhamnosus,
L. plantarum, C. butyricum affects the immune system of feed-fed mandarin fish, we mea-
sured the levels of lysozyme and IgM in the serum. We found that at the end of 28 days
of cultivation, the three probiotics can increase the reduction of mandarin fish serum
lysozyme and IgM content caused by pellet feed domestication, and L. plantarum is the
most significant. All this is similar to the finding in a previous publication suggesting that
the feed supplement of L. plantarum CCFM8661 restored the decrease in serum lysozyme
of Nile tilapia caused by waterborne Pb exposure [113]. In Wang’s study, administration
of C. butyricum significantly increased the serum IgM levels in piglets on day 28 [114].
Liao et al. have confirmed that a diet supplemented with C. butyricum increased the IgM
concentration compared with that of chicks in the control group at 21 and 42 days old [115].
This study proved that the addition of L. plantarum, L. rhamnosus and C. butyricum reversed
the decrease in serum lysozyme and IgM content caused by pellet-feed feeding, which
may further ameliorate eating disorders by regulating the appetite and gut microbiota of
mandarin fish.

Anti-oxidative enzymes are the major components of anti-oxidative defense systems
in living organisms [116]. The host gut microbiota directly or indirectly influences the
central nervous system by affecting local OS levels and the permeability of the gut and then
influences the behavioral characteristics of the host. SOD, CAT and GSH are considered the
three main antioxidant enzymes in the primary antioxidant defense system, eliminating
ROS in the body during oxidative damage [117]. MDA is an essential product of membrane
lipid peroxidation and a well-known aging indicator reflecting the degree of oxidative
stress in cells [118]. In this study, compared with the LBFD group, the decrease of GSH
content in gut, the decrease of CAT activity in gill and the increase of MDA content in gill in
the PFD group reached significant difference levels (p < 0.05), indicating that the pellet diet
induced oxidative stress in mandarin fish, which is in accord with the results found in Solea
senegalensis larvae and hybrid mandarin fish [88,119]. The low nutritional status and stress
caused by the pellet diet may decrease antioxidant capacity in mandarin fish [88,120–124].
Furthermore, compared with the mandarin fish in the PFD group, application of L. plan-
tarum, L. rhamnosus and C. butyricum significantly increased CAT activity in liver and
MDA content in gill (p < 0.05). Increased CAT activity and GSH content accompanied by
decreased MDA levels was observed after the application of three probiotics compared
with the PFD group, which indicates that L. rhamnosus, L. plantarum and C. butyricum
could enhance the antioxidant capacity of the host, which is consistent with the findings
in rainbow trout, the black tiger shrimp (Penaeus monodon) and Nile tilapia [36,92,113,125].
The three kinds of probiotics showed an excellent free radical scavenging ability in the
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oxidative damage of the liver, intestine, and gill tissues, which may be attributed to its
ability in gut microbiota and immune system regulation.

It has been reported that gut microbiota plays a causal role in regulating the feeding
behavior of the host and can directly or indirectly affect the appetite and food intake of
the host [26,126]. The composition of the intestinal microbiome is influenced by both host
genotype and environment. Previous studies have shown that the gut microbiota of aquatic
species is influenced by several abiotic factors [127,128]. Diet is considered one way to
change the gut microbiota and the exogenous factors affecting the gut microbiota [129–138].
In this study, compared with the live bait fish diet, the pellet feed diet changed the intestinal
colony structure of mandarin fish, which may be mainly caused by changes in the dietary
structure and also be affected by environmental stress (including dietary stress) [139].
Disturbance of gut microbiota balance could lead to the establishment of harmful bacteria,
causing disease problems [140–143]. In addition to diet, probiotic treatments can also
affect the gut microbiome [144,145]. Probiotics play an essential role in the welfare of
the host by maintaining a healthier balance of intestinal microbiota, which provides a
defensive barrier against colonization of harmful bacteria and stimulates the immune
system [146–148]. In this study, the addition of three probiotics significantly reduced the
increased abundance of pathogenic bacteria Aeromonas caused by pellet-feed feeding,
which may be achieved through the direct competition of probiotics on the abundance
of pathogenic bacteria and indirect regulation of host immunity. According to reports,
lactic acid bacteria inhibit the growth of harmful bacteria by producing antimicrobial
compounds and competing for nutrients and attachment sites [41,149]. The present result
agrees with earlier findings where a similar decrease in pathogenic bacteria (Aeromonas
sp. and Pseudomonas sp.) was reported in giant freshwater prawn (Macrobrachium rosenbergii)
feeding with a diet supplemented with L. plantarum [150]. This result is also consistent
with the early discovery which reported that L. rhamnosus micro-granules administered for
30 days to tilapia larvae could significantly reduce the proportion of potentially pathogenic
bacteria [38]. In addition, C. butyricum treatment reversed the increased abundance of
intestinal pathogens in mice induced by severe acute pancreatitis and intra-abdominal
hypertension [73]. All this indicates that these three probiotics can inhibit the abundance of
harmful intestinal bacteria Aeromonas in the in vivo model resulting from direct competition
between probiotics and pathogenic bacteria and host immunity regulation.

The intestine is the leading site of nutrient absorption, and the health of villi is a
crucial factor influencing nutrient absorption. Consistent with the description of Wu et al.
on the histological and histochemical characterization of mandarin fish tissues and organs,
in our study, mandarin fish fed with live bait showed a conventional histological pattern
of intestinal tissue [151]. In contrast, histological changes were detected in mandarin
fish fed with pellet feed. Compared to mandarin fish fed on the live feed, the thickness
of the foregut basement membrane in pellet feed-fed mandarin fish was significantly
reduced, with similar results in other fish [88,152,153]. In addition, our results indicated that
dietary supplement of L. plantarum, L. rhamnosus and C. butyricum enhanced the intestinal
health development in mandarin fish by increasing the height of intestinal villi and the
thickness of foregut basement membrane. Similarly, L. plantarum favorably recovered the
cyclophosphamide-induced abnormal intestinal morphology in mice by improving the
villus height [154]. Pangasius catfish (Pangasius bocourti) fed a diet supplemented with L.
plantarum for 90 days exhibited a greater villus height in all intestines, with significant
differences in the proximal intestine [155]. Wang et al. reported that C. butyricum increased
the jejunal villus length and jejunal villus height to crypt depth ratio, while they decreased
the jejunal crypt depth compared with those of the control and protected the intestinal villi
morphology in a piglet model [114]. According to Sewaka et al., L. rhamnosus increased the
villous height in the proximal, middle and distal parts of the intestine of juvenile red tilapia
(Oreochromis spp.) [37]. Moreover, Casas et al. reported that the intestinal villus height of
weanling pigs tended to increase as the dose of C. butyricum increased in the diet [94]. Our
findings indicate that the application of probiotics could effectively promote the intestinal



Microorganisms 2021, 9, 1288 18 of 24

health of mandarin fish fed with pellet feed, which may benefit from repair of the intestinal
microbial barrier. At the same time, the promoting effect of probiotics on intestinal health
may be one of the reasons for the improvement of survival rate of mandarin fish fed with
pellet feed.

5. Conclusions

In summary, the present results confirmed that the application of L. plantarum, L. rham-
nosus and C. butyricum could significantly improve the eating disorders of mandarin fish
caused by pellet-feed feeding, which expressed as significantly increased POPFR and sur-
vival rate. All of these may be related to the ability of probiotics to regulate gut microbiota,
activate immunity, boost appetite, improve antioxidant capacity and protect intestinal
tissues. This study explores the problem of eating disorders in non-mammals and tried to
solve the eating disorders caused by pellet-feed feeding of mandarin fish by regulating
gut microbiota using probiotics. In this study, the influence of probiotics intervention on
eating disorders and its mechanism were studied using mandarin fish fed with pellet feed
as a model. Due to the complex interactions between the gut microbiota, immune system,
appetite and oxidative stress, the causal relationship between them needs to be further
investigated. The conversion of pellet feed for mandarin fish has always been considered a
global problem, and this study provides a new train of thought. More solutions, such as the
application of other probiotics, prebiotics or immunostimulants, are worth investigating.
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