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Abstract

The continental margin off the northeastern United States (NEUS) contains numerous,
topographically complex features that increase habitat heterogeneity across the region.
However, the majority of these rugged features have never been surveyed, particularly
using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV)
dives were conducted from 494 to 3271 m depth across a variety of seafloor features to doc-
ument communities and to infer geological processes that produced such features. The
ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons,
slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon
seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities
dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was
observed at two seep sites. Multivariate analyses indicated that depth and broad-scale hab-
itat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and deca-
pod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans
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significantly declined with depth, while there was no relationship between coral richness
and depth. Turnover in assemblage structure occurred on the middle to lower slope at the
approximate boundaries of water masses found previously in the region. Coral species rich-
ness was also an important variable explaining variation in fish and crustacean assem-
blages. Coral diversity may serve as an indicator of habitat suitability and variation in
available niche diversity for these taxonomic groups. Our surveys added 24 putative coral
species and three fishes to the known regional fauna, including the black coral Telopathes
magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus,
Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the
dives, with at least 12 coral colonies entangled in debris. While initial exploration revealed
the NEUS region to be both geologically dynamic and biologically diverse, further research
into the abiotic conditions and the biotic interactions that influence species abundance and
distribution is needed.

Introduction

The continental margin of the northeastern United States (NEUS) region (including the Gulf
of Maine, Georges Bank to Cape Hatteras, NC) contains numerous, topographically complex
features, including submarine canyons, landslide-scars, seamounts, and hydrocarbon (cold)
seeps. These features increase habitat heterogeneity in the deep sea, thus influencing the distri-
bution and abundance of deep-sea fauna and increasing both local and regional scale diversity
[1-3]. Yet, it is unclear whether all complex features (and non-complex features) are function-
ally equivalent to one another for various taxonomic groups. The diversity of seafloor features
that exist in the NEUS region across a broad depth range provide an exemplary setting to fur-
ther our understanding of how habitat features and other environmental conditions influence
benthic communities in the deep sea. Additionally, documenting patterns of biodiversity along
the NEUS continental margin region is critical as the fisheries, energy, and minerals sectors
seek to expand into deeper depths [4]. Thus, seafloor communities along the NEUS continental
slope could be highly impacted by current and future anthropogenic disturbances.

The geology of the NEUS margin and the broad range of chemical, physical and biological
processes acting upon it control this rugged, complexity of the deep sea floor. As the type-
example of passive continental margins [5], the regional geologic history and geomorphology
of the NEUS margin has been intensely studied. However, the processes occurring at the local
scale of individual geomorphic features (e.g., canyons, channels, interfluves, and landslide
scars) are less understood. For example the roles of the underlying lithologies, modern ero-
sional and depositional processes, and forcing mechanisms in shaping the margin remain
largely unconstrained.

Some of the most pervasive, complex features along the NEUS continental margin include
submarine canyons. Approximately 40 shelf-breaching and numerous slope-sourced canyons
exist on the NEUS continental margin [6]. Submarine canyons are topographically and oceano-
graphically complex features, linking the upper continental shelf to the abyssal plain. These fea-
tures serve as major conduits for the transport of sediments [7-9] and particulate organic
matter [8, 10, 11]. The concentration of organic matter and nutrient-rich sediments in subma-
rine canyons combined with strong currents and turbidity flows [4, 12-14] can support and
concentrate suspension and deposit feeding organisms, commercially and ecologically
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important fishes, and dense invertebrate assemblages. Specifically, oceanographic conditions,
food quality and food availability in canyons provide favorable areas for recruitment of mega-
and macro-faunal species [15-20]. A variety of hard-substrate features, such as steep walls,
rocky outcrops, and debris fields, further contribute to the habitat complexity within submarine
canyons across varying depths [21-23]. The presence of such a diverse and variable array of
environmental factors has led to the hypothesis that submarine canyons support higher biodi-
versity and biomass compared with areas on the adjacent continental slope [11, 15, 21, 24, 25].
Additionally, submarine canyons appear to be essential habitat for some species [26], including
fishes [17, 27]. In fact, the rugged topography of canyons provides refuge to commercially
important fishes from bottom fishing activity [27]. However, it is not uncommon for fisheries to
operate within canyon environments using fixed gears such as traps and longlines [28].

Despite the observation that canyon ecosystems are among the most productive and diverse
areas in deep waters worldwide [29], few have been mapped extensively using high- resolution
multibeam sonar or investigated using fine-scale direct observations. As evidenced along the
NEUS continental margin, only a small portion (~1%) of the canyons (Hudson, Baltimore,
Oceanographer, Lydonia) has been studied more thoroughly [30-34]. These early studies docu-
mented general patterns of habitat variability and dominant fauna, noting the presence of
cold-water corals, and laid the groundwork for future research.

Cold-water (or deep-sea) corals, including scleractinians (stony corals), stylasterid hydro-
corals (lace corals), antipatharians (black corals), and octocorals (soft corals, sea fans, sea
pens), have been documented previously in submarine canyons, on seamounts, and in other
deep-sea habitats. These foundation species either create massive reef frameworks (such as
Lophelia pertusa) or individually colonize existing soft or hard substrates, further contributing
to the overall habitat heterogeneity in the deep sea. A diverse assemblage of invertebrates and
fishes [35-42], some of which are obligate associates [41, 42], are often found with these sessile
coral species. Cold-water corals are known to serve as food resources for certain echinoderms
[43] and nursery habitats for some fishes [44]. In submarine canyons, cold-water corals have
been observed on canyon walls in dense aggregations [19, 45], which may be driven, in part, by
the quality and availability of food [19].

Another important component enhancing environmental heterogeneity in deep-sea envi-
ronments is hydrocarbon seepage [2]. Recent investigations on the NEUS continental margin
documented approximately 570 gas plumes escaping from the seafloor, yet <1% of these have
been ground truthed using direct observations [46]. In the region, hydrocarbon (cold) seeps
occur on promontories overlooking canyon heads, ridges within canyons, and on the open,
upper to middle slope [46]. Here, Bathymodiolus mussels have been documented [46], serving
as foundation species by creating habitat and modifying both the physical and chemical envi-
ronment [47]. Thus, Bathymodiolus mussels can promote the colonization of other fauna that
are often endemic to or dependent upon chemosynthetic habitats [47-49]. Additionally, authi-
genic carbonates that form through microbial processes facilitate the colonization of other
foundation species, including cold-water corals and sponges [48].

Data on local-scale geologic processes, the benthic communities, and the relationships of
these benthic communities to substrate type and geologic processes along the rugged NEUS
continental margin are limited. Few direct observations utilizing remotely-operated or human-
occupied vehicles exist in the region (but see [7, 28, 33, 34, 50]); yet, submersibles provide the
most in-depth views of fauna inhabiting features that are difficult to sample or image with
other types of equipment. In the summer of 2013, an expedition off the NEUS using a
remotely-operated vehicle provided the opportunity to gain insight into the geology, oceanog-
raphy, habitat diversity, and biodiversity of the NEUS continental margin across a broad depth
range, with a particular focus on submarine canyons. The telepresence-enabled expedition
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(http://oceanexplorer.noaa.gov/okeanos/welcome.html) explored diverse habitats while engag-
ing more than 40 scientists onshore across national and international boundaries.

In the present study, we 1) describe the environmental parameters measured within a vari-
ety of seafloor features, including submarine canyons, inter-canyon areas, open-slope/land-
slide-scar areas, cold seeps, and a seamount; 2) assess the biodiversity and community
structure of corals, demersal fishes and megafaunal decapod crustaceans; and 3) document the
occurrence of marine litter throughout the region. Specifically, we utilized information gath-
ered from image data to test the hypotheses that benthic assemblage structure and species rich-
ness differ with environmental conditions, particularly broad-scale habitat (seafloor) features
and depth. With this dataset, we were able to compare patterns in species richness and assem-
blage structure among these three taxonomic groups.

Materials and Methods
Ethics Statement

The NEUS Canyons Expedition was conducted within the exclusive economic (EEZ) zone of
the United States. No permits were necessary as no geologic or biological specimens were col-
lected and research was not conducted within the boundaries of a national marine sanctuary,
marine national monument or other protected area. This expedition did not involve the study
of marine mammals or endangered species, did not involve taking commercial quantities of
marine resources, and did not involve ocean dumping research.

In order to conduct marine scientific research within the U.S. EEZ, work funded, authorized
and/or conducted by NOAA must be compliant with the National Environmental Policy Act
(NEPA). In compliance with NOAA Administrative Order (NAO) 216-6 and NEPA, this proj-
ect was determined to have no potential to result in any lasting changes to the environment.
This project was determined to be of limited size and magnitude with only short-term effects
on the environment; any cumulative effects were negligible. As such, the requirements of NAO
216-6 and NEPA were met; the marine scientific research for the project was authorized.

ROV Surveys

Exploration along the NEUS continental margin (Fig 1) was conducted during a cruise of the
NOAA ship Okeanos Explorer (EX 1304, 9 July-16 August 2013). The 6,000 m-rated dual-
body system, including the remotely-operated vehicle (ROV) Deep Discoverer (D2) and Seirios
camera sled, was deployed during a series of daytime dives. Seirios was tethered to the ship
with a standard oceanographic armored, fiber-optic cable (1.73 cm diameter). The ROV D2
was linked to Seirios with a neutrally buoyant tether, isolating the ROV from surface ship’s
motion and allowing precise maneuvering in precipitous topography.

The ROV D2 carried two maneuverable and four fixed video cameras with two high-defini-
tion video cameras used principally for scientific observations. Paired lasers (10 cm apart) were
mounted on the fixed, high-definition video camera. Lighting consisted of 16 LED lamps
(96,000 lumens total) with eight of these on four hydraulically positioned booms. Seirios car-
ried five video cameras (two in high-definition and maneuverable) and six HMI lamps (72,000
lumens total). High-definition video was transmitted from both vehicles in HD-SDI 1080i for-
mat. The D2 has an integrated navigation and control system that allows precision auto-pilot
flight to maintain heading and altitude along straight transits and maintain position over fea-
tures of interest. Navigational sensors, including a fiber-optic gyroscope and Doppler velocity
log, produced fine-scale data on direction and transit distances over the seafloor. High-speed
fiber-optic communications over the vehicle tether carried video, vehicle control, and sensor
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Fig 1. Dive locations (humbered) for the 2013 NEUS. Canyons Expedition. All canyons and seamounts surveyed during the expedition are labeled.
Mytilus Seamount bathymetry is at 50 m resolution.

doi:10.1371/journal.pone.0139904.g001

telemetry. Sea-bird 911+ conductivity-temperature-depth (CTD) loggers with dissolved oxy-
gen (DO) sensors were also attached to both D2 and Seirios.

ROV surveys were exploratory to target different seafloor features over a broad depth range.
Six broad-scale habitat features were surveyed, including shelf-breaching canyons, slope-
sourced canyons, cold seeps, inter-canyon areas, open slope/landslide scars, and a seamount,
specifically Mytilus Seamount. General dive locations were chosen based on more than 90,000
km? of seafloor mapping data collected by four NOAA ships over three field seasons. Within
shelf-breaching and slope canyons, directional tracks were selected based on elevated acoustic
impedance and high-slope angles (>>30°) observed in bathymetry and backscatter data col-
lected with multibeam sonar (Kongsberg EM 302, 30 kHz, 0.5 X 1 degree sonar) on the Okea-
nos Explorer. Cold seep dive locations were chosen based on locations where multibeam
backscatter data documented the emission of bubble streams rising from the seafloor [46].
Additionally, the ROV D2 surveyed two sites in inter-canyon areas and five sites on the open
slope that were characterized as potential geohazards (e.g., submarine landslide areas). Mytilus
Seamount also was targeted because it is the deepest (~2500 m at the summit) and least
explored seamount in the New England Seamount Chain in the U.S. EEZ.

The ROV D2 traversed the seafloor at a speed of approximately ~ 0.1-0.3 knots (1
knot = 0.514 m s™). Seirios surveyed approximately 10 m above and behind D2, providing
background lighting to visualize features as well as situational awareness for the pilots and sci-
entists. The Okeanos Explorer followed the vehicles using dynamic positioning and tracked
vehicle position relative to the ship with an ultra-short baseline tracking system. When survey-
ing canyon walls, D2 was typically deployed at the base of a wall on one side of the canyon, and
then traversed up and along the wall as close to the bottom as practical. As the ROV traversed
the seafloor, the cameras were generally set on wide-angle view to document habitat features,
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species occurrences, and behaviors. Zooms were frequently conducted to obtain detailed imag-
ery of each morphotype to facilitate taxonomic identification.

Telepresence Capabilities

Okeanos Explorer is equipped with high-speed communication capabilities to enable scientists
on the shore to participate in ship operations in real time via telepresence. Scientists (and any-
one with an Internet connection) were able to observe live video feeds (yielding 660,000 visits)
from the ROV D2 (http://oceanexplorer.noaa.gov/okeanos/media/exstream/exstream.html).
Scientists were also able to participate during the dives in real-time via a private Internet chat
room and satellite teleconference line (see http://oceanexplorer.noaa.gov/okeanos/
collaboration-tools/welcome.html). Eight to 35 scientists on shore engaged in the daily ROV
dives, providing taxonomic expertise and scientific discussion.

Data Analyses

CTD data collected throughout each dive were averaged to obtain mean temperature, salinity,
and DO (ml L") while at depth. However, during Leg 1 (dives 1-16) of the expedition, the
CTD and DO sensors were not functioning properly. Therefore, temperature, salinity, and DO
concentrations were obtained for 10 of the dives with shipboard CTD (SBE 911+) deployments
at each site.

Corals, demersal fishes, and decapod crustaceans were identified to the lowest possible
taxon or morphotype using taxonomic keys and through collaborative exchange with taxo-
nomic experts. Taxonomic authorities for each taxon are presented in supplementary tables.
We focused on these three taxonomic groups for the present study because these taxa were
conspicuous, amenable to identification via imaging (e.g., [37, 40, 42]), and some are relevant
to management concern in the region [51]. The presence or absence of morphospecies within
these taxonomic groups was documented during each dive via analysis of frame grabs and
video clips from high-definition video. Because no voucher specimens were collected during
this expedition, photographic identifications were conservative. We recognize that specimen
collections are critical to ground truth identifications from imagery. Often, identifications were
made to either the level of genus or morphotype. Diagnostic characters were not always appar-
ent, particularly for invertebrates and some fishes (e.g., ophidiiform, gadiiformes).

Species richness (the raw number of different species or morphotypes observed) was esti-
mated for each focal taxonomic group. Species richness was determined for each dive (alpha
diversity) and each canyon. Species accumulation curves were generated to estimate how well
each of the focal taxa were documented within the region (gamma diversity; EstimateS v 7.5,
[52]). The resampling-based SOBS (observed number of species, Mao Tau) method was used
to generate expected number of species and 95% confidence intervals for each dive [53-54].
Linear regressions of species richness (log X+1 transformed) with depth (log X+1 transformed)
and dive distance (log X+1 transformed) were also calculated (SigmaStat v 3.0) for each taxo-
nomic group.

Multivariate analyses were performed (Primer 6, [55-56]) to determine whether benthic
assemblages differed with varying environmental conditions (see S1 Table). The Sorensen’s
Index of Similarity (beta diversity), based on presence/absence data, was calculated between all
pairs of dives separately for fishes, corals, and crustaceans. A non-metric multidimensional
scaling (MDS) ordination plot and a dendrogram based on hierarchical clustering of group
average linking were created from each similarity matrix. Significantly dissimilar clusters
defined by a SIMPROF permutation test were overlain onto the MDS plots to determine
whether any significant clusters corresponded to specific depth zones. The SIMPER routine
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was used to determine which taxa were contributing to the significant dissimilarity in assem-
blage structure in clusters defined by SIMPROEF. The top ranking species that contributed to
the majority of the average dissimilarity in assemblage structure are reported here. Distance-
based Linear Modeling (DistLM) was performed using PERMANOVA+ (Primer 6 add-on
package; [57]) to examine what environmental factors influenced taxonomic assemblages. The
following factors were included: depth (log X+1 transformed), salinity (log transformed), DO
(log transformed), over- the-ground distance covered by the D2 (log X+1 transformed), broad-
scale habitat feature (coded as nominal, binary categories, and then grouped as the indicator
‘habitat’), and coral species richness (for fish and crustacean analyses) (see S1 Table). We did
not include temperature in this analysis because it was highly correlated with depth (Pearson
Correlation, r = -0.96). Although salinity (» = 0.90) was also correlated with depth, this variable
was retained in analyses (as per [57]). Seven of 31 dives were not included in DistLM analyses
because CTD data were not available. Marginal tests (999 permutations) were performed to
determine the explanatory power of each environmental variable on assemblage structure. The
BEST selection procedure, combined with the Akaike Information Criterion (AIC, [58]), was
used to ascertain the optimal combination of environmental variables that explained the
majority of the variation in assemblage structure.

Abundances of dominant and characteristic species for each of the three focal groups were
calculated. The fishes Synaphobranchus spp. and Neocyttus helgae, the corals Paragorgia spp.
and Primnoa? resedaeformis, and the crustacean Chaceon quinquedens were enumerated dur-
ing dives on which they were observed. These species were chosen for abundance analyses
because they could be most accurately enumerated, can be compared to data from other
regions (e.g., [59]) and/or represent species of interest for conservation and management pur-
poses [51]. Abundances were estimated per dive as the number of individuals observed divided
by the product of the total over-the-ground distance covered by the ROV and an estimated,
average field of view (4.3 m).

Other observational data were noted from the video. The generalized lithology and age of
geological features were inferred based on previous work [60-65] in the region using observed
texture, physical properties and depth-linked stratigraphic position. Qualitative assessments of
the sediment composition, the magnitude and contributing processes of substrate erosion, and
sediment deposition were also made. Marine litter was enumerated during each dive and quan-
tities were estimated as above.

Results and Discussion

Thirty-one ROV dives, resulting in 201.6 hours of bottom time, were conducted at depths
ranging from 494 to 3271 m. The over-the-ground distance covered by the ROV varied across
dives (300-2200 m), but the observation time on bottom was approximately the same (5-7
hours per dive; Table 1, S1 Table). Observational effort did not bias this dataset as there were
no significant relationships between ROV distance and alpha diversity (linear regression,
p>0.05) and beta diversity (DISTLM, marginal tests, p = 0.018 to 0.385, o. = 0.01, Bonferroni
Correction) for any taxonomic group (Table 2, S Fig) (following [66-67]).

In the following sections, we provide an overview of the broad-scale habitat features
observed during this expedition (Figs 2 and 3). These features are defined here as the major
seafloor structures explored during ROV dives. These included eight shelf-breaching canyons
(Block, Hydrographer, Alvin, Atlantis, Lydonia, Oceanographer, Nygren, and Heezen canyons,
580-2135 m), three slope-sourced canyons (Welker Canyon and two un-named canyons,
1018-1445 m), Mytilus Seamount (2592-3271), three cold seeps (1053-1484 m), two inter-
canyon sites (494-824 m), and five sites on the open slope (555-2026 m), four of which were
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Table 1. Total number of morphospecies observed across six broad-scale habitat features for three taxonomic groups. Depth range and total dis-
tance travelled per area are included. Dive numbers are included.

Site No. Dives Dive Numbers Depth Range (m) Total Distance® (m) Coral Fish Crustacean

Shelf-breaching Canyon

Hydrographer 2 5,6 580-1423 1460 20 18 9
Atlantis 2 7,8 885-1794 1400 24 16 10
Alvin 2 9,10 846-1110 1330 16 26 10
Block 3 11,14,15 10442135 1575 24 20 14
Oceanographer 2 19, 29 983-1248 1430 24 14 11
Nygren 2 22,24 678-1590 1435 28 24 11
Heezen 2 23,25 703-1723 1015 18 24 10
Lydonia 1 28 1135-1239 300 17 12 7
Slope Canyon
Un-Named 1 16 1018-1121 500 10 14 5
Un-Named 1 18 1025-1139 560 18 13 10
Welker 1 30 1377-1445 350 21 7 5
Seamount
Mytilus 2 20, 21 2592-3271 1620 18 8 S
Inter-canyon Slope
Nygren-Heezen 1 26 497-824 1200 12 19 10
Lydonia-Powell 1 27 494-663 1180 0 13 6
Cold Seep
Veatch Seeps 1 13 1409-1423 350 ) 6 2
NE Seep 2 1 3 1053-1139 975 0 10 1
NE Seep 3 1 4 1410-1484 1075 0 11 2
Open Slope/Landslide Scar
USGSH 1 17 647-784 2200 0 10 4
USGS2/Veatch 1 12 1967-2026 1050 6 9 2
USGS3 1 1610-1880 965 13 9 2
USGS4 1 2 555-609 2100 0 11 6
USGS5 1 31 778-899 2140 0 15 7

2 Straight-line distance travelled over ground was approximated using the measuring tool in ArcMap.

doi:10.1371/journal.pone.0139904.t001

Table 2. DistLM results. Marginal test results followed by results from the BEST model using the AIC criterion. P-values in bold are significant (Bonferroni
Adjustment, a=0.01).

Corals Fishes Crustaceans
Environ. Factor Pseudo-F Prop. Var. P Pseudo-F Prop. Var. p Pseudo-F Prop. Var. p
Depth (m) 9.89 0.35 0.001 7.01 0.24 0.001 8.54 0.28 0.001
Salinity 8.48 0.32 0.001 5.81 0.21 0.001 7.74 0.26 0.001
Distance (m) 1.02 0.05 0.385 1.21 0.05 0.282 2.89 0.11 0.013
DO (ml/L) 3.45 0.16 0.019 2.15 0.09 0.048 1.25 0.05 0.270
Habitat 4.35 0.45 0.005 2.46 0.41 0.007 2.41 0.40 0.001
Coral Richness — — = 2.28 0.09 0.022 3.45 0.13 0.004
AIC 135.85 178.44 178.49
R? 0.71 0.71 0.67
Model All except Distance All Variables All except Distance and DO

doi:10.1371/journal.pone.0139904.t002
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Fig 2. Examples of geology and geomorphology. (A) Vertical exposure of chalk in Atlantis Canyon showing biological and physical erosion morphologies
(pits, burrows, horizontal striations). (B) Heavily eroded and partially colonized wall within Atlantis Canyon containing large caves. (C) Downslope abrasion
marks along the wall of Alvin Canyon most likely from cascading sediment/water flows. (D) Transition from a well-developed erosional channel/chute to a
linear abrasion mark on the wall of Alvin Canyon. (E) Spalling failure of a thin surficial layer of a layered mudstone exposure in Block Canyon. (F) "Recent"
rockfall and spalling failure exposing a clean wall section within Oceanographer Canyon. (G) Debris apron at the base of a wall in Block Canyon. (H) ROV D2
inspecting a large displaced block of layered mudstone, Heezen Canyon.

doi:10.1371/journal.pone.0139904.g002
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Fig 3. Benthic communities and habitats. (A) Corals and sponges colonizing a vertical wall in Hydrographer Canyon (1376 m) with the octopus
Muusoctopus johnsoniana. (B) Paragorgia arborea colonizing the wall of Heezen Canyon (709 m). (C) Lophelia pertusa and additional sessile species
growing on the underside of a ledge in Hydrographer Canyon (867 m). (D) An isolated dropstone in the Lydonia-Powell inter-canyon (501 m) with anemones
(Hormathiidae) and Phycis chesteri. (E) A heavily colonized outcrop in the Nygren-Heezen inter-canyon area (793 m). (F) Desmophyllum dianthus and P.?
johnsoni attached to authigenic carbonate at Veatch Seeps (1421 m). (G) Bathymodiolus sp. living on the wall of Nygren Canyon (1560 m). (H) Zoanthids
and ophiuroid brittle stars covering a mostly dead primnoid octocoral on Mytilus Seamount (3057 m).

doi:10.1371/journal.pone.0139904.9003
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within submarine landslide scars (evacuation zones) (Table 1, S1 Table). We also provide nota-
ble observations of fauna associated with these broad-scale features.

Broad-Scale Habitat Features

Shelf-breaching and Slope Canyons. Sixteen dives were conducted in shelf-breaching
canyons and three dives were conducted in slope canyons (S1 Table). Shelf-breaching canyons
connect the continental shelf to the abyssal plain whereas slope canyons are formed on the
upper to lower continental slope and often do not extend onto the abyssal plain. Thick
sequences of massive to thinly layered, eroded carbonate-rich/chalky mudstones and siltstones,
sometimes intercalated with porcellaneous layers, were prominent along the canyon walls.
Exposed faces of the chalk-rich layers were often etched and pitted, suggesting continuous bio-
logical, chemical, and physical erosion (S1 Table, Fig 2A and 2B). A similar sequence of car-
bonate rocks, Eocene-age silicious chalks and porcellanite was reported from the middle New
Jersey continental slope at 1500 to 2500 m depth [60] and in Hendrickson Canyon in the Mid-
dle-Atlantic Bight [61].

Eleven dives were conducted in canyons along the Georges Bank section of the continental
margin, from Hydrographer Canyon northward (Fig 1). Both silicilastic and carbonate-rich
lithologic sequences were prevalent. Massive to thinly layered gray mudstones/siltstones, and
white, pitted and striated, layered chalk/carbonate-rich rocks were observed. Outcrops in
Hydrographer, Welker, Oceanographer, Lydonia and the deeper regions of Nygren and Heezen
Canyons are most likely of Late Cretaceous to Eocene age; shallower areas in Nygren and Hee-
zen Canyons are closer to Miocene-age [30, 63-65]. Heavy erosion, biological encrustation,
and Fe-Mn oxide coating on almost all exposed rock surfaces in Nygren Canyon preclude iden-
tification of the canyon wall lithologies.

All canyons displayed evidence of sediment transport and progressive erosion by biological
action, chemical solution, and physical abrasion, in addition to more episodic erosion by
larger-scale slope failure/rock fall. Evidence of biological and chemical erosion was observed
on all bedrock lithologies, except where surfaces had recently been exposed by failures. Erosion
of these lithologies was primarily in the form of pitting/boring, horizontal striations, and devel-
opment of large cavities (Fig 2A). Scour of the canyon walls by cascading sediment and/or
water flows in the form of vertical scratches or wide chutes were observed. These features were
most prominent in the chalk lithologies seen in Block, Atlantis, and Alvin Canyons (Fig 2C
and 2D). While these scours were often sediment free, a number of the wider, better-developed
chutes were dammed by coarse material causing sediment backfilling to occur. Evidence of sed-
iment transport by bottom currents was not widely observed since the primary focus of the
dives was on steep canyon walls rather than sedimented channels. However, sediment waves
and sediment scour around the bases of larger debris blocks were observed in Heezen Canyon
(dive 23).

Evidence of wall failure was observed in all canyons explored (Fig 2E-2H). Failure processes
varied considerably from canyon to canyon, but lithological control on style and dimensions of
the failures was apparent. Spalling of the rock face (Fig 2E and 2F), which resulted in removal
of only a thin veneer of material from the surface of the rock walls, was commonly observed.
At the base of the wall, small debris aprons were evident (Fig 2G). Large (>10 m) blocks (Fig
2H) were present in several canyons as either isolated features or were mixed with smaller-
sized, displaced material within large debris aprons at the base of walls. Extensive debris aprons
and talus slopes were present in Block, Alvin, and Atlantis Canyons. These features consisted
primarily of tabular blocks, many meters wide, which were destabilized by erosion of the sur-
rounding, weaker chalk layers (Fig 2).
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Canyon walls and debris fields were colonized, in patches, by numerous species of sessile
fauna, including corals, bivalves, anemones, and sponges (Fig 3A-3C). Scleractinians (e.g., Des-
mophyllum dianthus, Solenosmilia variabilis), octocorals (e.g., Anthothela spp., P.2 resedaefor-
mis) and bivalves (Acesta sp.) were often abundant under and around overhangs on the vertical
canyon walls (Fig 3C). These same species also were often observed occurring in large patches
on canyon walls that stretched for several 10s of meters. Notably, L. pertusa was documented
in canyons at depths ranging from 733 to 1030 m (Fig 3C, S2 Table). Octopods (Graneledone
verrucosa, Muusoctopus johnsonianus) and bobtail squids (Rossia sp.) were often observed
along the canyon walls (Fig 3A). Although further quantification is required, areas within can-
yons appear to serve as nursery or spawning habitats for particular species (S2 Fig). For exam-
ple, numerous individuals of G. verrucosa were observed along canyon walls guarding eggs.
Bobtail squid eggs were observed within sponges growing on canyon walls. Catshark (Scylior-
hinidae) egg cases were observed attached to corals. Skate (Rajiidae) egg cases were observed
along and at the base of walls.

Open slope, Landslide Evacuation Zones, and Inter-canyon Areas. Five dives were con-
ducted on the open slope; one near the shelf break (USGS2) and four in landslide evacuation
zones (USGS1, 3-5). Two additional dives were conducted on the slope between canyons,
termed inter-canyon areas (S1 Table). These regions were dominated by bioturbated, Pleisto-
cene- to Recent-age unconsolidated sediments and glacial erratics. Pleistocene-age layered stra-
tigraphy was exposed along the headwall scarp of a landslide evacuation zone immediately east
of Block Canyon (USGS3, dive 1). Large debris blocks and scarps in other evacuation zones
were draped with a layer of unconsolidated sediment at least 20-30 cm thick. Abundant glacial
erratics, including rounded granitic boulders, were found on the seafloor and partially buried
(dives 26 and 27) at the shallower (< 850 m) sites between Nygren-Heezen and Lydonia-Pow-
ell Canyons.

Corals and other sessile species were uncommon in most open-slope sites. However, some
species of sea pens and bamboo corals that anchor in soft sediments were frequently observed
during dive 12 on the channel floor of Veatch Canyon (S2 Table). One dive (dive 1) conducted
on the open slope and one dive (dive 26) in an inter-canyon area traversed over several boul-
ders and outcrops upon which corals, anemones, and sponges were attached (Fig 3E). Other
areas had dropstones colonized by sessile fauna (Fig 3D). Mobile ophiuroids and holothurians
were common at the deeper, sedimented open-slope sites (> 1600 m); whereas red crabs (C.
quinquedens) and squat lobsters (Munida sp. 1) dominated the shallower, open-slope sites
(<800 m). Areas where red crabs were present were heavily bioturbated with burrows. At
USG$S4 (dive 2), a high abundance (2.089 individuals 10 m™2) of red crabs was observed. Obser-
vations of at least 56 mating pairs and males actively caging females suggest that this area may
be an important site for red crab reproduction. Red crab mating pairs were previously docu-
mented in nearby Veatch Canyon [68].

Cold Seeps. Three dives (dives 3, 4, 13) were conducted at inter-canyon sites to ground
truth multibeam backscatter data that showed plumes of bubbles rising from the seafloor (see
[46]). These dives documented living chemosynthetic communities at depths ranging from
1053 to 1484 m (Fig 1, S1 Table). Observations of gas hydrates (Fig 4A), scattered empty mus-
sel shells, live mussels, carbonate rocks, microbial mats, and dark patches of apparent anoxic
sediment proved that these areas were either sites of active seepage or historical seep sites. Bub-
bles were observed (Veatch Seeps, NE Seep 2) escaping from the seafloor as was predicted from
the multibeam backscatter data. Methane hydrate was also documented at NE Seep 2 and 3
(also see [46], for observations and supplementary video clips). Seafloor gas hydrate was previ-
ously documented on the U.S. Atlantic margin at the Blake Ridge seep, off the coast of South
Carolina at 2000 m depth [69]. The gas hydrates observed on the NEUS expedition generally
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Fig 4. Notable observations and range extensions. (A) Methane gas hydrate observed at NE Seep 2 (1055 m). (B) Telopathes magna in Block Canyon
(1345 m). (C) Metallogorgia melanotrichos in Atlantis Canyon (1755 m). (D) Gaidropsarus argentatus under a ledge in Block Canyon (1008 m). (E) Lepidion
guentheri in Oceanographer Canyon (995 m). (F) Guttigadus latifrons in Heezen Canyon (1645 m). (G) Uroptychus sp. inhabiting Parantipathes sp. in
Oceanographer Canyon (1079 m). (H) Munidopsis spp. inhabiting a hexactinellid sponge in Atlantis Canyon (1744 m).

doi:10.1371/journal.pone.0139904.9004

occur beneath small overhangs, the same setting in which the Blake Ridge seep seafloor hydrate
was found. In these settings, gas bubbles emitted from the seafloor supersaturate waters
beneath the overhang with methane, provoking the formation of porous gas hydrate around
the bubbles, which then combine to form a gas hydrate mass. The NEUS seafloor gas hydrates
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occur at pressure and temperature conditions that are within the hydrate stability field. This
seafloor hydrate population is distinct from the upper slope gas hydrates (~550 m water depth)
that may feed a large proportion of the seeps described by Skarke et al. [46].

A living chemosynthetic community was also discovered (dive 22) along the west wall of
Nygren Canyon at a depth of 1560 m (Fig 3G). In contrast to the other seep sites investigated,
water column backscatter data did not suggest the presence of a seep community in Nygren.

Bathymodiolus spp. was the dominant species observed in each of the cold seep sites. Small
patches and large, expansive (>100 m in length) beds consisting of individuals of different size
classes were observed. Interestingly, 1000s of small individuals, indicating ongoing and/or
recent recruitment to the area, were observed at Veatch seeps (dive 13). At NE Seep 3, different
sized patches of live and dead mussels were commonly encountered. Patchy distribution of
mussel beds and the size variability of individual mussels within a bed may be indicative of
methane flow that varies both temporally and spatially [69-71]. In contrast to cold seeps in the
Gulf of Mexico [48], the Mediterranean [72] and oft West Africa [73], the NEUS seep sites
lacked vestimentiferan tubeworms. Absence of vestimentiferans and vesicomyid clams may
signify either lack of hydrogen sulfide and/or an insufficient supply of larvae from source popu-
lations to maintain a local population [74-76], thus suggesting that these NEUS seeps may be
functionally different from those in other regions.

Species associated with the NEUS seep mussel beds included endemic gastropods and
shrimps (Alvinocaris spp.) as well as background fauna (e.g., Antimora rostrata, Synaphobran-
chus sp., Echinus sp., C. quinquedens) not specific to seep habitats (S4 Table). Additionally,
octocorals (Paragorgia? johnsoni,? Hemicorallium sp.) and scleractinian cup corals (D. dian-
thus) were attached to authigenic carbonates at Veatch seeps and the canyon wall adjacent to
the seep community in Nygren Canyon (Fig 3F and 3G).

Mytilus Seamount. Mytilus Seamount is a guyot, with the cap composed of recrystallized
limestone dominated by fossil Melobesiacean algae [77, 78]. On the NEUS expedition, the
north and south sides of this seamount were explored during two dives (dives 20, 21) at depths
ranging from 2592 to 3271 m. Both sides of the seamount were characterized by gradually- to
steeply-sloping pillars that were smooth in texture and interspersed with ledges covered with
sediment. Piles of manganese-coated rocks as well as material that resembled carbonate debris
were observed, indicating some slope instability and possible erosion. Pillow lava was also
observed, which is consistent with the volcanic origin of this seamount [79]. Previous submers-
ible investigations noted that certain outcrops on Mytilus Seamount appeared to be igneous in
nature; however, of the samples collected, none were basalts [78]. Compared with the transect
on the north side, the transect up the south flank of the seamount appeared to have expansive
areas of soft-sediments with scattered cobbles.

A diverse assemblage of deep-sea taxa was observed on the seamount (S2, S3 and S4 Tables),
including numerous hexactinellid sponges, demosponges, bryozoans, antipatharians, and octo-
corals. Notable was the discrete zonation of epifauna living on a large primnoid octocoral on
the southern wall. Ophiuroids, barnacles, and zoanthids covered different sections of this
mostly dead coral (Fig 3H). Echinoderms (all classes represented) were the most common and
diverse members of the mobile megafaunal assemblage observed.

Benthic Assemblage Structure

Corals. At least 58 coral taxa representing 20 families from four orders were documented
along the NEUS continental margin (S2 Table). The species accumulation curve appeared to
approach an asymptote, suggesting that coral genera were well documented throughout the
region (Fig 5). However, additional species will likely be added to the regional species list with
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Fig 5. Cumulative number of putative species (solid line) by taxon observed across all dives
conducted. 95% confidence intervals are indicated (dotted lines).

doi:10.1371/journal.pone.0139904.g005

further exploration and targeted collections. We emphasize and recognize that specimen col-
lections are critical to corroborate identifications from video imagery. Many taxa cannot be
identified to species level from images alone. Furthermore, there is a high likelihood of discov-
ering new, cryptic, and/or incipient species in these underexplored habitats [80-82]. Genetic
analyses combined with microscopic examination of morphological characters are necessary to
confirm identifications.

Despite using a conservative approach to coral identification, the species list compiled dur-
ing the present study illustrates that corals are much more diverse in the NEUS region
(depths > 200 m) than previously recognized. Published annotated checklists for the region
(including Gulf of Maine, Georges Bank to Cape Hatteras, NC, and U.S. EEZ Northeast Sea-
mounts) report 25 species of alcyonacean octocorals [45], 17 species of pennatulacean octocor-
als [51], 16 species of scleractinians [83], and three species of antipatharians [51, 84]. Of the
total 58 coral taxa we documented, at least 24 species (identified to the lowest possible taxon)
were not previously recorded for the coral fauna in the region. This suggests gamma diversity
in the NEUS region is potentially higher than in other regions of the western North Atlantic,
given that many taxa were identified only to genus in the present study. For example, approxi-
mately 30 species were documented within similar depth ranges off Newfoundland and in the
Labrador Sea [85, 86], although differences in observational effort and methods need to be
acknowledged. Regardless, the high gamma diversity along the NEUS slope is likely due to high
habitat heterogeneity (e.g., canyons, landslide scars, seamounts) in the region across a broad
depth range (~200 to 3500 m). Additionally, because submarine canyons can channel organic
matter [8] and thus enhance food supply, the NEUS canyons may contain higher biodiversity
and density of fauna compared with other areas along continental margins [11, 21, 87].

Based on our observations, geographic range extensions are apparent for several coral species,
although taxonomic voucher specimens are necessary to confirm these identifications. Of note,
the black coral Telopathes magna (Fig 4B) was previously known only from the continental slope
off Nova Scotia and the New England Seamount Chain [84]. Based on our knowledge of colony
morphology, we observed this species during 11 dives. The octocoral Metallogorgia melanotrichos
was observed (Fig 4C) during one dive in Atlantis Canyon. Previously, this species had not been
documented on the Atlantic continental margin of the U.S. north of the Gulf of Mexico, although
it occurs offshore on the New England and Corner Rise Seamounts [41, 88, 89], in the Pacific
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Fig 6. Species richness by depth. (A) corals. (B) fishes. (C) crustaceans. Best-fit linear trend lines are
included.

doi:10.1371/journal.pone.0139904.g006

[88], the Mediterranean [89], the Gulf of Mexico (A. Quattrini, T. Shank, pers. observ.), on the
Bahamas Escarpment, and in Little Abaco Canyon (S.C. France, pers. observ.).

Depth was a significant factor influencing coral assemblages (DistLM marginal test, p = 0.001,
Table 2). Although coral species richness did not change significantly (linear regression, R* =
0.02, p>0.05) with depth over the depth range explored (494 to 3271 m, Fig 6A) species compo-
sition of corals changed at approximately 1600 to 1700 m (Fig 7A). Species composition in can-
yons and other environments containing hard substrates were significantly dissimilar across this
depth boundary (60%, SIMPROF, p<0.05, Fig 7A). Scleractinians and the octocorals Anthothela
spp., Keratoisis sp. 1, and Paragorgia arborea, occurred at depths <1700 m, whereas chrysogor-
giids and sea pens were more common at depths >1700 m (SIMPER). Additionally, the coral
assemblage observed on Mytilus Seamount (> 2600 m) was significantly dissimilar (80%, SIM-
PROF p<0.05) from coral assemblages at other sites. Differences in species composition between
Mytilus Seamount and other sites were primarily driven by the presence/absence of numerous
species. Chrysogorgia spp., Convexella? jungerseni, Corallium? bathyrubrum, Paranarella?
watlingi, and Paragorgia/Sibogagorgia sp. 1 were observed on Mytilus Seamount, whereas
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Acanthogorgia spp., Anthothela spp., Clavularia? rudis, P. arborea, and Paramuricea spp. were
not seen on Mytilus Seamount, but occurred at other sites (SIMPER). Notably, no scleractinian
corals were observed at Mytilus Seamount, perhaps because these deeper depths (2600 to 3200
m) are beyond the bathymetric limits of scleractinian species occurring in the area.

Broad-scale habitat feature was another important factor that influenced coral assemblages
(DistLM marginal test, p = 0.005, Table 2). Coral assemblages at Veatch seeps and USGS2 were
significantly dissimilar (70-80%) from all other sites (SIMPROF, p<0.05, Fig 7A). Addition-
ally, low alpha diversity was observed at Veatch Seeps and USGS2 compared to the other sites
investigated. These differences are related to habitat suitability, i.e., the underlying substrate
type and availability of hard substrata. Five species of corals (S2 Table) were observed attached
to carbonate blocks surrounding the live mussel bed at Veatch Seeps. No hard substrates were
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observed at USGS2, but four species of sea pens and two bamboo corals were observed
anchored into soft sediment. No octocorals were observed during six dives (dives 2-4, 17, 27,
and 31) that were conducted over soft sediment on inter-canyon and open slopes.

In combination, the factors of depth, habitat, salinity and DO explained 71% of the total
variation observed in coral assemblage structure (BEST model; AIC = 135.85). Depth (and the
factors that co-vary with depth including salinity) has previously been shown to be important
in structuring deep-sea coral assemblages in other regions, including the continental slope off
Newfoundland [86], Hawaii [66], and in the Gulf of Mexico [82]. Coupled ecological and evo-
lutionary processes influence species composition and diversity of deep-sea coral assemblages
over an environmental gradient of depth. Specifically, depth-related mechanisms influencing
coral distributions include, but are not limited to, restricted gene flow across water mass
boundaries, potential adaptation to environmental factors (e.g., pressure and temperature,
[90]), historical colonization events [91], and in situ diversification [88]. Additionally, the dis-
tribution and suitability of habitat features including substrate type (e.g., soft sediment, hard-
bottom) and topographic variables (e.g., rugosity, slope) are known to influence coral
assemblage structure [66, 86]. Although we found no significant differences between assem-
blages in slope and shelf-breaching canyons, lower diversity and a different faunal assemblage
were noted at cold seeps and open-slope sites that lacked hard substrates.

Coral abundance estimates ranged from 0.005 to 1.756 colonies 10 m™* for Paragorgia spp.
and 0.007 to 0.233 colonies 10 m™* for P.? resedaeformis. These estimates are similar to abun-
dances of P. resedaeformis and P. arborea measured off Nova Scotia [59]. However, in contrast
to the present study, Primnoa was more abundant than Paragorgia in that region. Abundances
of both species in the NEUS differed among habitats and declined with increasing depth (Fig
8A and 8B); a pattern also reported by Watanabe et al. [59]. The highest abundances recorded
in this study of both Paragorgia spp. (1.548 to 1.756 colonies 10 m ) and P.? resedaeformis
(0.233 colonies 10 m ™) were found in shelf-breaching canyons at depths of approximately 800
m. These estimates, calculated across an entire dive transect, do not reveal the high variability
in abundance and the patchy distribution seen for many of the corals over the course of a single
dive or across sites at similar depths. Although a more rigorous sampling design needs to be
incorporated to accurately compare abundance patterns across depths and habitats, for many
of the coral taxa observed, variation in abundance across habitats does not appear to be related
only to depth (see also [59]). For example, both the highest and lowest abundances of P.
arborea were found at approximately 800 m in Hydrographer and Nygren Canyons, respec-
tively. Other factors, including the abundances of other sessile species, the stability of canyon
walls, current regimes, and/or food availability, could be driving the variation in coral abun-
dances, and warrant further investigation throughout the region.

Demersal Fishes. A total of 69 demersal fish species representing 30 families were docu-
mented along the NEUS continental margin (S3 Table). The species accumulation curve did
not quite reach an asymptote, suggesting more species will likely be documented with further
exploration (Fig 5). Combining species checklists from [92-94], the estimated number of fish
species in the NEUS region is 630. Of these 630 species, approximately 153 are demersal and
benthopelagic species that occur in this region within similar depth ranges as surveyed in this
study (J. Moore, unpubl. data). Thus during the NEUS expedition, the ROV D2 documented
only 45% of the demersal fishes known in the region. It is likely that the ROV did not ade-
quately document certain species that either avoid (e.g., sharks, chimaeras) underwater vehicles
[95, 96], are too small and cryptic to be observed using video, or occur at such low densities
that encounter rates with survey vehicles are exceedingly low. Combining methods of submers-
ibles, surface-deployed gear (see [97]), and even museum collections [92] are ideal in order to
provide voucher specimens and a more comprehensive, regional assessment of fishes.
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The ROV surveys in the present study, however, did document the numerically dominant
fish species found in the region (e.g., Antimora rostrata, Glyptocephalus cynoglossus, Nezumia
bairdii, Phycis chesteri, and Synaphobranchus spp.; [98]); capture images of species rarely
observed in situ (e.g., Cottunculus thomsonii, Harriotta raleighana, and Paraliparis copei); and
document at least three species not previously recorded from the area. Gaidropsarus argentatus
was previously known from the Grand Banks to Greenland [99] with one specimen collected
on the New England Seamount Chain [92]. We noted several occurrences of this species during
seven dives along the continental slope, suggesting that this species may be more common
than previously realized (Fig 4D). Two individuals of Lepidion guentheri were observed in
Oceanographer Canyon and one individual was observed in Nygren Canyon (Fig 4E). This spe-
cies was previously known only from the eastern Atlantic [100]. Guttigadus latifrons, a species
previously known from the Mediterranean Sea and northeastern Atlantic [101] and New
England Seamount Chain (J. Moore, pers. observ.) was observed in Heezen Canyon (Fig 4F).
The association of these fishes with rugged topography and hard bottom habitat may have pre-
cluded them from being discovered in this region, as most work to date has been based on
trawl surveys [92].
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Neocyttus helgae was observed (n = 39) on ten separate dives in Block, Alvin, Welker,
Hydrographer and Nygren Canyons as well as two un-named canyons, just west of Hydrogra-
pher and Block. This species was considered to be distributed across the northeast Atlantic
region, with a range as far west as the Corner Rise and New England Seamounts [96]. It was
suggested that N. helgae used seamounts as stepping-stones to produce this distributional pat-
tern (with depth bounds of 915 to 1829 m [94]). An observation of a single individual in Lydo-
nia Canyon (1469 m), based on a photographic record from a single DSV Alvin dive in 1982,
was also reported [96]; the authors suggested this was possibly a failed colonization event. Sub-
sequent to that study, N. helgae was reported in three canyons south of Newfoundland (from
approximately 800-1500 m) [102] and recently in Norfolk Canyon [97]. Whether or not occur-
rences of N. helgae represent a previously unknown historic range due to under-sampling in
canyon habitats or is evidence of a recent range expansion remains to be considered.

Depth was a significant factor affecting assemblage structure of demersal fishes (DistLM
marginal test, p = 0.001, Table 2). Species richness of demersal fishes declined with increasing
depth (linear regression, R* = 0.53, p<0.001, Fig 6B). A decline in species richness with depth
is commonly observed in this depth range [98, 103-105], and has been linked to food availabil-
ity [103]. The species composition of demersal fishes also changed with depth; however the
change in assemblage structure was more gradual rather than an abrupt cline or a complete
species turnover. Three of the five clusters that were significantly dissimilar (60-80%) from
one another did not correspond to any abrupt breaks in species distribution within the 500 to
2000 m depth range (Fig 7B). Several species commonly observed across a large portion of this
depth range included: A. rostrata, G. cynoglossus, N. bairdii, and Synaphobranchus spp. (SIM-
PER). Therefore, the observed differences in species composition of fish assemblages are due to
either the appearance or disappearance of other species along the depth gradient. Species com-
mon at deeper depths included: Aldrovandia affinis, Halosauropsis macrochir, and Luciobro-
tula corethromycter. Species more common in shallower depths included: P. chesteri,
Helicolenus dactylopterus, and Sebastes mentella (SIMPER).

Marked changes in fish assemblage structure occurred at depths >2000 m. Low species rich-
ness (3 species; Bathysaurus mollis, an unidentified ophidiiform, and Coryphaenoides cf. cara-
pinus) was observed in Block Canyon at 2062 to 2135 m depth. Species richness was also low (7
species) at Mytilus Seamount, and included B. mollis, Chaunacops roseus, Coryphaenoides
armatus, Synaphobranchidae sp. 1, and an unidentified ophidiid (sp. 3). Also at Mytilus Sea-
mount (>2600 m), species composition was 80% dissimilar from other sites (SIMPROF,
p<0.05). Species present on Mytilus Seamount are not endemic to seamounts [92], but they do
appear to be more common in deeper depths [92, 106].

Broad-scale habitat features also influenced assemblages of demersal fishes (DistLM mar-
ginal test, p = 0.007, Table 2). Although no significant groupings (SIMPROF) were evident in
the MDS plot (Fig 7B), assemblages were similar at several sites in either canyon or open-slope
environments. Several species appeared to be tightly associated with canyon walls and/or were
found hiding within burrows and undercuts in the walls. These species included? Grammonus
sp., G. latifrons, L. guentheri, and N. helgae. Gaidropsarus spp. and L. corethromycter were also
commonly documented along canyon walls, but these species also were observed under ledges
in other hardbottom environments. Similarly, various species such as Bathysaurus ferox, Bath-
ypterois grallator, Lophius americanus, Rajella bigelowi, an unidentified rajiid skate, and Chlor-
ophthalmus agassizi were present only at soft-sediment, open-slope sites. Chlorophthalmus
agassizi, in particular, is a common inhabitant of soft substrate and open-slope habitats [40].

A combination of all environmental factors examined in this study explained 71% of the
variation in assemblage structure (DistLM, BEST, AIC = 178.44). Distance covered by the
ROV was retained in the BEST model; however, distance only added 2% of explained variation
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and was not significant when considered alone (DistLM marginal test, p = 0.282). Habitat and
depth (and the co-factor salinity) accounted for most of the variation in the model. The assem-
blage structure of fishes over soft-substrate habitats has been shown to differ from those associ-
ated with more complex structures, such as deep coral and hardbottom reefs [40, 107].
Similarly, changes in assemblage structure of fishes commonly occur along a depth gradient
[17,97,108-110]. In the present study, many species were common across a broad depth
range and the changes in assemblage structure with depth appeared to be largely a consequence
of declining alpha diversity. Rate of species turnover and the particular depths where turnover
occurs likely differs among regions due to the overlying water mass characteristics, habitat het-
erogeneity, and food quantity/quality within regions [111]

Interestingly, coral species richness was also an important variable in explaining assemblage
structure (DistLM, BEST, AIC = 178.44). Corals may increase local diversity of demersal fishes
as some species use corals as refugia or a central base for foraging [94] or as spawning habitat
(e.g., catsharks [44] liparids [97]). Coral species richness may also be an indicator of an addi-
tional, yet unmeasured, environmental variable that influences the distribution and abundance
of fishes. For example, areas that host more coral species may contain increased amounts of
organic matter and thus food resources. Additionally, the occurrence of specific relationships
between corals and invertebrates [35, 41, 42] may increase the diversity and availability of prey
items to fishes.

Abundances estimated for Synaphobranchus spp. and N. helgae peaked at mid-depths (Fig
8C and 8D) and further revealed differences in habitat-use patterns. Neocyttus helgae was only
observed in canyon habitats, with highest abundances at depths of approximately 1200-1500
m (Fig 8D). This species was not found within other structurally complex habitats (e.g., cold
seeps) surveyed in similar depth ranges. Occurrences in canyon habitats could be driven by
presence of refugia or because of enhanced food supply [96]. Abundances were similar between
slope (0.004 to 0.026 individuals 10 m2) and shelf-breaching (0.003 to 0.060 individuals 10 m"
%) canyons (Fig 8D). In comparison, Synaphobranchus spp. was a habitat generalist [112].
Synaphobranchus spp. was found across most depths and habitats surveyed (except Mytilus
Seamount); although more than one species may be present in the region [92]. This generalist
habitat strategy was also observed in Norfolk and Baltimore Canyons and adjacent cold seeps
in a recent study [97]. Synaphobranchus spp. was most abundant (mean 0.197 + 0.256 S.D indi-
viduals 10 m ) in open slope/landslide scar areas, with the highest abundance (0.563 individu-
als 10 m™®) estimated during at USGS5 (dive 31). Abundances of Synaphobranchus spp. also
peaked at mid-depths of approximately 700-1200 m. A peak in abundance at similar depths
was reported previously for S. kaupii [113].

Crustaceans. A total of 34 megafaunal decapod crustacean morphospecies were docu-
mented along the NEUS continental margin (S4 Table). Of these crustaceans, shrimps were the
dominant group (46%) followed by galatheiod squat lobsters (18%) and pagurid hermit crabs
(12%). Brachyurans, lithodids, and chirostylids represented 24% of the crustacean fauna. The
species accumulation curve appeared to reach an asymptote indicating that crustacean mor-
photypes/genera were well documented (Fig 5). Although the high-definition cameras on the
ROV allowed for numerous zooms, a portion of the crustacean fauna was likely not observed
as many species are cryptic, inhabit burrows and crevices, and are often found intimately asso-
ciated with corals and/or sponges (Fig 4G and 4H). Additionally, a large portion of the unex-
plained variation (33%, Table 2) in crustacean assemblage structure may be due to insufficient
taxonomic resolution at the species level. For example, the identification of many of the indi-
viduals in the genus Munidopsis could not be resolved to species or a distinct morphotype.
These individuals often occurred deep within scleractinian coral bushes, obscuring many diag-
nostic characters. Thus, Munidopsis spp. was not included in PRIMER analyses. Targeted
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collections are needed to identify the morphotypes to species-level since many diagnostic char-
acters cannot be evaluated from images alone.

As with other taxonomic groups, depth was a significant factor affecting assemblage structure
of crustaceans (DistLM marginal test, p = 0.001,Table 2). Species richness of crustaceans declined
with increasing depth (linear regression, R* = 0.25, p = 0.003, Fig 6C). Crustacean assemblage
structure was significantly dissimilar (80%, SIMPROF, p<0.05) at a boundary of around 1300 to
1500 m (Fig 7C). Species composition at depths <1500 m were dominated by C. quinquedens,
banded Shrimp sp. 2, Munidopsis sp. 1, Munida sp. 1, and Munida sp. 2. In contrast, Paguridae
sp. 3, Shrimp sp. 3, and Munidopsis sp. 3 were common at depths >1300 m (SIMPER).

Broad-scale habitat features also influenced assemblage structure of crustaceans (DistLM
marginal test, p = 0.001, Table 2). Although assemblages at open-slope sites did not form a
tight grouping, several species (e.g., squat lobsters) that are intimately associated with corals
were notably absent from open-slope sites (54 Table). Additionally, Paralomis cf. bouvieri was
only observed within canyon environments. The crustacean assemblage at USGS3 (dive 1) was
also highly dissimilar (70%) from other sites in the same depth range. Low alpha diversity (two
species) was recorded during this dive along a landslide scar on the open slope (S4 Table). Low
species richness (1-2 species) of crustaceans also occurred at each of the cold seep sites (54
Table). Assemblages were 70% similar among the cold seep sites, although not significantly so
(SIMPROF, p>0.05, Fig 7C). Alvinocaris sp., a shrimp endemic to chemosynthetic communi-
ties, was only observed at the cold seep sites.

The BEST model indicated that salinity, depth, coral species richness, and broad-scale habi-
tat features were the best combination of variables that explained the observed structure of the
crustacean assemblage (DistLM, BEST, AIC = 178.49). Similar to fishes and corals, bathymetry
was important in shaping deep-sea crustacean assemblages. A decline in species richness with
depth and a change in species composition were reported on the middle to lower slope in other
areas of the western North Atlantic, including off New England [98] and in the Gulf of Mexico
[114, 115]. Our analyses also revealed the added importance of broad-scale habitats and coral
species richness in shaping crustacean assemblage structure. The diversity of corals in canyon
environments influences the differences observed between the canyon and open-slope habitat
features. Several species of crustaceans, particularly galatheoid and chirostylid squat lobsters,
are intimately associated with corals. Only Munida spp. were commonly and consistently
observed on soft sediments. Thus, most of these crustaceans were absent from open-slope sites.
Higher coral diversity may equate to a higher number of niches available to crustaceans,
thereby enabling more species to coexist.

Broad-scale habitat and depth also influenced abundances of C. quinquedens across the
region. Abundance estimates ranged from 0.005 to 2.087 individuals 10 m™>. Abundances were
highest in shallow, open slope/landslide scar and inter-canyon areas and lowest in deeper canyon
environments. However, many individuals were likely missed at each site as we observed numer-
ous individuals digging into sediments and entering burrows. Thus, abundances are likely under-
estimated. In general, abundances declined with depth, with few individuals observed at
depths > 1400 m (Fig 8E). However, depth was not the only influencing factor on abundance of
red crabs, as few individuals were observed at shallower depths (< 1400 m) in canyon environ-
ments. Perhaps the steep, vertical walls, and rugged seafloor in canyon environments inhibit this
species from digging and/or foraging in soft sediments [116]. Additionally, a peak in abundance
(1.269 individuals 10 m ) was estimated at a cold seep site (NE Seep 2) at depths of 1053 to 1139
m. In all cold seep environments, the majority of individuals were observed on the periphery of
mussel beds. However, several individuals were also observed in crevices in authigenic carbonates
(Veatch Seeps) and lying directly on living mussels. Chaceon sp. has previously been documented
as vagrant members of cold seeps [117], which may locally increase food supply.
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Additional Factors Likely Impacting Assemblage Structure. Although the environmen-
tal variables examined in the present study explain a large portion of the variation (67-71%) in
assemblage structure for each taxonomic group (DistLM, BEST), additional environmental fac-
tors not quantified in this study likely influence the assemblage patterns observed. Current
flow, internal waves, downwelling and tidal forcing affect the distribution and abundance of
cold-water corals and other sessile suspension feeders [118-121]. In particular, accelerated cur-
rents over rugged, topographic highs promote feeding efficiency and/or larval supply [118,
121]. These oceanographic mechanisms in combination with other factors such as aragonite
saturation depth [122, 123] and dissolved organic material [122] may further influence the pat-
terns in coral assemblage structure observed in this study. Additionally, it is possible that mor-
tality from predation events (e.g, pycnogonids [89], seastars, [43]) could influence local-scale
alpha diversity of corals.

We hypothesize that the underlying geological processes that promote or inhibit coloniza-
tion (i.e., habitat availability and suitability) across canyons, slopes, and seamounts are also
important in influencing coral assemblage structure. Canyon wall failures, sedimentation and
landslides (i.e., unstable habitat) may lead to increased mortality and reduced recruitment suc-
cess in certain areas. In contrast, more stable features likely facilitate the colonization and
maintenance of sessile species. For example, species richness (28 species) was highest in Nygren
Canyon (2 dives, 678-1590 m, S1 Table, Table 2). The canyon walls in Nygren appeared to be
highly stable, as suggested by the presence of Fe-Mn oxide coating and heavy colonization of
attached fauna. In contrast, fewer species (16 species; 2 dives, 846-1110 m) were observed in
Alvin Canyon. Here, the canyon walls were highly eroded, often mantled by debris aprons and
numerous sediment/water flow chutes along the canyon walls (Fig 2). Therefore, geological dis-
turbances may increase coral mortality and reduce recruitment success. Relative stability of the
underlying geology, in combination with small-scale oceanographic mechanisms, may thus
drive patterns of coral alpha diversity and distribution observed along canyon walls.

For fishes and crustaceans, food availability and microhabitat diversity could explain addi-
tional variation. Input of organic matter could have a profound effect on assemblage structure
by changing the population densities of certain organisms both temporally and spatially [124].
These population changes could thus affect the amount and intensity of biotic interactions
(e.g., predation, competition, symbioses), which could then further alter assemblage patterns.
Microhabitat utilization is also an important component in faunal assemblage structure on the
continental slope [125]. Some species of fishes and invertebrates are tightly associated with cor-
als and/or structurally complex terrain [40, 94, 107, 126]. Additionally, sediment composition
(e.g., clay, mud, shell hash) may influence burrowing and feeding behavior of crustaceans
[125]. Microhabitats can also be characterized by abundance and type of coral species present.
The presence of certain coral species may considerably influence crustacean assemblage pat-
terns. For example, the squat lobster Uroptychus sp. (Fig 4G) was only observed on the black
coral Parantipathes sp. In contrast, Munidopsis spp. utilized a variety of coral species, particu-
larly those with structurally complex morphologies, as habitat. Species-specific relationships of
corals and invertebrates require further investigation [37, 42]. In conclusion, various degrees of
habitat heterogeneity, including rugosity, high or low relief profile, abundance and type of cor-
als, hard or soft substrates, stability and origin of canyon substrate, and sediment composition
likely influence local assemblage structure within the NEUS region.

Conservation Considerations

Signs of human disturbance along the NEUS continental margin were evident. Marine litter
(140 items) was encountered on 81% of the dives throughout the depth range and region
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Fig 9. Examples of marine litter. (A) A ghost fishing trap with red crabs (Chaceon quinquedens) and
banded shrimp (USGS4, 575 m). (B) A ghost fishing trap in Nygren-Heezen inter-canyon area (697 m). (C)
Fishing line with C. quinquedens at USGS1 (782 m). (D) Fishing line wrapped around a partially dead
Paramuricea sp. in Oceanographer Canyon (1222 m). (E) Remnants of a balloon wrapped around a dead
coral skeleton in Hydrographer Canyon (1376 m). (F) Ribbon wrapped around a dead coral skeleton in
Oceanographer Canyon (1220 m).

doi:10.1371/journal.pone.0139904.g009

surveyed (S1 Table, Figs 9 and 10). Litter included derelict fishing gear (traps, monofilament
line, hooks and reels) and other debris (e.g., soda cans, glass bottles, balloons, rugs, plastic
bags) (Fig 9). Estimated quantities of marine litter ranged from 0.002 to 0.130 items 10 m™?,
with the highest estimates found in an un-named slope canyon (S1 Table, Fig 10). At least 12
coral colonies were entangled with debris. One ghost-fishing trap was observed lying on top of
at least three octocoral species and one dead scleractinian (Fig 9B). A dead scleractinian colony
and two piles of dead scleractinian, skeleton rubble were entangled with monofilament line.
Additionally, five octocoral colonies (Paramuricea spp., and Thouarella? grasshoffi) were
entangled with either monofilament line or balloon remnants, resulting in varying degrees of
exposed, dead skeleton (Fig 9D-9F). These observations demonstrate that litter can impact
corals in the deep sea. Many of these corals can be long lived. For example, Paramuricea bis-
caya from the Gulf of Mexico has been documented to live for more than 600 years [127].

Cold-water coral ecosystems along the NEUS continental slope may be particularly vulnera-
ble to disturbances. With additional fishing activity in inter-canyon areas and on the upper
slope [51], the high potential for hydrocarbon exploration and extraction [4], and the
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Fig 10. Abundance estimates of marine litter observed during each dive.
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proximity to a populated area along the U.S. coast, anthropogenic disturbances to benthic com-
munities along the NEUS continental margin will likely increase. Yet, these ecosystems are bio-
diversity hotspots [87]. Cold-water corals are long-lived and slow-growing [127-129] and
likely require decades to centuries to recover from anthropogenic disturbances [130]. Thus,
areas within this region off the NEUS may respond positively to effective protection measures.

Conclusions and Further Research

This study provided much needed data and baseline observations of the geology and biodiver-
sity in underexplored areas on the NEUS continental margin. Our surveys indicated that sub-
marine canyons, inter-canyon sites and the flanks of seamounts along the NEUS are
geologically dynamic areas that respond to a wide variety of physical, chemical, and biological
processes. Furthermore, observations of the exposed lithologies along the walls of the subma-
rine canyons provide a glimpse into the long geologic history of the NEUS continental margin
that has only been seen via a limited number of submersible dives, geophysical imaging and
widely spaced drill holes and grab samples. The visual surveys from this expedition provide a
basis for the development of future investigations on both short and long-term processes influ-
encing landscape ecology, continental margin geology and geohazard analysis in the deep sea.
Initial assessments of biodiversity revealed the importance of both depth and broad-scale
habitat features in shaping the patterns of species richness and composition observed through-
out this region. Although factors (e.g., pressure, temperature, salinity) that co-vary with depth
are important in shaping community structure throughout the deep sea, how and where these
factors impact community structure depend upon the region and the taxonomic group exam-
ined. We found that species richness (alpha diversity) declined with depth for decapod crusta-
ceans and demersal fishes, but not for corals. These contrasting patterns in species richness are
likely a result of differing evolutionary processes, such as the rapid diversification of corals in
deep waters [88], and ecological requirements shaping faunal diversity in the deep sea. However,
we did find that species turnover (beta diversity) occurred on the middle to lower slope for all
taxonomic groups. Turnover in assemblage structure on the middle-lower slope closely matches
depths where boundaries between water masses occur. For instance, Labrador Sea water charac-
terized by temperatures of 3-4°C is generally at 1300 to 2500 m; the shallower portion of the
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deep western boundary current water characterized by temperatures of 4-5°C is at 700 to 1300
m [131]. Finally, our results indicated that species composition and/or diversity differed among
soft-sedimented open-slope, cold-seep, and canyon sites. Although assemblage structure needs
to be further refined to reflect specific microhabitats observed in this region, the broad-scale
habitats as defined herein do not appear to be functionally equivalent for any taxonomic group.
Abundance estimates for species examined in this study also support this conclusion.

This exploration along the NEUS continental margin demonstrates the need for further
investigations to increase our understanding of community structure within and around
diverse canyon ecosystems. Further information regarding microhabitats, current flow, and
organic matter input within the broad-scale habitat features is necessary to improve our under-
standing of the observed patterns in community structure. Examination of other taxa (e.g.,
sponges, echinoderms and octopods) and coral-invertebrate relationships within and around
canyons warrant additional investigation. Also, voucher specimens are required to confirm
species identifications presented in this study. Future survey efforts need to incorporate a rigor-
ous sampling design by including additional locations and depths across habitat features to
refine the understanding of faunal differences. Additional environmental data (e.g., current
regime, organic input) are required to better determine the mechanistic factors that affect the
diversity, abundance, and distribution of fauna associated with these deep-sea habitats.
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