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Summary

1. Animal social networks are descriptions of social structure which, aside from their intrinsic

interest for understanding sociality, can have significant bearing across many fields of biology.

2. Network analysis provides a flexible toolbox for testing a broad range of hypotheses, and

for describing the social system of species or populations in a quantitative and comparable

manner. However, it requires careful consideration of underlying assumptions, in particular

differentiating real from observed networks and controlling for inherent biases that are com-

mon in social data.

3. We provide a practical guide for using this framework to analyse animal social systems

and test hypotheses. First, we discuss key considerations when defining nodes and edges, and

when designing methods for collecting data. We discuss different approaches for inferring

social networks from these data and displaying them. We then provide an overview of meth-

ods for quantifying properties of nodes and networks, as well as for testing hypotheses con-

cerning network structure and network processes. Finally, we provide information about

assessing the power and accuracy of an observed network.

4. Alongside this manuscript, we provide appendices containing background information on

common programming routines and worked examples of how to perform network analysis

using the R programming language.

5. We conclude by discussing some of the major current challenges in social network analysis

and interesting future directions. In particular, we highlight the under-exploited potential of

experimental manipulations on social networks to address research questions.

Key-words: fission-fusion dynamics, group living, methods, social behaviour, social dynam-

ics, social network analysis, social organisation

Introduction

Social network analysis is a commonly used toolbox for

biologists investigating the causes and consequences of

complex social and ecological interactions in animal com-

munities. It is a key technique in sociology (Wasserman &

Faust 1994), where it originated in the 1930s, to investi-

gate the link between local patterns of human relation-

ships and social processes, such as the impact of social

groups on the likelihood of being obese (Christakis &

Fowler 2007). Social network analysis provides a flexible

framework for analysing association or interaction data

to address a broad set of biological questions (Croft,

James & Krause 2008). Most fundamentally, it provides a

description of social structure. Network data also forms

the substrate for a range of analyses including affiliation

or avoidance between conspecifics (Lusseau 2003; Croft,

Krause & James 2004), interspecific interactions (Farine,

Garroway & Sheldon 2012), mating behaviour (McDon-

ald et al. 2013), genetic networks (Gardner et al. 2003)

and community-level linkages (Montoya, Pimm & Sole

2006; Olesen et al. 2008). The strength of social network

analysis is that it provides an understanding of how local

processes drive group-level properties by taking into*Correspondence author. E-mail: damien.farine@zoo.ox.ac.uk
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account the different social environments experienced by

each individual (Strandburg-Peshkin et al. 2013), how

individual variation in social behaviour can drive popula-

tion structure (Aplin et al. 2013; Jacoby et al. 2014; Sni-

jders et al. 2014) and how socially transmitted quantities,

such as information or disease, flow through individuals

in a population (Boogert et al. 2008; Hamede et al. 2009;

Kendal et al. 2010). The properties of individuals cap-

tured by social network analysis can then be linked to fit-

ness (McDonald 2007; Silk et al. 2010; Formica et al.

2012; Wey et al. 2013; Farine & Sheldon 2015), thus

framing sociality in an evolutionary context. Because it

provides a means of linking social behaviour across all

levels of organization, network analysis is increasingly

central to many fields of biology and is quickly becoming

the most commonly used approach for describing the

structure of social relationships in a broad range of taxa.

In this paper, we focus on the application of social net-

work analysis to non-human animal data (see Fig. 1 &

Table 1). Sections ‘Overview of Network Analysis’

through ‘Data collection methods’ outline the motivations

for performing network analyses and give advice on defin-

ing what the network represents and collecting data. Sec-

tions ‘Inferring associations from data’ and ‘Displaying

social structures’ provide the information required to

decide how to infer edges, calculate the value of each edge

and display the resulting network. Section ‘Interpreting

network metrics’ introduces different network metrics and

what to consider when interpreting their values and distri-

butions. Section ‘Constructing null models’ explains how

null models and permutation tests can be used to conduct

robust statistical testing. Section ‘Hypothesis testing in

animal social networks’ details a number of current and

future approaches for hypothesis testing in animal social

network analysis. Section ‘Estimating power and preci-

sion’ provides guidelines for estimating the power and

precision of an observed network and background on dif-

ferent sources of bias. Section ‘Remaining challenges and

future directions’ discusses future directions that we

believe will provide new insight into animal social net-

works. This paper is accompanied by appendices contain-

ing worked empirical and simulation examples using R.

Because animal social network analysis has become a

broad field of research, interpretation of network data is

dependent on the definitions and assumptions used in

each individual case. Our aim is to introduce the process

of studying social behaviour using social network analysis

by providing a synthesis of the approaches and considera-

tions that are common to most studies (see Box 1). This

topic is considered at greater length in the books by

Croft, James & Krause (2008) and Whitehead (2008), but

there have been recent advances, especially in the auto-

mated collection of very large data sets and in the devel-

opment of analytical tools to tackle the novel challenges

associated with generating networks from tracking data.

The application of social network analysis across different

domains of animal biology is discussed with greater detail

in the chapters of the book edited by Krause et al. (2015).

Overview of Network Analysis

what is a network?

The term ‘network’ can mean different things to different

people. It can refer to the ‘real’ set of interactions between

animals that integrate to form community dynamics.

Hinde (1976) defined social structure in terms of the nat-

ure, quality and patterning of the relationships among its

members, where a relationship between two individuals

integrates the content, quality and patterning of their

interactions. For example, animals might have genetic,

affiliative, agonistic, cooperative, dominant and many

other types of relationships that combine to form the

‘true’ social system (Barrat et al. 2004). We can call this

the real network.

Most commonly, the networks that biologists create are

analytical representations of a combined set (or subset) of

measures of the true relationships. We can call these the

observed networks. To make a simple analogy, consider

that for many decades, biologists could only infer genetic

structure from observed parent–offspring relationships.

Researchers could only obtain the true underlying genetic

relationships of a population (or pedigree which is a type

of network), once DNA paternity testing was developed.

In this paper, we generally use network as a description

for the observed patterns of associations or interactions.

We use network analysis as the framework of analytical

approaches that use observed networks to try and

Fig. 1. Primary steps and key considerations in the collection and analysis of animal social networks (see also Table 1).
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describe and visualize the real network, as well as to test

hypotheses about biological phenomena related to social

behaviour. For a broader perspective on this question, we

point readers to Borgatti & Halgin (2011).

network structure

Networks consist of nodes connected by edges. Nodes can

represent individuals, groups, classes of individuals or

other entities. Each node can possess attributes, such as

the identity and phenotypic traits of the individual it rep-

resents. Edges generally represent how two nodes relate to

one another, and can be used to describe how frequently

they associate or interact, or to describe other relation-

ships (such as genetic relatedness, see Section ‘Data collec-

tion methods’). They often have numeric values (weighted

edges), describing the strength of the relationship (e.g.

rates or numbers of interactions), although it can some-

times be useful to conceive of edges as binary (either 0 or

1) indicating the presence or absence of a relationship

(e.g. whether a male–female pair have copulated or not,

McDonald et al. 2013). Nodes and/or edges may also

vary temporally, allowing network structure to change

dynamically over time (these are termed dynamic

networks, see Section ‘Inferring associations from data’).

why quantify networks?

Early applications of social network methods, such as

those in dolphins (Lusseau 2003) and guppies (Croft,

Krause & James 2004), were largely descriptive. These

often investigated variation in social roles (Lusseau &

Newman 2004) and phenotypic structure in populations

(Croft et al. 2005). More recently, the power of the net-

work approach has been clearly demonstrated by two

types of studies: those describing potential fitness conse-

quences related to network position, and those investigat-

ing the spread of information and disease through animal

Table 1. Overview of key considerations in each step of network analysis (see also Fig. 1). In addition to the key references, both White-

head (2008) and Croft, James & Krause (2008) cover these topics in detail

Step Important consideration Key references

Collecting data 1. What is being observed?

1a. Associations/Gambit of the group?

1b. Interactions between individuals?

2. What data sampling method to use:

focal follows, group follows, all-event?

3. Is there observation error or bias?

General methods: Whitehead (1997), Whitehead & Dufault

(1999), James, Croft & Krause (2009).

Sampling methods: Altmann (1974)

Gambit of the group: Franks, Ruxton & James (2010)

Building the network 1. What is the biological definition of

an edge in the network?

2. What is the sampling period?

3. Is there any observation bias that

can be controlled with the association index?

4. Are edges directed or undirected?

Edge inference: Psorakis et al. (2012).

Association indices: Cairns & Schwager (1987).

Affiliation indices (Whitehead & James 2015)

Dynamic networks: Blonder et al. (2012), Hobson,

Avery & Wright (2013),Pinter-Wollman et al. (2013).

Hypothesis testing 1. What is the question?

2. What is the null hypothesis?

3. Is it potentially true?

4. What needs to be controlled for?

5. What test statistic(s) should be used?

6. Does the network need to be compared to

randomized networks?

6a. What type of randomization is required?

7. Present effect size statistics.

General considerations: Croft et al. (2011b).

Randomizations: Manly (1997), Bejder, Fletcher & Brager

(1998), Whitehead (1999) Whitehead, Bejder & Ottensmeyer

(2005), Sundaresan, Fischhoff & Dushoff (2009).

Box 1. Key Points

• Match data collection, and node and edge defini-

tions to the biological questions.

• Determine whether edges will be weighted or bin-

ary, and directed or undirected.

• Calculate significance by comparing observed

results to a distribution of test statistics generated

using permutation tests.

• Avoid thresholding the network.

• Ensure that the scale of data collection appropri-

ately captures the biological process.

• Use appropriate sampling period for each analysis

• Maximize the number of observations per individ-

ual (and consider the potential trade-off between

sampling rate and number of individuals in the

study).

• Avoid using network-level metrics unless a high

proportion of individuals in the population are

identified.

• Consider and control for potential confounding

effects generated by other social processes and the

method of data collection.

• Keep individuals in the same order in all data used

for analysis (attribute data are ordered the same

as the rows/columns in the adjacency matrix).
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networks. Network studies can thus be placed into four

broad categories: (i) description of social structures (e.g.

Connor, Heithaus & Barre 2001; Wittemyer, Douglas-

Hamilton & Getz 2005); (ii) studies of the causes and con-

sequences of individual variation in network position –
where ‘network position’ refers to the structural properties

that arise as a consequence of an individual’s phenotype

or patterns of sociality (e.g. McDonald 2007; Pike et al.

2008; Oh & Badyaev 2010; Aplin et al. 2013); (iii) studies

of social processes and the implications of network struc-

ture for dynamics of information (e.g. Boogert et al.

2008; Aplin et al. 2012, 2015; Allen et al. 2013) and dis-

ease or parasite spread across networks (e.g. Godfrey

et al. 2009; Hamede et al. 2009; Fenner, Godfrey & Bull

2011; Bull, Godfrey & Gordon 2012; MacIntosh et al.

2012; Brockmann & Helbing 2013; VanderWaal et al.

2013a,b); and (iv) relationship between environment and

network structure (Edenbrow et al. 2011; Webster et al.

2013; Firth & Sheldon 2015; Pinter-Wollman 2015) and

vice-versa (Oh & Badyaev 2010; Formica et al. 2011; Shi-

zuka & McDonald 2012; Farine & Sheldon 2015). The

first category of studies deals with visualizing and describ-

ing the natural world (network diagrams and statistics are

more easily assimilated by the human brain than raw

matrices of association measures). The second category

deals with individual traits and provides a framework for

quantifying individual position within a broader social

structure. The third focuses on the interplay between

social dynamics, interaction patterns and socially medi-

ated flows, where networks provide a unique ability to

integrate the dyadic nature and non-uniform structure of

social relationships when modelling social processes. The

last focuses on the external factors that shape network

structure, how network structure can alter individuals’

environments and to what extent individuals can shape

aspects of their environment.

Network approaches also have the potential to charac-

terize emergent properties of social organization. A classic

paper by Granovetter (1973) highlighted the potential

importance of weak ties (connections that are rarely

made) for connecting otherwise disparate groups or com-

munities, in turn shaping their higher-level structure. The

idea that societies can have properties that are a function

of their overall structure (i.e. emergent properties), rather

than of individuals themselves, has stimulated a substan-

tial body of theoretical research into the link between net-

work structure and social processes, in particular the

spread of disease or information (e.g. Newman 2002;

Keeling 2005; Shirley & Rushton 2005; May 2006; Bansal,

Grenfell & Meyers 2007; Perkins et al. 2009; Volz et al.

2011; Hock & Fefferman 2012; Whitehead & Lusseau

2012; Ashby & Gupta 2013). Many of these studies used

analytical mathematical models, and this approach that

has made a large contribution to our understanding of

the emergent properties of networks.

Network analysis provides a common framework for

studying emergent processes in animal societies. For

example, many animal populations exhibit fission–fusion
dynamics, which can emerge under a range of ecological

pressures (Aureli et al. 2008). In such populations, the

patterns of associations can often appear random. How-

ever, social network analysis can elucidate whether pat-

terns of connections between phenotypes (i.e. assortment

in the social network) are non-random (Farine et al.

2015b). Because such processes may play a role in shap-

ing how selection drives the evolution of social species,

future efforts will benefit from a focus on the following:

(i) the process of self-organization and orderliness in

social networks, (ii) what interactions (including affilia-

tive, genetic, mating and spatial networks) underlie

dynamic processes in social networks (such as transmis-

sion properties) and (iii) whether network structure can

evolve in response to selection pressure (both ecological

and social).

Defining network edges

defining relationships (edges)

The first consideration when setting out to collect or anal-

yse network data is to define the relationships represented

by edges in the network. Castles et al. (2014) highlight the

importance of carefully considering the edge definition, as

networks based on different edge definitions may not be

equivalent. Ideally, the definition of network edges will be

motivated by the biological process being investigated and

edge definitions should be based upon how the animals

interact and communicate. For example, studying the

spread of a sexually transmitted disease requires edges

that represent sexual contact. However, the technical limi-

tations associated with collecting the data (i.e. the chal-

lenges of collecting sufficient data to generate robust

estimates for a network given a specific edge definition or

of studying replicate networks) must also be considered.

Researchers should strive to measure the complete set of

interactions (context-specific events, such as grooming or

fighting) for each dyad (two individuals that could poten-

tially be connected by an edge). These may need to be

captured using more than one network, for example one

network to capture affiliative interactions and a separate

network to capture agonistic interactions. However, many

studies are limited to capturing information about the

spatial and temporal co-occurrences of pairs of individu-

als, which are called associations. If interactions are rare

or difficult to observe (e.g. they occur underwater), then

association networks could provide a more precise esti-

mate of interaction rates by avoiding having many false

negatives: interactions that occurred but were not or

could not be observed (Farine 2015). Avoiding false nega-

tives is important because the absence of even a few edges

can significantly impact the global structure of the social

network (Fig. 2 demonstrates the effects of removing

weak edges). Furthermore, associations (such as co-mem-

bership in groups) can sometimes better represent animal
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relationships than dyadic interactions. For example, they

capture a broader range of interactions which better reflect

the social environment, and therefore more appropriate

when investigating broad-scale patterns (such as measuring

social selection, Farine & Sheldon 2015). Thus, when defin-

ing edges and how edge weights are calculated (Section ‘In-

ferring associations from data’), we recommend addressing

the following questions. (i) How can the edges be made

most relevant to biological process being studied? (ii) Can

enough data be collected to accurately capture different

relationships and the overall structure of the population

(Section ‘Estimating power and precision’)?

edge weights and directionality

Edge values represent either the presence or absence (a

binary network of 0s or 1s), or a numeric value describ-

ing the strength of the relationship or the number of

interactions (a weighted network). Associations are gener-

ally symmetrical, but in many cases, interactions are not

(i.e. individual A groomed individual B 10 times, but B

only groomed A twice). Thus, edges can be either undi-

rected (these are represented by at most one edge between

each pair of nodes) or directed (represented by at most

two edges – one in each direction). How to calculate edge

weights is discussed in Section ‘Inferring associations

from data’.

Data collection methods

collecting interaction data

Numerous types of data can be used to construct social

networks (see Chapter 3 of Whitehead 2008). A first

requirement is that a substantial portion of the individuals

(or each unit representing a node) in the population are

uniquely identifiable. Methods for identifying individuals

include using naturally occurring individual variation in

coloration or morphology (W€ursig & Jefferson 1990),

marking individuals to make them individually identifiable

(e.g. with colour-bands McDonald 2007; Farine & Mil-

burn 2013), or electronic tags that provide information

about the location or relative distance between individu-

als. In addition to having individually identifiable study

subjects, network analysis requires data on interactions or

associations. Altmann (1974) outlined protocols for

assembling raw data from direct behavioural observa-

tions, particularly focal observations, that are very rele-

vant for animal social networks (see also Chapter 3 of

Whitehead 2008).

One method frequently used to capture associations is

the ‘gambit of the group’ (see Franks, Ruxton & James

2010). Gambit of the group defines all individuals within

a group of animals observed at a point in time as being

associated. Thus, association rates (see Section ‘Inferring

associations from data’) represent the propensity for each

pair of individuals to co-occur in the same group. The

fundamental assumptions of the gambit of the group are

that all, or almost all, interactions of some kind take

place within groups and that interactions of this type

occur at a similar rate among all animals when they form

groups (Whitehead & Dufault 1999; Farine et al. 2015, or

that the group itself is meaningful to the animals. This

method is particularly useful when groups of animals can

be easily observed, and group membership changes over

time (Silk et al. 2015).

automated techniques for collecting data

Technological advances in animal tracking are rapidly

increasing the amount of data collected, both in the labo-

ratory and in the wild (Krause et al. 2013). Methods

include using videos to record the position of individuals

(e.g. Strandburg-Peshkin et al. 2013), fitting tags (e.g. Pas-

sive Integrated Transponders or PIT tags) to individuals

to make them detectable when they come in proximity to

logging stations fitted with antennae (e.g. Farine & Lang

2013), fitting global positioning system (GPS) devices to

many individuals to capture their movements relative to

one another (Godfrey et al. 2014; Strandburg-Peshkin

et al. 2015) and fitting devices that record when individu-

als are within a certain proximity of one another (Hamede

(a) (b) (c) (d) (e)

Fig. 2. Thresholding networks can have significant impact on the structure and statistical properties of a network. (a) This network of

bottlenose whales (Hyperoodon ampullatus), based on observations of groups of animals made at sea off Nova Scotia from 1988 to 2003

(see Gowans, Whitehead & Hooker 2001 for methodology), was calculated using the half-weight index (hwi), to account for potentially

missed observations of individuals in groups. This network was then thresholded at (b) half the mean hwi, (c) at the mean hwi (d) and

at twice the mean hwi. Nodes are coloured by community (detected using leading eigenvector communities; Newman 2006) and sized by

their degree (strength in the original network, binary degree in the others). This figure highlights how thresholding can lead to unpre-

dictable results, such as individual ‘x’ changing communities, and varying relationships between node properties (such as correlations

between node measures, e). For example, the correlation of individuals’ rank in terms of strength between the networks (a) and (b) is

only 0�57, and the relationship has an R2 of only 0�28.
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et al. 2009; Rutz et al. 2012). With electronic tags and auto-

mated data collection, complete or nearly complete records

of the associations among members of a population are

sometimes available (e.g. Boogert, Farine & Spencer 2014).

These technologies are typically limited to creating associa-

tion (or proximity) networks, thus inferring interactions

rather than capturing them explicitly. However, the amount

and completeness of the data available can result in a high

degree of certainty around the estimates of when individu-

als could have associated, despite providing little or no data

on any one potential interaction.

attribute data

The attributes of individuals, typically consisting of phe-

notypic traits or details about individual state, are a vital

part of social network analysis. One aim of social network

analysis is to determine how sociality, or the relationship

between sociality and fitness, is mediated by individual

traits. Multiple traits can be captured as attributes of each

node in the network, such as age, sex, size or breeding

status. Some attributes may be central to the research

questions, while others may be recorded because they may

have an impact on an individual’s network position that

needs to be controlled for in subsequent analyses (see

example in Thresholding edges or individuals in the follow-

ing section).

Inferring associations from data

the adjacency matrix

The most fundamental data structure in animal social net-

work analysis is the association or adjacency matrix. This

is an N x N matrix, where N is the number of individuals

in the study, and each cell contains the value of an edge in

the network that represents associations or interactions.

Typically, the matrix is read as the ‘actors’ along the rows

associating or interacting with the ‘receivers’ along the col-

umns, so that the presence/weight of the edge between

individual A and individual C can be found on the first

row and third column. If the network is undirected, then

the matrix will be symmetrical (edge A to C is equal to

edge C to A). The diagonal of the matrix contains the

‘self-edges’, or the number of associations/interactions an

individual has with itself. These are rarely used in animal

networks where nodes are individuals, but can be used in

networks where nodes represent other properties such as

location or the agglomeration of a number of individuals,

such as species (Mokross et al. 2014).

calculating edge values from observational
data

Once data have been collected on the interactions or asso-

ciations in the study population, pair-wise observations

can be converted into edges to populate the adjacency

matrix. For interaction data, the relationship measure is

often the total number of interactions observed between

each pair of individuals. If the number of observations (or

total time) differs between individuals, then the relation-

ship should reflect the rates at which interactions occurred

(dividing by observation time, see Farine 2015).

Association indices can be used to define edges in the

network (Cairns & Schwager 1987). They typically esti-

mate the proportion of time individuals that are associ-

ated and range between 0 and 1, where 0 indicates that

they never associate, and 1 indicates that the dyad was

always together. If observations are rarely missed, then

the simple ratio index can be used. Here, the edge weight

is calculated using: EAB ¼ x
xþyABþyAþyB

; where the undi-

rected edge weight between individuals A and B is the

number of samples or sampling periods where they co-

occurred (x) divided by the number in which one or both

were identified (yAB) is the number of times both A and B

were observed in the same sample but not together, yA is

the number of samples where only individual A was seen,

and yB is the number of samples where only B was seen).

If individuals are frequently missed (when they should

have been observed), then the half-weight index

ðEAB ¼ x
xþ yAB þ 1

2 ðyA þ yBÞÞ can provide a less biased estimate

of the real rate of association. Whitehead (2008) provides

a comprehensive list of association indices (table 4�5, page
98) with extensive discussion and examples of their useful-

ness when dealing with different types of sampling bias

(table 4�6, page 99). Table 2 provides an overview of some

useful software packages to help generate networks, and

Supporting Information Appendix S1 provides an over-

view of different formats to store social data.

inferring edge values with automated data
collection

As with observation data, edges should ideally be derived

from automated data based on how the species interacts

and communicates. If animals reliably interact with one

another at ranges less than a particular cut-off, this can

be used to define association. However, the scale at which

associations are maintained can vary over short periods

of time as a consequence of different social or environ-

mental contexts. For example, imagine a system with two

pairs of birds holding neighbouring territories. When the

two groups are well separated from each other (say

200 m), individuals in each group could be a relatively

large distance apart from each other (say up to 20 m) and

still remain in contact (e.g. acoustically). If the two

groups come into territorial conflict, individuals within

each group might be very close to each other (say within

1 m), but also very close to the individuals from the other

group (say within 5 m). In this example, a fixed threshold

of 10 m would introduce both false positives and false

negatives into edge data representing spatial associations.

This same issue arises when recording visits by PIT-tagged

individuals at feeders. In particular, the amount of time a
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flock spends at a feeder can vary greatly based on the

flock size. In both temporal data-stream and spatial prox-

imity networks, we should not impose arbitrary thresholds

if these are not clearly defined by the biology of the sys-

tem (a good example is Hamede et al. 2009). Instead, if

groups are defined as individuals being closer to each

other than to others, then clustering algorithms are a

useful approach.

In behavioural observations, we often implicitly define

groups as sets of individuals that are closer or interact

more within themselves than they do with others. Cluster-

ing algorithms, such as Gaussian mixture models (Pso-

rakis et al. 2012), can extract such patterns from

spatiotemporal data. These algorithms statistically infer

the best-fitting temporal boundaries of groups based on

the data rather than relying on a fixed inter-group or

inter-individual visit interval. The results are often more

robust than traditional methods at capturing biological

interactions (Psorakis et al. 2015).

associations and affil iat ions

Using association indices as edge weights produces a net-

work that represents the pattern of association among

individuals. Sometimes we are more interested in affilia-

tions (individuals actively associating with other individu-

als) and wish to remove other causes of association

patterns, such as spatial and temporal overlaps. General-

ized affiliation indices are the residuals after regressing

association indices or other measures of association (or

interaction), on potential structural predictors of associa-

tion, thus isolating true affiliations using a generalized lin-

ear model (Whitehead & James 2015). These generalized

affiliation indices then form the adjacency matrix for a

network analysis aimed at true affiliations.

thresholding edges or indiv iduals

Thresholding involves either removing individuals with

few observations or converting a weighted network to

binary by only counting values above or below a certain

value. An example of the latter is Croft et al. (2009), who

used both high and low thresholds to investigate assort-

ment by behavioural type. However, choosing an appro-

priate threshold may be problematic, and different

threshold values can lead to different conclusions in the

same network (see Fig. 2). Thresholding networks has

been found to generate high rates of both type I and type

II errors (Butts 2009; Langer, Pedroni & Jancke 2013;

Farine 2014) than using the original weighted network,

and should always be applied with caution. Thus, apply-

ing a threshold to an association index or interaction rate

is usually not recommended other than for displaying net-

works (Franks, Ruxton & James 2010).

For some purposes, it is useful to remove individuals

for whom there are few data. Edges connected (or not

connected) to rarely observed individuals may be very

inaccurate. As a result, network metrics measured for that

Table 2. Key software packages for creating and analysing social networks

Name Pros Cons Key references

UCINET/NETDRAW Fully integrated point-and-click analyses

Wide range of hypothesis testing tools

Extensive documentation and help files

Easily implemented network diagrams

in NETDRAW

Requires adjacency matrix

Only node randomizations

Graphs are not vectorized

Only available in Windows

Borgatti, Everett & Freeman

(2002), Borgatti, Everett & Johnson

(2013)

SOCPROG Fully customized for animal

social networks

Generates adjacency and generalized

affiliation matrix from data

Extensive range of tests tailored to

biological questions

Calculates and fits models to lagged

association rates

Available as stand-alone package or as

functions in MATLAB

Free on all platforms (but see Cons)

Output formats compatible with

UCINET and NETDRAW

Detailed plotting functions

available only with MATLAB.

Compiled version only

available in Windows

Non-compiled version requires

MATLAB and Statistics Toolbox

Whitehead (2008, 2009)

R Extremely flexible

Packages provide most possible tests and

network measures

Animal network-specific routines available

Simple support for dynamic networks

Integration of almost every possible

statistical test

High-quality plotting (including GIS

functionality)

Free on all platforms

Steep learning curve

Requires careful management

of variables

Requires some knowledge of

software coding (see

appendices of this paper)

Animal networks asnipe: Farine

(2013a)

Network metrics: igraph :

Csardi & Nepusz (2006), sna: Butts

(2008)

Dynamic networks: time ordered:

Blonder et al. (2012)
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node are unlikely to represent the true state or behaviour

of the individual. This could, at worst, impact the value

of every other node in the network when using global net-

work measures. Thresholding nodes’ data should be con-

sidered on a case-by-case basis, but the impact of

removing individuals may be smaller than the impact of

having spurious edge values. A good example of thresh-

olding individuals based on properties of the data is Aplin

et al. (2013) who removed individuals with fewer than 100

observations as these exhibited a clear relationship

between number of observations and the binary degree.

In contrast, no such relationship existed for individuals

with more than 100 observations.

creating temporal networks

There are two principal types of temporal networks, time-

ordered and time-aggregated networks (Blonder et al.

2012). In a time-ordered network, each edge is encoded

with start and end times, capturing the complete set of

information about when edges (i.e. interactions/associa-

tions in social analysis) occurred and their duration, and

so what edges co-occurred. Such time-ordered data can be

used to map the topological flow of information or patho-

gens through networks when the ordering of interactions

or associations are considered to be important (Blonder &

Dornhaus 2011). Blonder et al. (2012) provide a useful R

package time ordered to perform some analyses on these

types of networks.

Time-aggregated networks, in contrast, maintain the

same form as regular aggregated networks (an adjacency

matrix). Here, a new network is calculated for each time

slice, such as for every sampling event, week, month, season

or year. Creating these networks is relatively simple as they

only require the input data to be subset for each period.

Finally, a useful measure of temporal stability is the

lagged association rate (Whitehead 1995). This measure

calculates the probability that a given dyad is re-observed

after a given time period. This can be estimated at the

network level, for different classes of individuals, or at the

dyadic level. The lagged association rate is useful for

describing and modelling the temporal scales over which

social behaviour processes operate, or for comparing how

these differ between different classes of individuals (e.g.

Aplin et al. 2013).

Displaying social structures

network diagrams

Network diagrams, formally called graphs, allow us to

visualize social connections and the overall structure of

the network. Nodes, usually individuals, can be repre-

sented by shapes (circles, squares) of different colours

used to represent attributes, such as sex, class or gregari-

ousness. In an undirected network, with a symmetric adja-

cency matrix, edges are usually drawn as a single line

between each node. Relationships in a network that are

directed are represented by edges with an arrow pointing

in the direction of the interaction. In binary networks,

edges are displayed (1), or not (0), whereas the thickness

of the line is typically made proportional to the strength

of a dyad’s association in weighted networks. Weak edges

can be omitted from the diagram to aid clarity (see Sec-

tion ‘Inferring associations from data’ on thresholding).

In Table 3, we provide information on some of the avail-

able software packages for visualizing social networks.

community delineation

Some social networks are highly modular – the nodes

form communities such that most edges (in a binary net-

work) or a high proportion of the edge weight (in a

weighted network) is within rather than between commu-

nities. Identifying such communities – sometimes called

clusters or social units – is not trivial. Many techniques

have been developed by both statisticians and network

analysts, but the Newman (2006) eigenvector modularity

technique is often used with animal social networks and

usually works well. Many others are also available, and

most of these are implemented in the R packages listed in

Table 2. Also popular is hierarchical cluster analysis in

which communities are embedded within one another,

and the results are displayed using a tree-like dendrogram

(Whitehead & Dufault 1999). This can be an excellent

representation of the social network if the society does

actually consist of a hierarchically embedded set of social

tiers (e.g. Wittemyer, Douglas-Hamilton & Getz 2005),

which community detection algorithms typically fail to

detect. If not, dendrograms may be highly misleading

(Whitehead 2008).

Interpreting network metrics

types of network metrics

Network metrics are statistical measures used to character-

ize properties of individuals (nodes) or the whole network.

Table 3. Other useful software

Type Name References

Visualizing

networks

GEPHI Bastian & Heymann (2009)

GRAPHVIZ Gansner & North (2000)

CYTOSCAPE Shannon et al. (2003)

SONIA Moody, McFarland & Blender-

deMoll (2005)

TULIP Auber (2004)

NETDRAW Borgatti (2002)

R package

IGRAPH

Csardi & Nepusz (2006)

Collecting data J-WATCHER Blumstein & Daniel (2007)

Calculating

dominance

hierarchies

MATMAN de Vries, Netto & Hanegraaf

(1993)

CODAREADER Adams (2005)
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Most measures are node based; they calculate a separate

value for each node. Others, such as density, measure glo-

bal network properties. A final type of metric are edge met-

rics (e.g. bridges, edge betweenness), but these are rarely

applied to animal social networks and not covered further.

Almost all network metrics can be expressed/defined either

as a weighted measure or as a binary measure. For exam-

ple, the most common nodal measures used in network

analysis are binary degree and strength, which are the sum

of the number of edges each node has or of all the edge

weights connected to it, respectively. The average or distri-

bution of the measures can be used to describe more general

properties of the social structure. For example, one of the

fundamental properties of networks is the degree distribu-

tion (see pp. 243–260 in Newman 2010).

We give definitions of some of the most commonly used

network metrics in Box 2, Newman (2010) provides

detailed accounts of many more, and Borgatti (2005) pro-

vides detailed a detailed account of their appropriate use.

Network metrics can easily be calculated in most network

analysis programs, including SOCPROG (Whitehead 2009)

and UCINET (Borgatti, Everett & Freeman 2002). Further,

there are some excellent libraries in R (R Development

Core Team 2013), in particular IGRAPH (Csardi & Nepusz

2006) and SNA (Butts 2008) which calculate almost all

common network algorithms (see Table 2).

interpretation of network metrics

Studies use network metrics to estimate differences

between individuals in their placement within a social net-

work. In animal networks, the most common are based

on measures of centrality. This generally refers to individ-

uals that are broadly more (or more strongly) connected

than others. We recommend caution when interpreting

network metrics, as these depend on both the measure

used (e.g. degree vs. betweenness) and the edge definitions

(e.g. rates vs. number of interactions), and on how the

population is structured (e.g. if a population is structured

into communities, metrics calculated within a single com-

munity may be very different from those calculated for

the entire population). For example, the strength

(weighted degree) of individuals in a network with edges

defined as association indices defined using group mem-

bership is roughly proportional to their average typical

group size (Jarman 1982). In contrast, the strength of a

node in a network using counts as edge values simply rep-

resents the total number of interactions observed from

that individual. Box 3 provides an example of how the

network structure can impact the interpretation of sets of

centrality metrics. Because the metric can have different

interpretations on different social networks, we recom-

mend visualizing the structure of the network and the cor-

relation structures between different metrics. We also

discuss why comparing metrics across different networks

is also problematic in Section ‘Remaining challenges and

future directions’.

Constructing null models

what are null models?

Null models are data sets that are based on observed

data, but generated in a way that allows some aspects of

the data to be random. This can involve generated new

data using simulations inspired by the observed data (e.g.

creating random networks with the same degree distribu-

tions), but more commonly involve shuffling existing data

to create expectations of random given certain constraints.

Many potentially realistic null models can be tested using

social network analysis. For example, one null model

might assume that individuals have no preferred affiliates

given their spatial and temporal use of the study area, or

another that there is no tendency of males to preferen-

tially associate with other males given the overall gregari-

ousness profiles of members of each sex. Note the ‘given

. . .’ clauses – these are what make hypothesis testing on

social networks so challenging. Hypothesis testing on net-

works generally relies on null models constructed by ran-

domizing the data. The key issue is whether the null

model actually represents the biological null hypothesis

being tested.

using null models accounts for non-
independence

A key consideration when applying a statistical test to a

social network is non-independence in the data. Network

measures are inherently non-independent and thus violate

the assumptions underlying most parametric statistical tests

(Croft et al. 2011b). In particular, each association index is

shared by two individuals. This results in over-inflation of

the degrees of freedom used to calculate significance (see

Appendix S2 for an example). Randomizations are the

most widely used approach to control for non-indepen-

dence (Croft, James & Krause 2008; Whitehead 2008; Croft

et al. 2011b). One strength of randomizations is that they

can be integrated with almost any statistical test.

Another source of non-independence is temporal struc-

ture. For many analyses, the assumption is that different

samples of data (i.e. observations) are independent. Because

of the persistence of associations and the autocorrelation of

interactions, this is often not the case. For example, data

collected by following a focal animal for a defined period of

time will be pseudo-replicated. Using sampling periods,

where data is aggregated to generate independent samples,

is one way of reducing the effects of temporal partitioning

(e.g. by placing all data from one focal follow into one sam-

pling period). Lagged association rate analyses (Whitehead

1995) can help determine a suitable sampling period for

which subsequent samples can be considered independent.

Null models are useful for dealing with this issue by ran-

domizing blocks of pseudo-replicated data, thus generating

a realistic null distribution when estimating significance

with statistical tests such as regressions (see next section).
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Box 2. Common network metrics

B = binary only, W = weighted only, BW = weighted and binary networks.

Node-level metrics

Degree (B): the binary degree is the count of the number of edges connected to the node. If a network is directed,

degree can be the partitioned into in-degree and out-degree, representing the number of incoming and outgoing edges,

respectively. This measure captures the gregariousness of individuals, in terms of the number of associates or interac-

tion partners.

Strength (W): the weighted equivalent of binary degree is the sum of all edge weights connected to the node (if all

edges have a weight of 1, then the strength will equal the binary degree). Strength can also be partitioned into in-

strength and out-strength for directed networks. This measure typically represents the expected total interaction or

association rate per sample. For example, a node with a strength of 2 would be expected to be observed with approxi-

mately two other individuals on average (if using most association indices).

Betweenness Centrality (BW): a count of the number of shortest paths that flow through the node. This measures

how important a node is for connecting disparate parts of a social network. Individuals with a high betweenness cen-

trality are likely to connect largely independent communities. This often highlights individuals that have a greater ten-

dency to change groups than others.

Eigenvector Centrality (BW): the sum of the centralities of an individual’s neighbours. High centrality can be achieved

by having either a large degree or being connected to associates with a high degree (or both). This is a useful property

as it captures the potential ‘importance’ of individuals in the network, as social hubs, or for the propagation of infor-

mation or diseases through animal populations.

Page Rank (BW): a robust measure of centrality for directed networks that divides the centrality gained through asso-

ciates by the associate’s out-degree. This means that very central nodes only pass on a small amount of centrality to

each node that is connected to them, thereby controlling the measure of eigenvector centrality for long tails in the

degree distribution. Individuals with a large page rank are disproportionately important for connecting different com-

ponents of the network, and this measure is likely to be important when investigating flows through networks.

Reach (BW): Measure of what proportion of all other nodes can be reached in one step, two steps and so on. This is

the equivalent of calculating how much of the network is in ‘n degrees of separation’. This measure has not been

explored much in animal social networks, but could be useful for investigating differences in social structure, or impli-

cations of changes in social structure, when conducting experiments (such as removals of key individuals). It is also

likely to be interesting in models of disease or information transmission in order to estimate how quickly most indi-

viduals in a population can become infected/knowledgeable.

Network-level metrics

Density (BW): the number of edges in a network divided by the total possible edges (B), or the sum of edge weights

divided by the number of possible edges (W). A potentially important measure for normalizing observed degree distri-

butions as larger networks tend towards very low densities.

Homophily/Assortativity (BW): the correlation in the phenotype of connected individuals. Positive assortment suggests

that nodes are more connected than expected, whereas negative assortment suggests avoidance of alike nodes. This

can now be measured on weighted networks and is a powerful approach for identifying phenotypic structure in social

networks. For example, positive assortment by degree (gregariousness) has been linked with rapid spread of informa-

tion or disease through social networks.

Transitivity (BW): the proportion of triads (trios of nodes) that have three edges divided by the number of triads that

have two edges. When compared to null models, this identifies whether trios have a tendency to be more or less con-

nected than expected. This is potentially an important measure, particularly when measuring interactions, as it cap-

tures the level of clustering in the network. For example, grooming networks may have low transitivity if grooming is

directed up or down a linear hierarchy. Transitivity can be measured for nodes as well as at a network level. However,

care should be taken if using the gambit of the group approach to capture associations, as this automatically closes

triads (but the impact of this remains unexplored).
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randomization techniques

Data randomizations use the observed data to generate

replicated data sets, where each replicate is a shuffled ver-

sion of the original data (Manly 1997). In each step in the

randomization, a new network is created with the same

nodes as the original, but with randomized edges based

on assumptions about relationship under investigation.

Repeating this process many times creates a distribution

of values that represents the expected relationship under

the assumption of the null hypothesis. The process of

defining a null model (how the data will be shuffled)

involves keeping certain aspects of the data the same dur-

ing each randomization step. This has two functions: it

controls for particular factors that could influence the

data (such as the number of observations of each individ-

ual or the spatial distribution of individuals), and it pro-

vides a framework that facilitates the comparison of

different hypotheses (Gotelli & Graves 1996). A common

null model is to randomize who associates with whom,

but to restrict swaps between pairs of individuals observed

in the same location at the same time. Significance is then

estimated by comparing the observed statistic to the dis-

tribution of same test statistics measured on the random-

ized networks. We provide an overview of how to

integrate randomizations into hierarchical models in

Box 4, and worked examples in Appendix S2.

There are two main approaches to building null models

for animal networks: node-based randomizations and data

stream-based randomizations. Node-based randomizations

involve entirely re-distributing the attributes of the nodes

in the network, while maintaining the same number of each

type, when creating each random network (Croft, James &

Krause 2008; Whitehead 2008; Croft et al. 2011b). This

randomization is often used to test for differences in net-

work position between nodes with different attributes (do

males have more associates?). It is simple to implement as

it relies only on the adjacency matrix. However, this cannot

control for parameters other than the number of individu-

als of each type. Further, it relies on the assumption that

the observed network is a strong representation of the true

network (Croft et al. 2011b), and has the potential for

much higher rates of type I and type II errors than random-

izations based on shuffling the data stream (Farine 2014).

Box 3. The effect of network structure on network metric correlations

The structure of the network can impact the correlation between different measures of centrality. While in many

cases, centrality measures might capture the same biological processes, in some other cases, these might differ. In

Box 3 (Figure), we present two toy networks. The first (a) contains two clusters joined by a single individual. In this

network, node 1 provides a bridge between the two clusters, and it has a high betweenness (b). However, node 1 has

the lowest degree. Thus, if we were to investigate dynamics of spread, betweenness might provide a better estimate of

relative node importance. The second network (c) contains individuals that are more uniformly connected. Individual

1 in this network has both the highest degree and, by far, the highest betweenness. VanderWaal et al. (2014) devel-

oped a metric called cut point potential (the potential for individuals to disconnect parts of the network if they are

removed) to disentangle the effects of degree from betweenness, and this may warrant more widespread use. In both

networks, eigenvector centrality and page rank are both strongly correlated with degree (a rank correlation close to

1), whereas clustering coefficient is not (and rarely is). Thus, when interpreting the relative importance of nodes in a

network, the relationships between different network metrics may be informative. The node-level ratio of network

metrics could also be useful (such as the ratio of degree to betweenness), though to our knowledge, this has not been

explored.
(a) (b)

(c) (d)
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Permutations of the data stream involve sequentially

swapping observations between individuals (Bejder,

Fletcher & Brager 1998). Data-stream permutations can be

used to test the same hypotheses as node-based randomiza-

tions. They can also be used to test for preferred and

avoided relationships, either overall or between specific

dyads. Swaps can occur at the group level (A is moved from

group 10 to group 15, and B is moved from 15 to 10), or at

the dyadic level (groomer A is swapped from grooming C

to grooming D, B is swapped from D to C). This method

is very powerful as it can control for a number of differ-

ent possible confounding effects, such as controlling for

spatial or temporal variation in the presence of individu-

als (Whitehead 1999; Whitehead, Bejder & Ottensmeyer

2005; Sundaresan, Fischhoff & Dushoff 2009), and for

the sampling method by keeping the number of observa-

tions of each individual fixed. We recommend always

using data-stream permutations when possible.

Hypothesis testing in animal social networks

determining if the network is ‘non-random’

Often, we want to test whether a network is more

structured than expected from random. To do so, a test

statistic needs to be chosen that will be used to compare a

Box 4. Incorporating null models into hierarchical models

The application of randomizations is not limited to traditional permutation tests. They can also be used to control for

confounding factors in more traditional tests and calculate appropriate P values. To demonstrate how to calculate P

values in a GLMM using randomizations, we generated a simulated network consisting of 40 individuals from two

different sampling areas (the code is contained in Appendix S3). In this simulation, we started by generating a Pois-

son-distributed gregariousness score for each individual, with individuals in area 2 having slightly higher average gre-

gariousness. We then allocated a sex to each individual, with the probability that an individual is male that is

proportional to the individual’s gregariousness value. Using the rgraph function in the R package sna, we then simu-

lated 100 sampling periods. In each sampling period, the probability that two individuals interacted (had an edge) was

proportional to their combined gregariousness scores (but individuals in different areas did not interact). We then gen-

erated the networks (Figure Box 4a; males red, females blue, node size is proportional to strength) using the simple

ratio index, finding that the degree was higher in males than in females (Figure Box 4b). Fitting the GLMM model,

Strength � Sex + (1|Area) using the lmer function in the lme4 package generated a positive coefficient value (coeffi-

cient � SE = 2�598 � 0�787, t = 3�302, see Box 4 Table 1). To calculate the P value, we then performed 1000 data-

stream permutations (swapping observations in the sampling periods), controlling for time (sample) and space (area).

After each swap, we re-fit the same model but with the strength value of each node calculated from the newly created

(and increasingly random) network: Strengthi � Sex + (1|Area), where i is the current randomization. Comparing

the observed coefficient value (2�598, Figure Box 4c red line) with the distribution of the 1000 coefficient values from

the permutations (Figure Box 4c, black histogram) captured this significance of this difference (Prand = 0�035).

Fixed effects Coefficient Standard error t statistic

Intercept 4�597 0�909 5�062
Sex (male) 2�598 0�787 3�302

Random effect Variance Standard error

Area 0�901 0�953
Residual 5�895 2�428

(a) (b) (c)
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property of the observed data to the same property mea-

sured on a set of randomized networks. This statistic

should represent an aspect of the structure that is

expected to differ between non-random and random net-

works. For example, if individuals have preferred and

avoided relationships, then the standard deviation of their

association strengths should be higher in the observed net-

work than in a network where individuals associate with

others at random (and thus equally). Whitehead, Bejder

& Ottensmeyer (2005) propose different test statistics for

different null hypotheses, such as the lack of short (within

sampling periods) and long (between sampling periods)

preferred relationships among dyads, or uniform gregari-

ousness among individuals. The most easily interpretable

test statistic is the coefficient of variation (CV) of the

association indices. This measure has the added benefit of

solving the problem of presenting effect size, as its values

on the observed network and the mean of the randomized

ones indicate how strong the effect is. To test if the net-

work contains more preferred/avoided relationships than

expected at random, the CV of the observed network is

compared to the CV measured in 1000 or more random-

ized version of the network (see previous section). The

P value is then calculated by taking the number of times

the CV value of the observed network is smaller than a

randomized network, divided by the number of random-

izations (see Ramos-Fernandez et al. (2009) and Mourier,

Vercelloni & Planes (2012) for good examples of this

method being applied).

using network data in l inear and
hierarchical models

Linear models (in particular generalized linear models,

GLMs, and generalized linear mixed models, GLMMs)

are an attractive framework for investigating relation-

ships between an individual’s attributes (phenotype) and

its network position (social network metric). This

approach can easily control for confounding effects aris-

ing from data sampling (e.g. including the number of

observations as a fixed effect or using a binomial model

that includes both the numerator and denominator of the

association index). While GLMMs deal well with

repeated observations made on individuals, they cannot

readily control for non-independence in the network mea-

sures themselves (Snijders 2011). In Box 4, we provide an

example of combining GLMM with network randomiza-

tions. In Box 5, we show how this approach deals with

biases that can easily arise when collecting social data

(see Is there a bias in the data sampling? in Section ‘Esti-

mating power and precision’). When using this method, a

table with the coefficient values, standard error, test

statistic (e.g. t-value) and the P value calculated from the

randomization test can all be reported. The study by

Boogert, Farine & Spencer (2014) is a good example of

this framework applied to testing hypotheses on social

networks.

mantel tests and mrqap

Sometimes we wish to test the hypothesis that association

strength, or interaction rate, is related/unrelated to some

other dyadic measure, such as genetic relatedness or gender

similarity. The Mantel test (Mantel 1967) makes such a test,

usually by means of node-based permutations. There are a

number of nonparametric versions of the Mantel test which

may be appropriate especially with interaction numbers or

rates, which can have high skew (e.g. Hemelrijk 1990). The

matrix correlation coefficient (i.e. the correlation between

the corresponding non-diagonal elements of the two matri-

ces) is a suitable effect size measure for Mantel tests.

Building on the Mantel test, we can test for a relation-

ship between a dependent dyadic variable, such as associ-

ation strength, and an independent variable, such as

genetic relatedness, while controlling for one or more fur-

ther independent variables, such as gender similarity or

home range overlap. In this case, regressions can be per-

formed on the matrix data using a procedure called multi-

ple regression quadratic assignment procedure (MRQAP).

There are several ways that the MRQAP permutations can

be performed, but both theory and practice favour a

recently developed double-semi-partialling technique, which

randomizes the residuals of a regression model rather than

the independent or dependent matrices themselves (Dekker,

Krackhardt & Snijders 2007). Partial correlation coefficients

are suitable effect size statistics for MRQAP tests. The study

by VanderWaal et al. (2013b) is a good example of this

method being used to test the structural similarities between

association and pathogen transmission networks.

Unfortunately, all implementations to date rely on node-

based permutations of the data, and the validity of using

data-stream permutations with MRQAP has not, to our

knowledge, been investigated. An alternative, proposed by

Rushmore et al. (2013), is to fit edge weights into a logistic

mixed-effect model, and this could then be combined with

an appropriate null model (see previous section).

network-based diffusion analysis

An increasing number of studies are investigating the role

of social networks in mediating population-level pro-

cesses, such as the spread of information. Network-based

diffusion analysis (NBDA) is a powerful tool for inferring

the relative rates of social transmission of information in

a social network and rates of individual-based learning

(Franz & Nunn 2009). NBDA uses the order or times

when individuals were observed to have acquired some

information to fit parameters of social transmission and

non-social learning based on their network links to

individuals that already have the information (Hoppitt,

Boogert & Laland 2010). Hoppitt & Laland (2011) pro-

vide a useful manual and R package for using NBDA.

They include details on how to incorporate confounding

effects into the analysis. Farine et al. (2015a) and Nightin-

gale et al. (2015) also provide important extensions to the
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NBDA framework. These deal with the need to compare

competing networks that facilitate diffusion (i.e. different

hypothesized relationships), and with estimating the

uncertainty surrounding the estimation of the independent

network. Because NBDA has an inherent null hypothesis

(no social transmission), it does not need to be combined

with randomizations, although the potential for integrat-

ing alternative null models (such as data-stream permuta-

tions) into this method has yet to be explored. The s, or

rate of social transmission, parameter can be used as an

effect size and reported with 95% confidence intervals.

NBDA has been widely used to investigate transmission

of behaviours in animals, for example in fish (Atton et al.

2012), cetaceans (Allen et al. 2013), primates (Kendal

et al. 2010; Hobaiter et al. 2014) and birds (Boogert et al.

2008; Aplin et al. 2012, 2015; Farine et al. 2015).

multiple hypothesis testing using null
models

In addition to using randomizations for null hypothesis

testing, multiple null models can also be used to evaluate

competing hypotheses (Gotelli & Graves 1996). This

involves keeping different aspects of the data constant in

each model to identify whether they affect social structure

(Farine 2013b). For example, to test whether an observed

phenotypic structure in a social network is driven by spa-

tial distribution of individuals or by social avoidance, we

can build one null model that controls for space and one

that does not. If both null models are rejected, this sug-

gests that the observed patterns are driven by social

attraction/avoidance because both null models create

more random networks than observed. In contrast, if the

Box 5. Demonstrating how permutations deal with biases

A major potential source of error in social networks is sampling bias. If there are differences in how observable indi-

viduals are as a function of their class, this can easily lead to spurious results. We demonstrate this by repeating the

simulation from Box 4, but this time males and females do not vary in gregariousness (we maintain the same distribu-

tion, but now allocate sex randomly). After generating sampling periods, we now allocate a probability that each

female is observed with only 70% reliability, whereas bright conspicuous males are observed with 100% reliability

(the code for this simulation is found in Appendix S4). Thus, even though both classes had the same average degree

measured on the full set of associations (Figure Box 5a), reducing the observation probability of females introduced a

difference in their means (Figure Box 5b). Fitting the same GLMM model as in Box 4 suggested that this difference

was highly significant (Table Box 5, note the t-value is larger than in the Box 4 example). However, when calculating

the P value using randomizations (see details in Box 4), the observed coefficient value (2�143, Figure Box 5c red line)

did not fall outside the distribution of randomized coefficient values (Figure Box 5c histogram), resulting in a non-sig-

nificant effect (Prand = 0�226). This example highlights how using randomizations improves our ability to capture bio-

logical patterns in the real rather than in the observed network.

Fixed effects Coefficient Standard error t statistic

Intercept 4�315 0�621 6�949
Sex (male) 2�143 0�578 3�707

Random effect Variance Standard error

Area 0�371 0�609
Residual 3�186 1�785

(a) (b) (c)
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spatially controlled null model is not rejected, but the

non-spatial model is, then individuals are non-randomly

distributed in space, but we cannot reject the hypothesis

that they associate randomly with respect to phenotype

within their location. This approach is demonstrated in

Farine et al. (2015b).

simulations

Simulations can be used to infer the mechanisms that

underpin network formation or to explore the conse-

quences of network structure for population processes.

There are two types of simulations that are useful in net-

work studies: data-driven simulations and fully simulated

networks. Data-driven simulations involve building an

agent-based model (Railsback & Grimm 2012) in which

patterns of interactions are determined by the observed

network. This can be used to investigate how social struc-

ture mediates population processes, such as the spread of

a disease in that population. Alternatively, individuals

(nodes in the network) can be removed to determine the

impact on social connectivity and network robustness

(e.g. Manno 2008; Wey et al. 2008). To our knowledge,

no study has performed simulations on increasingly ran-

dom networks (using data-stream permutation methods)

to investigate whether some aspects of population pro-

cesses are conserved under different null models, or how

fast these processes are expected to degrade.

The second approach stochastically simulates beha-

viours of individual actors based on a minimal set of

rules, or mechanisms. Comparing the result of simula-

tions to empirical data is a powerful way of inferring can-

didate mechanisms generating social structure (Cross

et al. 2012; Sumpter, Mann & Perna 2012; Farine, Down-

ing & Downing 2014). For example, simulations could be

used to test whether females preferentially copulated with

successful males by comparing the degree distribution

from an observed network with the degree distributions

from simulated networks that implement preferential

mating.

reporting statistical results

A criticism of null hypothesis significance testing is the

presentation of ‘naked P values’ (Anderson, Burnham &

Thompson 2000) without any indication of the size of the

effect being tested. The results of hypotheses tested on

social networks are often presented without effect statis-

tics, but these should be reported. In permutation tests, if

the test statistic is directly interpretable (e.g. the standard

deviation of the association indices or the coefficient val-

ues of a model), the effect size can be reported by giving

the value measured on the observed network as well as

the mean or 95% range of the values measured on the

permuted networks. This provides information both on

the size of the effect and on the uncertainty associated

with the conclusions drawn from the result.

Estimating power and precision

have enough data been collected?

Clearly, the more the data available, the more the

observed network will mirror the real social network of

the animals, and the more powerful will be tests against

null hypotheses. Whitehead (2008) provides a guideline

for estimating the sampling effort required to achieve a

reliable social network (defined as a correlation between

the edges of the real and the observed network of at least

0�8). A network that is moderately socially differentiated,

where the coefficient of variation (CV) of edge weights of

the real network is approximately 0�2, requires a mean of

about 50 identifications per dyad. This decreases as the

network becomes more strongly differentiated, for exam-

ple as relationships become less mixed and start to resem-

ble pairs forming territories. A highly differentiated

population (with a CV of approximately 0�6) requires an

average of five identifications per dyad, whereas an

extreme population (CV of around 10) requires only 0�02
identifications per dyad (i.e. there is high certainty that a

single observation of an edge is accurate). The power of

permutation tests to reject null hypotheses is highly depen-

dent on the strength of the pattern being tested and the

amount of data collected (Whitehead 2008). In most cases,

large data sets are required, a further reason why auto-

mated data collection systems have become very useful.

Realistically, studies are often limited either by

resources or by logistics. Given this, it can be useful to

identify strategies that will maximize the quality of the

data that are collected (see Estimating the quality of an

observed network). When sampling effort is limited, the

simulation study by Franks, Ruxton & James (2010)

suggests that increasing the number of censuses, rather

than increasing the proportion of individuals sampled in

each census, generates a more robust network when sam-

pling fission–fusion groups. This may also be relevant

when sampling populations with stable social groups, in

which case collecting more samples from fewer groups

may yield better results than sampling more groups.

dealing with missing indiv iduals

The issue of missing individuals need to be assessed in

terms of the biological question under investigation. The

simulation study by Silk et al. (2015) suggests that the

correlation between node-level metrics measured on par-

tial and full networks has a relatively linear relationship

with the proportion identified. However, sampling only a

small proportion of the population may have a greater

negative impact on network-level measures, such as phe-

notypic assortment (see Farine 2014), than on means of

pair-wise measures. The issue of how to deal with missing

individuals in a social network is an outstanding question.

To our knowledge, there is no way, other than using sim-

ulations, to estimate how well a network based on a
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subset of the population captures the properties of the

real network.

is there a bias in the data sampling?

Perhaps a more important issue than missing individuals

is biased sampling. There are many ways that sampling

may bias observations towards some individuals which

become disproportionately represented in the data. For

example, brightly coloured or more active individuals may

be easier to find, and these individuals may be observed

more often. In many cases, bias is inevitable, and these

biases need to be considered either in quantitative analy-

ses or when discussing the results. In the case of the

bright individuals, we may expect that if these are

observed more often than others, then if there was no

difference in their real gregariousness, these individuals

could still have more associates (edges) in the social net-

work and therefore greater network centrality. Currently,

the best ways to deal with these situations are to use gen-

eralized affiliation indices (Whitehead & James 2015) or

to build null models using permutations that account for

these sampling differences (see Box 5).

estimating the quality of an observed
network

How to estimate whether an observed network is robust

and precise remains an outstanding question. Above, we

have provided some guidelines to estimate how well a

population should be sampled, and what to prioritize dur-

ing data collection. If data have already been collected,

Lusseau, Whitehead & Gero (2008) suggest using boot-

strapping (resampling data at random with replacement)

or jackkniffing (removing a certain percentage of data) as

a way to estimate the confidence intervals around network

measures. Wey et al. (2008) adapted jackkniffing, com-

bined with ANOVAs, to calculate the percentage of data

that could be removed without causing a significant

change in the different network measures. In their case,

they found that network measures were robust up to 75%

of data removed. Finally, Cross et al. (2012) provide a

useful framework using hierarchical models to evaluate

the relative importance of difference factors (individual,

dyadic and environmental) driving variation in association

rates in an observed network. However, more research is

required (using mathematical models, simulated networks

or very well-sampled networks) to determine the follow-

ing: (i) whether such approaches provide a good estimate

of the potential error in an incompletely sampled net-

work; (ii) how confident we are that the network we

observed is a good estimation of the real patterns.

controlling for multiple comparisons

One criticism of many social network studies is that they

often examine the relationship of multiple metrics with

multiple individual-level attributes (e.g. traits or pathogen

status). With many significance tests, type I errors multi-

ply, an issue that taxes statistical analyses generally. Bon-

ferroni and other corrections can be used to reduce the

type I error rate, but at the expense of type II errors. In

network analysis, we recommend concentrating on effect

sizes rather than P values whenever possible, thus avoid-

ing the multiple comparison problem.

Remaining challenges and future directions

comparing networks and comparative studies

Comparing networks across contexts (e.g. between popu-

lations or species) remains one of the main challenges in

network analysis (see Chapter 7 in Croft, James & Krause

2008). The lack of measures that can be used to make

robust comparisons among networks prevents their use in

comparative studies to investigate broad questions in

social behaviour. Comparing networks is challenging both

because measures are influenced by network topology

(e.g. degree distributions by the number of nodes in a net-

work; how discrete or modular is the population being

studied) and the lack of standardization in data collection.

If data collection is completely standardized, for example

all individuals in two populations of similar size are sam-

pled at a high-resolution and in the same context, then

network comparison may be possible. This is because dif-

ferences arising from the network structures are attributa-

ble to biological processes. Thus, we suggest that issues

with comparing networks should not frighten biologists

from collecting data in properly replicated networks. In

contrast, if data are collected differently, such as by using

focal follows vs. gambit of the group, then the methods

themselves may generate fundamental differences in net-

work structure that are not related to the biology of the

organisms under investigation.

dynamic network analysis

Temporal dynamics represents a significant analytical

challenge in social network analysis. First, the data must

be collected and analysed at a scale that is appropriate

for the biological questions (Pinter-Wollman et al. 2013).

This includes collecting sufficient data to generate a repre-

sentative network at each point in time. Another major

obstacle is the development of robust statistical tests for

dynamic networks, including appropriate null hypotheses

and associated randomization-based null models. For

example, to test whether the property of a network (such

as mean degree) is increasing more than expected over

time requires quantitative null hypotheses that are based

on previous knowledge of the system. Hobson, Avery &

Wright (2013) provide a useful framework highlighting

different scales at which temporal information can be

incorporated into network analysis. Computer scientists

are also rapidly developing tools for analysing temporal
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networks, such as dynamic community analysis (Tan-

tipathananandh & Berger-Wolf 2011), though these may

take some time to filter down to biological users and in

their current formulations, they are not realistic for many

animal social networks.

repeatabil ity of network posit ion

Whether individuals have consistent network positions

across different samples (i.e. repeatability) may be a crit-

ical consideration when exploring social factors that

mediate individual fitness (Wilson et al. 2013). An

increasing number of studies are demonstrating that net-

work position is repeatable across different samples

(Boogert, Farine & Spencer 2014; Jacoby et al. 2014).

Attempts to understand the determinants – ecological,

behavioural or genetic – of individual network properties

should begin with an exploration of the stability of these

properties across repeated observations of individuals.

Nakagawa & Schielzeth (2010) describe a framework for

measuring repeatability based on repeated measurements

made on the same individuals, which with repeatedly

sampled networks can determine whether individual net-

work positions are repeatable. This framework uses

GLMMs to calculate the proportion of variance in the

distribution of network measures that is attributable to

the individual identities (as a random effect) in the net-

work. Repeatability may also be a useful measure of

robustness. For example, data could be partitioned into

two samples and the rank correlations of individual net-

work metrics measured. Both these methods estimate the

consistency of individual positions and network struc-

ture. This may be an important assumption to examine

when testing hypotheses based on relationships such as

the link between network centrality and reproductive

success.

using networks in an experimental
framework

Most published social network studies still remain largely

descriptive. This may potentially result in over-interpreta-

tion of the strength attributed to published findings in a

given field (James, Croft & Krause 2009). For example,

different studies may observe similar patterns arising from

different mechanisms (or worse, from having similar

biases in their observation data). Thus, there is a pressing

need for studies that combine network analyses with

experimental manipulation of animal groups that explic-

itly confirm the results of observational studies and iden-

tify underlying mechanisms. This can be done by

experimentally removing individuals, where the network is

used to identify key mediators of group structure (such as

in Flack et al. 2006), or by altering ecological conditions

experienced by groups. The latter has generally been

restricted to natural experiments, such as measuring com-

munity structure in groups across habitat remnants of dif-

ferent size (e.g. Mokross et al. 2014). An exception is

Firth & Sheldon (2015) who experimentally controlled

individual’s access to different food resources to quantify

the impact of spatially breaking-up flocks of birds. They

found that new network connections formed under this

regime were carried over into other contexts. Another

experiment introduced novel behaviours into replicated

animal populations to track the spread of information

through networks (Aplin et al. 2015). Finally, Croft et al.

(2011a) experimentally manipulated parasite loads and

found that infected fish were actively avoided by con-

specifics. However, controlled manipulation experiments

remain rare. Yet, they are critical for understanding the

role of individuals and social structure in social dynamics,

or what causes individuals to have different network posi-

tions. Only through experiments will social networks be

able to provide definitive causative evidence for socially

mediated mechanisms underpinning evolutionary pro-

cesses.

Conclusion

Studies of animal social networks can break new ground

across a broad range of disciplines. This may require an

increased reliance on experimental manipulations,

repeated sampling of individuals across individuals’ life-

times and network analyses that move beyond dyadic

measures. Combining observed data with simulation mod-

els is a promising avenue to quantitatively assess compet-

ing mechanisms. For example, this approach could be

used to discover how the rules that govern processes such

as group joining and leaving drive social structure. In

turn, this may, in the future, help to inform management

or conservation action. In all cases, network approaches

will be improved by defining biologically appropriate net-

work edges, ensuring well-sampled networks, including

robust null models in statistical testing, and evaluating

the uncertainty surrounding the results.
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