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Simple Summary: Polyunsaturated fatty acids (PUFAs) and non-steroidal anti-inflammatory drugs
(NSAIDs) have limited anticancer capacities when used alone. We examined whether combining
NSAIDs with docosahexaenoic (DHA) would increase their anticancer activity on lung cancer cell
lines. Our results indicate that combining DHA and NSAIDs increased their anticancer activities by
altering the expression of critical proteins in the RAS/MEK/ERK and PI3K/Akt pathways. The data
suggest that DHA combined with low dose diclofenac provides more significant anticancer potential,
which can be further developed for chemoprevention and adjunct therapy in lung cancer.

Abstract: Polyunsaturated fatty acids (PUFAs) and non-steroidal anti-inflammatory drugs (NSAIDs)
show anticancer activities through diverse molecular mechanisms. However, the anticancer capacities
of either PUFAs or NSAIDs alone is limited. We examined whether combining NSAIDs with
docosahexaenoic (DHA), commonly derived from fish oils, would possibly synergize their anticancer
activity. We determined the viability of lung cancer cell lines (NCI-H1573, A549, NCI-H1299, and
NCI-H1975) after exposure to DHA and various NSAIDs. We further conducted cell apoptosis
assays and analyzed apoptosis-associated proteins and some key proteins in the RAS/MEK/ERK and
PI3K/Akt pathways using western blot analysis. We also determined the impact of the treatment on
the expression of inducible cancer-related genes using nCounter PanCancer Pathways gene expression
analysis. The results showed that the combination of DHA and NSAIDs increased suppression of cell
viability in all the lung cancer cell lines tested compared to each of the compounds used alone, with
diclofenac being the most potent NSAID tested. This synergistic effect is especially significant in A549
and NCI-H1573 cells. The combination treatment was more effective at inhibiting clonogenic cell
growth and anchorage-independent growth in soft agar, inducing caspase-dependent apoptosis, and
altering expression of critical proteins in the RAS/MEK/ERK and PI3K/Akt pathways. The data from
this study demonstrate that DHA combined with low dose diclofenac provides greater anticancer
potential, which can be further developed for chemoprevention and adjunct therapy in lung cancer.

Keywords: polyunsaturated fatty acids; docosahexaenoic acid; K-Ras; cyclooxygenase; non-steroidal
anti-inflammatory drugs; diclofenac; lung cancer; nanostring

1. Introduction

Lung cancer continues to pose a serious health problem in the US as the second most commonly
diagnosed cancer with an estimated 228,820 new diagnoses and 135,720 deaths likely to occur in 2020.
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Thus, lung cancer is projected to account for one-quarter of all cancer-related deaths. With an overall
5-year survival rate of only 19% for all lung cancer stages combined [1], there is a need for effective
preventive and therapeutic strategies to combat this disease. Chemoprevention, which involves the use
of dietary or pharmaceutical interventions to slow or reverse the progression of cancer, is important for
patients with an elevated risk of cancer [2,3]. Notable among the compounds with promising potential
for inhibiting the progression of cancer are the cyclooxygenase (COX) inhibitors and omega-3 (ω-3)
fish oil [4–6]. These two classes of medications, mostly available “over-the-counter” have been under
extensive investigation in the past few decades for their beneficial health effects.

Cyclooxygenases are the main enzymes involved in the conversion of polyunsaturated fatty acids
(PUFAs) to prostaglandins (PGs) and other eicosanoids [7,8]. Overexpression of Cyclooxygenase-2
(COX-2), a key mediator of inflammation, promotes transformed and invasive phenotypes with
increased cell proliferation, motility, invasion, angiogenesis, and resistance to apoptosis [9]. COX-2
remains an important target for colorectal cancers, and more recently, lung cancer therapy and
prevention because approximately 70% of lung adenocarcinomas overexpress COX-2 [10]. Targeting
COX enzymes for cancer prevention and therapy is supported by several clinical and epidemiological
studies [11–13]. Pharmacological inhibition with non-steroidal anti-inflammatory drugs (NSAIDs) or
genetic deletion of COX-2 significantly diminishes tumor formation in several cancer models [14–16].
Evidence from recent studies also implicates COX-1 in the chemopreventive roles of NSAIDs [4,6,17–19].
COX-dependent mechanisms involving decreased production of pro-oncogenic PGE2 has been
reported as part of the anticancer effects of NSAIDs [8,12,20]. However, several other studies
have suggested COX-independent mechanisms for NSAIDs, which involve modulation of NFκB,
TGF-β, and Wnt/β-catenin signaling, interference with the Ras-Raf-MEK-ERK signaling cascade, the
PI3K/Akt/MAPK signaling axis and/or activation of PPARs [11,21–23].

Similarly, numerous epidemiological studies strongly support the anticancer effects of
long-chain polyunsaturated fatty acids (PUFAs), especially the ω-3 docosahexaenoic acid (DHA)
and eicosapentaenoic acid (EPA) commonly found in fish oils. The ω-3 PUFAs, mainly present in fish
oil, form an important part of the human diet. Their chemopreventive effects have been demonstrated
both in vitro, and in vivo using several models, indicating that ω-3 PUFAs significantly inhibit tumor
growth, suppress cell viability, and induce apoptosis in various cancer cells [5,24–26]. Among the
mechanisms proposed for their anticancer effects include modulation of survival signaling pathways
such as Wnt/β-catenin, MAPK/Erk, PI3K/Akt/mTOR, JAK-STAT, and NF-κB [5,24,27–30]. While it is
possible to experience enhanced anti-cancer effects by combining NSAIDs with PUFAs, this prospect is
yet to be fully explored. In this study, we examine the effects of the combination ofω-3 PUFAs and
NSAIDs on a panel of lung cancer cells. We also explored the possible mechanism of action involved in
their anticancer effects. We focused on DHA in the current study due to its superior antitumor potency
as well as the recent attention it has received for its anticancer properties amongω-3 PUFAs [31–33].
We report here that diclofenac exhibits the most potent effects compared to the other NSAIDs used and
has a positive synergistic cytotoxic interaction with DHA. Exploration of this novel interaction shows
that the combination interferes with Ras/MEK/ERK and PI3K/Akt signaling pathways.

2. Results

2.1. Co-Treatment of Lung Cancer Cells with NSAIDs and DHA Enhanced Cytotoxicity

To determine the anticancer potential of the combination of NSAIDs and DHA, we co-treated
NCI-H1573 cells with increasing concentrations of DHA (1–50 µM) and various NSAIDs (10–100 µM)
for 48 h. These specific NSAIDs were selected to represent some of the major chemical classes (acetic
acid derivatives—indomethacin and diclofenac; propionic acid derivative—naproxen; enolic acid
derivative—piroxicam) as well as a wide range of relative cyclooxygenase selectivity [34,35]. The cell
viability results showed that treatment with DHA alone resulted in concentration-dependent growth
inhibition. For example, in the NCI-H1573 cells, an IC50 of 9.5 ± 1.3 µM was noted for DHA alone
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(Table 1). However, co-treatment of DHA with either diclofenac or indomethacin at 25, 50 and 100 µM
markedly enhanced the cytotoxicity of DHA, as indicated by the significant decrease in the IC50

values (Table 1), and the leftward shift of the concentration-response curves with suppressed maximal
cell viability. Likewise, co-treatment with diclofenac in A549 cells decreased the IC50 of DHA from
9.5 ± 1.1 to 3.7 ± 0.4 in the presence of 100 µM of diclofenac. Piroxicam and naproxen were found
to be less effective in promoting the cytotoxic effects of DHA. Diclofenac was found to be more
effective at enhancing the cytotoxic effect of DHA in all the cell lines used. We further established
concentration-response curves for diclofenac alone and with DHA. Similarly, diclofenac inhibited
the viability of NCI-H1573 cells in a concentration-dependent manner with an IC50 of 87.5 ± 9.6 µM,
while the IC50 values of co-treatment with 2, 5, and 10 µM of DHA decreased to 71.4 ± 9.0 µM,
48.3 ± 1.4 µM, and 25.0 ± 3.4 µM, respectively (Figure 1, Table 2). The IC50 of diclofenac on A549 cell
viability was 92.8 ± 9.9 µM, while co-treatment with 2, 5, and 10 µM of DHA decreased the IC50 values
to 83.1 ± 4.3 µM, 73.5 ± 6.5 µM, and 11.3 ± 3.5 µM, respectively, indicating enhanced cytotoxicity in
the co-treatment groups. Because of its superior performance, we employed diclofenac (25 µM) in
the co-treatment with DHA for subsequent experiments. Although similar effects were observed in
NCI-H1573, A549, NCI-H1299, and NCI-H1975 when co-treated with DHA and diclofenac (Table 1),
the inhibitory effects were more pronounced in the NCI-H1573 and A549 cells. These two cell lines,
NCI-H1573 and A549 are known to harbor activating KRAS (G12A) and KRAS (G12S) mutations,
respectively. In addition, the cytotoxic effect of DHA and diclofenac (25 µM) on A549 cells was
compared to docetaxel, a microtubule inhibitor used in lung cancer chemotherapy and UO126, a MEK
inhibitor that acts downstream in the Ras signaling pathway. Co-treatment of A549 cells with DHA
and diclofenac (25 µM) was only slightly less potent at reducing the A549 cell viability compared
to docetaxel and UO126 (Figure 2). The IC50s were 11.1 ± 1.3 µM, 4.4 ± 0.5 µM, 2.8 ± 1.4 µM, and
3.6 ± 1.2 µM for DHA alone, DHA with diclofenac, docetaxel, and UO126, respectively.

Table 1. IC50 of DHA alone and co-treatment with non-steroidal anti-inflammatory drugs (25, 50 and
100 µM) in NCI-H1573, A549, NCI-H1299, and NCI-H1975 human lung cancer cells.

Cell Line
IC50 of DHA (µM)

NSAID DHA Alone
DHA + NSAID

25 µM 50 µM 100 µM

NCI-H1573

Diclofenac 9.5 ± 1.3 4.5 ± 0.4 3.2 ± 0.4 3.0 ± 0.3
Piroxicam 9.5 ± 0.6 ~9.8 10.1 ± 1.3 8.3 ± 0.2

Indomethacin ~10.3 7.0 ± 0.2 7.0 ± 0.3 6.1 ± 0.1
Naproxen ~10.0 ~9.8 11.3 ± 0.4 10.0 ± 0.3

A549

Diclofenac 9.5 ± 1.1 4.3 ± 0.3 4.0 ± 0.3 3.7 ± 0.4
Piroxicam 9.0 ± 1.5 4.9 ± 1.1 5.0 ± 0.6 5.3 ± 0.7

Indomethacin 10.3 ± 0.1 5.8 ± 0.1 5.7 ± 0.0 5.5 ± 0.1
Naproxen 9.4 ± 0.8 5.9 ± 0.6 7.3 ± 0.1 6.4 ± 0.2

NCI-H1299
Diclofenac 9.8 ± 0.3 10.4 ± 0.4 11.3 ± 0.2 8.5 ± 0.5
Piroxicam 10.2 ± 0.5 9.7 ± 0.2 8.7 ± 0.4 8.4 ± 0.1

Indomethacin 9.1 ± 0.1 5.9 ± 0.0 4.9 ± 0.3 3.1 ± 0.3

NCI-H1975

Diclofenac ~11.2 ~11.2 7.3 ± 0.4 5.8 ± 0.3
Piroxicam 10.0 ± 1.0 ~10.0 8.8 ± 0.1 8.2 ± 0.2

Indomethacin 11.9 ± 0.8 9.7 ± 0.6 9.2 ± 0.1 8.0 ± 0.2
Naproxen 9.8 ± 0.2 8.1 ± 0.3 9.6 ± 0.3 9.2 ± 0.3
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Figure 1. Suppression of cell viability by co-treatment of DHA and diclofenac in NCI-H1573 and A549
human lung cancer cells. Cultured cells were seeded in 96-well plates seeded at a density of 1 × 104

were exposed to diclofenac (0–500 µM) alone or with DHA (• 0 µM, # 2 µM, � 5 µM or � 10 µM) for
48 h. Cell viabilities were determined after the final treatment by fluorescence using the resazurin
reduction assay. Each point represents the mean ± SEM relative to the control untreated cells.

Table 2. IC50 of diclofenac alone and co-treatment with DHA (2, 5 and 10 µM) in NCI-H1573 and A549
human lung cancer cells.

Cell Line
IC50 of Diclofenac (µM)

Diclofenac Alone
Diclofenac + DHA

2 µM 5 µM 10 µM

NCI-H1573 87.5 ± 9.6 71.4 ± 9.0 48.3 ± 1.4 25.0 ± 3.4
A549 92.8 ± 9.9 83.1 ± 4.3 73.5± 6.5 11.3 ± 3.5
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Figure 2. Comparing the effectiveness of co-treatment of DHA and diclofenac with docetaxel and
UO126 on the viability A549 human lung cancer cells. The effects DHA (•) alone or with 25 µM of
diclofenac (#) were compared to docetaxel (�) and UO126 (�) for 48 h. Cell viabilities were determined
after the final treatment by fluorescence using the resazurin reduction assay. The IC50s were 11.1 ± 1.32
µM, 4.38 ± 0.52 µM, 2.82 ± 1.42 µM, and 3.61 ± 1.2 µM for DHA alone, DHA with diclofenac, docetaxel,
and UO126, respectively. Each point represents the mean ± SEM relative to the control untreated cells.

As shown in Figure 3, the CI values of DHA and diclofenac in combination were mostly less
than one, suggesting that the growth inhibitory effect of these compounds in combination was mostly
synergistic rather than additive or antagonistic in NCI-H1573 cells. Diclofenac at 25 µM and DHA at
5 µM used alone induced slight cytotoxicity on NCI-H1573 cells with fractional effects of 0.18 and 0.04,
respectively. However, the combination treatment of diclofenac (25 µM) and DHA (5 µM) showed
marked synergism with a fractional effect of 0.64 (CI = 0.72).
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activities for different concentrations of DHA and diclofenac used in the experiment. CI < 1, = 1, and >

1 indicates synergistic, additive, and antagonistic effects, respectively.

2.2. Co-Treatment of Lung Cancer Cells with DHA and Diclofenac Decreased Clonogenic Cell Survival

We further compared the ability of NSCLCs to survive, grow and form colonies after
exposure to DHA and diclofenac alone or in combination. We observed that DHA alone induced
concentration-dependent inhibition of cell survival and colony formation in both NCI-H1573 and A549
cells, and this inhibitory effect was significantly increased with the addition of diclofenac. As shown in
Figure 4, prior exposure of A549 cells to DHA (5 µM) alone or with diclofenac (25 µM) for 48 h, followed
by re-plating of the cells and allowing them to grow for 12–14 days revealed a reduction in survival by
38.4 ± 2.3% and 51.7 ± 0.9% (p < 0.001), respectively. Exposure to DHA (10 µM) alone or in combination
with diclofenac (25 µM) also inhibited the colony formation by 83.5 ± 2.3 % and 97.4 ± 0.5% (p < 0.001),
respectively. These results indicate that treatment with DHA had a concentration-dependent effect on
colony formation, which is amplified when the cells are co-treated with diclofenac.

In addition, anchorage-independent growth in soft agar, which is correlated with tumor
progression, was significantly reduced in NCI-H1573 and A549 cells exposed to DHA (10 µM)
in combination with diclofenac (25 µM) (Figure 4C,D). These results further indicate that co-treatment
with DHA and diclofenac inhibited tumorigenicity of NCI-H1573 and A549 cells.
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2.3. Co-Treatment of Lung Cancer Cells with DHA and Diclofenac Induces Apoptosis

Cytotoxicity induced by compounds may result from necrosis, which is pro-inflammatory, or
apoptosis (programmed cell death) characterized by membrane blebbing, cellular shrinkage, nuclear
condensation and fragmentations, and formation of apoptotic bodies [36]. For an anticancer effect, it is
desirable to induce apoptosis because it is not associated with significant inflammation. To determine
whether the cytotoxic effect of DHA and diclofenac is associated with an increase in apoptosis, the
morphological changes and the mode of cell death induced by DHA and diclofenac were determined
by staining A549 cells with acridine orange/ethidium bromide (AO/EB) after a 48 h incubation with the
compounds. AO permeates live cells and stains the nuclei, which appear green. EB permeates only the
cells with compromised plasma membrane integrity and stains the nuclei red. As shown in Figure 5A,
no significant apoptosis was detected in the vehicle-treated control group (2.2 ± 1.3%). Very low levels
of apoptosis were detected in the A549 cells treated with diclofenac (7.7 ± 2.4%) and 5 µM of DHA
alone (10.4 ± 3.5%). An increase in apoptosis was detected in A549 cells co-treated with 10 µM of DHA
and diclofenac (66.7 ± 1.8%) compared to the treatment with 10 µM of DHA alone (23.7 ± 3.7%), which
was signified by an increase in cells with marked red-stained nuclei (due to EB uptake following the
loss of cytoplasmic membrane integrity).
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Figure 5. Diclofenac (DCF) increased DHA-induced apoptosis in lung cancer A549 cells. (A). Cells
treated with DHA and DCF for 48 h were analyzed for apoptosis using acridine orange and ethidium
bromide (AO/EB, 10 µg/ml) as described in the methods. Stained cells were visualized with a Leica
DM5000B fluorescent microscope (magnification ×20). When stained with AO/EB, live cells with
normal nuclei appear green while apoptotic cells (A) with condensed or fragmented chromatin in
the nuclei appear orange. (B) Representative scatter plots illustrating Annexin V-FITC /PI staining of
cells after treatment of A549 cells with DHA (0–10 µM) and DCF (25 µM) for 48 h. Annexin-V vs. PI
plots were generated via flow cytometry cell sorting technology. The percentage of the apoptotic cell
death increased in cells co-treated with DHA and DCF. (C). Co-treatment of A549 cells with DHA and
DCF resulted in a dramatic increase in the percentage of apoptotic cells (early and late apoptotic cells).
Data were expressed as means (± SEM, n = 3). ** p < 0.01; *** p < 0.001 indicate significant differences
compared to treatments with DHA alone.

These results were further confirmed using an Annexin V/propidium iodide staining test to assess
apoptosis. As shown in Figure 5B,C, we observed significantly higher apoptotic rates in A549 cells
co-treated with DHA and diclofenac compared to the groups of single treatments. These data suggest
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that combining DHA and diclofenac induced a significant increase in apoptosis in lung cancer cells
compared to treatment with DHA alone.

The observed characteristics of apoptosis induced in the A549 cells above can be attributed at
least in part to a series of activation of the caspase family of cysteine proteases, which culminates in the
activation of executioner caspases, leading to mass proteolysis. Therefore, we further investigated the
involvement of executioner caspases 3 and 7 in the apoptotic effect of DHA and diclofenac in A549
cells. Results from the CaspaTagTM Caspase-3/7 in situ assay indicated that the co-treatment with
DHA and diclofenac was more effective at activating caspases 3/7 in A549 cells compared to treatment
with either compound individually (Figure 6). A549 cells co-treated with DHA and diclofenac showed
prominent activation of caspase 3/7, as indicated by intense green fluorescence in the cells compared to
the control cells. Treatment with DHA or diclofenac alone was less effective at activating the caspases
3/7, as shown in Figure 5A.
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Figure 6. Co-treatment with DHA and DCF induced caspase 3/7 activation in A549 cells. Caspase 3/7
activation was observed after treating A549 cells with DHA and DCF for 48 h and then reacting with
the fluorescent caspase 3/7 irreversible inhibitor (green FLICA). Images were taken with the Cytation 1
Cell Imaging Multi-Mode Reader (magnification ×10).

In addition, enhanced induction of apoptosis by the combination treatment was further evidenced
by western blot analyses showing increased expression levels of cleaved caspase 3, cleaved PARP, and
pro-apoptotic proteins (Bax and Bim) as shown in Figure 7. We also detected a corresponding decrease
in expression of PARP, procaspase-3, procaspase-7, procaspase-9, and anti-apoptotic proteins (Bcl-xL
and Mcl-1). These results demonstrate that the apoptotic cell death induced by co-treatment with
DHA and diclofenac can be attributed at least in part to the induction of caspase-activation in lung
cancer cells.
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Figure 7. Diclofenac (DCF) and DHA induce the expression of pro-apoptotic proteins. Western
blot analysis showing the expression of pro-apoptotic and anti-apoptotic proteins in A549 cells after
treatment with DHA (0–10 µM) and DCF (25 µM) for 48 h. The blots were quantified using Biorad
Image Lab software and analyzed using one-way analysis of variance followed by Bonferroni’s multiple
comparison test. Results are from three independent experiments (mean ± SEM, n = 3). * p < 0.05, ** p
< 0.01, and *** p < 0.01 compared to control. Detailed information about western blot can be found at
Figure S1.

2.4. Co-Treatment of Lung Cancer Cells with DHA and Diclofenac Altered Expression of Cancer-Related
Proteins in A549 and NCI-H1573 Cells

We further explored the anticancer potential of co-treatment with DHA and diclofenac on A549
and NCI-H1573 cells using the nCounter PanCancer Pathways gene expression analysis. This assay
determines the expression of a broad panel of inducible cancer-related genes categorized in major
oncogenic pathways using RNA profiling technology that employs molecularly bar-coded fluorescent
probes (NanoString Technologies, WA, USA). We found that treatment with DHA (5 and 10 µM) altered
the expression of several genes in both A549 and NCI-H1573 lung cancer cell lines. Concomitant
treatment with DHA and diclofenac further increased the extent to which the expression of those same
genes was altered. When the results for co-treatment with DHA (10 µM) and diclofenac (25 µM) were
used in the subsequent analysis and a fold change of ≥ ± 2 were considered significant, a total of 88
genes in the A549 cells and 97 genes in the NCI-H1573 cells were significantly altered. Expression
patterns of the top 60 genes that were altered in both A549 and NCI-H1573 cell lines were further
organized according to their associated signaling pathways as described by the nCounter PanCancer
Pathways code set into Ras signaling, MAP kinase signaling, PI3K/Akt signaling, driver genes, cell
cycle/apoptosis regulation, DNA damage control, APC/Wnt signaling, and transcriptional regulation
(Table S1). Co-treatment with DHA and diclofenac effectively induced the expression of pro-apoptotic
and cell cycle arrest genes such as growth arrest and DNA damage-inducible alpha (GADD45A) and
tumor necrosis factor, alpha-induced protein 3 (TNFAIP3). However, anti-apoptotic/cell proliferation
genes and transcription factors such as E2F1, proliferating cell nuclear antigen (PCNA), cyclin-A2, -B1,
and E2 were downregulated.

Also, several genes involved in the DNA damage control (POLE2, RAD51, UBE2T) and
transcriptional regulation (HIST1H3B, CDKN2C) were downregulated (Table S1). Key driver genes
such as K-RAS, HRAS, NRAS, RAC1, and RHOA, which play important roles in Ras signaling, MAP
kinase signaling, and PI3K/Akt signaling pathways were downregulated (Figure 8A).
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Figure 8. Co-treatment with diclofenac (DCF) and DHA alters the expression of proteins in the
Ras/MEK/ERK and PI3K/AKT pathways. (A). Heatmap illustrating changes in mRNA expression
for Ras/MAPK and PI3K/AKT genes altered in A549 and NCI-H1573 cells exposed to DHA (5 and
10 µM) alone or with DCF (25 µM) for 48 h as determined by the nCounter PanCancer Pathways gene
expression analysis. The heat map of gene expression with fold changes of ≥ ± 2 with key roles in
the Ras/MEK/ERK and PI3K/AKT pathways was generated using the MultiExperiment Viewer (MeV
v4.9.0, http://www.tm4.org) (red indicates upregulated genes; green indicates downregulated genes).
Western blot analysis showing the expression of (B). phospho-MEK1/2, phospho-p44/42 MAPK (Erk1/2),
phospho-p90RSK phospho-Akt, and Akt (pan); (C). K-Ras, N-Ras, and H-Ras in A549 cells after
treatment with DHA (0–10 µM) and DCF (25 µM) for 48 h. (D). Western blot analysis of GTP-bound
K-Ras and pan Ras following pull-down with the GST-Raf1-RBD fusion protein, which binds only
active Ras, indicated decreased Ras activity after co-treatment of A549 cells with DCF (25 µM) and
DHA (5 and 10 µM) for 48 h. Normalized densitometric data was used to generate the graphs shown in
GraphPad Prism 5.0 (La Jolla, CA, USA). Statistical significance (* p < 0.05; ** p < 0.01, *** p < 0.001) was
determined by comparing the mean of each treatment group to untreated control using a 1-way ANOVA
and post-hoc Dunnett’s test. Detailed information about western blot can be found at Figure S2.
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2.5. Co-Treatment of Lung Cancer Cells with DHA and Diclofenac Inhibits the Ras/MEK/ERK and PI3K/AKT
Signaling Pathways

The PI3K/AKT and Ras/MEK/ERK pathways are frequently dysregulated in many human tumors
as a result of activating mutations in Ras or loss of negative regulatory proteins such as Phosphatase and
tensin homolog (PTEN) and other proteins in the pathway. Mutant Ras oncogenic proteins are critical
drivers across many cancers, including NSCLCs [37]. Based on our results from the gene expression
data and reports from previous studies on the pathways commonly modulated by DHA and diclofenac
when used alone [15,30], we investigated the impact of co-treatment with DHA and diclofenac on the
PI3k/Akt and Ras/MEK/ERK pathways in A549 cells. We analyzed lysates generated from A549 cells
following 48 h treatment with the DHA (0–10 µM) and diclofenac (25 µM). Exposure of the cells to DHA
(10 µM) and diclofenac (25 µM) suppressed the protein levels of AKT, phospho-AKT, phospho-MEK1/2,
phospho-p44/42 MAPK (p-ERK), and phospho-p90RSK (Figure 8B). However, p44/42 MAPK (Erk1/2)
expression was relatively increased. We also observed a significant decrease in the levels of the Ras
GTPase isoforms (K-Ras, H-Ras, and N-Ras) after 48 h exposure to the co-treatment with 10 µM of DHA
and 25 µM of diclofenac (Figure 8C). We chose to examine the expression of these Ras isoforms because
we found them to be downregulated in the nanostring assay and also, because they are frequently
mutated in lung cancers, especially K-Ras [38]. A pull-down assay detected decreased activity of
pan-Ras as well as K-Ras after co-treatment with DHA and diclofenac (Figure 8D). Taken together, we
provide evidence that co-treatment with DHA (10 µM) and diclofenac (25 µM) effectively interfered
with the relative amounts and activity of key proteins in the PI3K/AKT and Ras/MEK/ERK pathways
to render cells susceptible to apoptosis.

3. Discussion

Omega-3 PUFAs, such as DHA, and NSAIDs, such as diclofenac, exhibit remarkable anticancer
activities via diverse molecular mechanisms [11,30,39]. However, their anticancer capabilities are
limited due to either the high doses required for their anticancer effect and the resultant potential
adverse effects for diclofenac or limited clinical data regarding efficacy for DHA. In this study, we tested
the combined anticancer effects of DHA and selected NSAIDs on NSCLC cell lines. We speculated that
combination treatment with DHA and various NSAIDs could target different pathways simultaneously
and therefore exert synergistic anticancer effects. The data demonstrated that co-treatment with DHA
and NSAIDs, specifically diclofenac, exerted a synergistic inhibitory effect on the NSCLC cell line
viability by inducing apoptotic cell death.

Inflammatory processes have been implicated in several human cancers and there are numerous
reports that COX-2 overexpression and prostaglandins play a critical role in the development and
progression of tumors [40]. Indeed, targeting cyclooxygenase-2 has been at the center of anti-cancer
drug development. However, despite three decades of epidemiological, clinical, and experimental
studies providing strong evidence of anticancer activity, the use of NSAIDs such as diclofenac for
cancer chemoprevention is not recommended due to the potential risk of gastrointestinal, renal, and
cardiovascular side effects [8,41,42]. Our current findings, together with the recent reports showing that
the combination of NSAIDs withω-3 PUFAs used for anti-inflammatory synergism offer protection
against gastric damage induced by COX inhibitors [43,44], provide strong evidence of the benefit
that could be accrued by combining the two compounds. Besides, such combination could lead to
dose reduction of both agents, which could address their potential adverse effects when used alone at
higher doses.

In our previous work, we showed that DHA and other PUFAs were very effective at inducing
apoptosis and proposed that the elevated levels of COX-2 in various cancers may convert the more
effective inhibitory PUFAs into ineffective prostanoids with significantly diminished abilities to control
cell proliferation [26,39]. A logical explanation to this phenomenon is that overexpression of COX-2
in tumors likely depletes COX-2 substrates (PUFAs), which have been reported to exhibit tumor
suppressive effects. However, several studies have reported that COX inhibitors such as NSAIDs and
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selective COX-2 inhibitors exert significant antiproliferative effects via multiple mechanisms [39,42,45].
Indeed, treatment with either DHA or NSAIDs alone inhibited the various cancer cell lines in a
concentration-dependent manner, an effect that was enhanced by combining the two compounds at
relatively low concentrations. Diclofenac appears to be the most effective in enhancing the inhibitory
effect of DHA on cell viability. Evidently, co-treatment with DHA and diclofenac exert marked
synergistic inhibitory effects on both H1573 and A549 cell viability. A possible reason for the synergistic
effect exhibited by diclofenac with DHA may be related to diclofenac’s potent inhibitory effect against
COX-2 isoform commonly overexpressed in most tumors. Diclofenac, a phenylacetic acid derivative,
which inhibits the COX-2 enzyme with greater potency than COX-1 compared to the other NSAIDs [35].
Thus, the current observation is consistent with previous reports that NSAIDs and COX-2 selective
inhibitors (such as celecoxib), which are potent enough to inhibit COX-2 effectively, induce cytotoxicity
in various cancer cell lines [39,45–47]. Further analysis indicated that the inhibitory effect of DHA and
diclofenac treatment on cell viability was triggered via apoptotic cell death. The anticancer activity of
the co-treatment was associated with caspase activation, repression of antiapoptotic proteins, such as
Bcl-2, Bcl-XL, and Mcl-1, and promotion of proapoptotic proteins, such as Bax and Bim.

In our study, we observed a decreased in expression of K-Ras, N-Ras, and H-Ras proteins as
well as reduced levels of activated pan-Ras, K-Ras, p-p44/42, and Akt by co-treatment with DHA
and diclofenac. Members of the Ras family of GTPases have been implicated in lung carcinogenesis
and are known to mediate signaling pathways that regulate proliferation, survival, and metastasis
in cancer cells [38,48–50]. KRAS is the most frequently mutated isoform in lung cancer representing
19% of the cases, followed by NRAS (1%) and HRAS (< 1%). The G12 hotspot mutations comprise
83% of all KRAS mutations, and the A549 and NCI-H1573 cell lines used in this study both harbor
KRAS mutations at G12 (KRAS-G12S and KRAS-G12A, respectively) [51]. Compounds that prevent
post-translational modification of Ras and its plasma membrane targeting are likely to inhibit oncogenic
Ras signaling [47,49]. Previous reports from our lab and others suggest that PUFAs alter the plasma
membrane binding domains of Ras to disrupt signaling [26,39,40,52,53]. Since Ras proteins are central
to several signaling cascades, downregulation of the RAS genes observed in the gene expression study
and suppressing expression of all the Ras isoforms studied in the western blot analysis, are expected to
impact critical oncogenic pathways. Subsequently, co-treatment of lung cancer cells with DHA and
diclofenac also altered the expression of genes involved in these key pathways.

Activated Ras proteins exploit several downstream effectors including activation of the Raf/MAPK
pathway and the PI3K/Akt pathway to promote cell survival [38]. To further examine the influence of
DHA and diclofenac on these critical signaling pathways, p42/44 ERK activation and Akt activation
were determined by immunoblotting. Collectively, our data indicate that DHA and diclofenac
modulate Ras-dependent signal transduction by inhibiting activation of both Akt and p42/44 ERK. This
is significant because inhibition of pERK is reported to markedly increased pAKT levels, and blocking
the PI3K pathway leads to increased activity in the MAPK/ERK pathway via a feedback loop, which
ensures that the signal for cellular survival is transmitted downstream [19]. Thus, dual inhibition
of Akt and pERK is beneficial since preclinical studies in several tumor types have shown that dual
inhibition of both the PI3K and MEK/ERK pathways leads to greater growth inhibition compared to
single pathway inhibition [19]. Inactivation of p42/44 ERK disrupts the MAP kinase signaling pathway,
preventing phosphorylation of vital cytoplasmic substrates and nuclear transcription factors, as well
as other kinases. Alteration of several genes in the PI3K/Akt pathway by DHA and co-treatment
with diclofenac is consistent with the recent reports that both compounds inhibit cancer growth and
development by inactivation of the PI3K/Akt pathway [15,27,30].

Tumor relapse continues to pose a major concern in the management of lung cancers. An estimated
19.3% to 75% of NSCLC patients experience recurrence after complete surgical resection [54]. Our results
indicate that combination treatment with DHA and diclofenac diminishes both anchorage-dependent
and anchorage-independent formation and survival of colonies. Consistent with this result is the
observed downregulation of proteins involved in cell survival and anti-apoptotic genes as well as
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genes promoting cell proliferation (Table S1), justifying the potential of combined DHA and diclofenac
to prevent tumor relapse.

In summary, the results of the present study indicate that co-treatment with DHA and diclofenac
markedly inhibits cell growth and survival of cancer cells and might be a promising strategy for lung
cancer chemoprevention as well as adjuvant therapy. This combination therapy may synergize the
anticancer effects of these drugs and provide several advantages including better efficacy, prevention of
drug resistance resulting from clonogenic resistance, as well as dose reduction of the individual agents
involved to minimize their adverse drug reactions. While these benefits appear attractive, further
exploration is required to establish the safety profile of this combination in whole animal studies,
which is the next step in our research.

4. Materials and Methods

4.1. Materials and Reagents

Docosahexaenoic acid, and diclofenac were obtained from Cayman Chemical (Ann Arbor,
MI, USA). Indomethacin, naproxen, piroxicam, resazurin, horseradish peroxidase-labeled mouse
anti-β-actin, anti-K-Ras, anti-N-Ras, and anti-H-Ras antibodies were purchased from Sigma-Aldrich
Chemical Co. (St. Louis, MO, USA). Antibodies specific for Bax, Bim, Mcl-1, Bcl-xL, PARP, cleaved
PARP, pro-caspase 3, pro-caspase 7, cleaved-caspase 3, phospho-MEK1/2-Ser217/221, phospho-p44/42
MAPK (Erk1/2)-Thr202/Tyr204, phospho-p90RSK-Ser380, phospho-Akt (Ser473), Akt (pan), horseradish
peroxidase-labeled anti-mouse, and anti-rabbit immunoglobulins were obtained from Cell Signaling
Technology (Beverly, MA, USA). The Ras Activation Assay Kit was purchased from Cytoskeleton Inc.
(Denver, CO, USA).

4.2. Cell Lines

Human lung cancer NCI-H1573, A549, NCI-H1299, and NCI-H1975 cells were purchased from
American Type Culture Collection (ATCC, Manassas, VA, USA). A549 cells were routinely cultured in
F12 Kaighn’s medium (Invitrogen, Carlsbad, CA, USA), and NCI-H1573, NCI-H1299, and NCI-H1975
were cultured in RPMI 1640 medium (Invitrogen, Carlsbad, CA, USA). The media used for the routine
cell culture were supplemented with 10% (v/v) fetal bovine serum (FBS) and a 1% (w/v) combination of
penicillin, streptomycin, and neomycin (Invitrogen, Carlsbad, CA, USA). The cultures were incubated
in 75 cm2 vented culture flasks at 37 ◦C in 5% CO2/95% humidified air. The cells were trypsinized after
they were 80–90% confluence and seeded onto the appropriate well plates.

4.3. Cell Viability Assay

Cells were seeded at a density of 1 × 104 per well in 96-well tissue culture plates and allowed to
attach overnight at 37 ◦C in 5% CO2/95% humidified air. The cells were then treated with DHA (0–50
µM) alone or with diclofenac (DCF), piroxicam, or indomethacin (0–100 µM). Identical concentrations
of the compounds were used to supplement the samples at 24 h and 48 h, followed by the resazurin
reduction method to determine cell viability. After our initial assessment of cell viability at 24 h, 48 h
and 72 h, we choose the 48-h time point for further assays because it yielded more consistent results.
Cell viabilities were expressed as the percentage of the fluorescence in the treated cells relative to
that of the controls. In another experiment, to establish the concentration of diclofenac required for
further assays, A549 cells were then treated with diclofenac (0–500 µM) alone or with DHA (0–10 µM).
The data for NCI-H1573 and A549 cells, which showed prominent susceptibility to treatment, were
analyzed by CompuSyn software. The results were shown in the combination index (CI) values, where
CI value < 1, = 1, and > 1 refer to synergistic, additive, and antagonistic effects, respectively.
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4.4. Cell Apoptosis Assays

The mechanism by which co-treatment with DHA and diclofenac-induced cell death was assessed
using AO/EB staining, annexin V/Propidium iodide flow cytometry, and caspase 3/7 activation assays.

4.4.1. Acridine Orange/Ethidium Bromide (AO/EB) Double Staining Assay

A double staining assay with AO/EB was employed to quantify apoptosis in A549 cells after
exposure to DHA (0–10 µM) alone or with diclofenac (25 µM) for 48 h [55]. Cells were harvested,
washed with PBS, and the cell pellets were suspended in 25 µL of cold PBS and stained with 2 µL of
the AO/EB solution (100 µg/mL). The fluorescent morphological changes of the cells were determined
with a fluorescent microscope (DM5000B, Leica, Buffalo Grove, IL, USA) fitted with a digital camera
(DFC 480, Leica) at 20×magnification.

4.4.2. Annexin-V-FITC Assay

For the flow cytometry analysis, A549 cells seeded at 1 × 105 cell per mL in 6-well plates were
treated with DHA (0–10 µM) alone or with diclofenac (25 µM) for 48 h. Apoptosis was determined
using the ApopNexin FITC Apoptosis Detection Kit (EMD Millipore, CA, USA) according to the
manufacturer’s protocol. Briefly, treated cells were harvested and washed twice with cold PBS and
suspended in binding buffer. Annexin-V-FITC and propidium iodide were added to the cell suspensions
and incubated for 15 min at room temperature in the dark. The analysis was done by flow cytometry
using CytoFLEX (Beckman Coulter, CA, USA).

4.4.3. Caspase-3/7 in situ Assay

Caspase activation was determined using the CaspaTag Caspase-3/7 in situ Assay Kit, Fluorescein
(EMD Millipore, Temecula CA, USA) according to the manufacturer’s instructions. A549 cells
were treated with DHA (0–10 µM) alone or with diclofenac (25 µM) for 48 h. Cells were stained
with 30×FLICA reagent and Hoechst solution (0.5%) followed by washing and addition of fixative.
Fluorescent images were obtained with Cytation 1 Cell Imaging Multi-Mode Reader (BioTek, Winooski,
VT, USA) at 10×magnification.

4.5. Clonogenic Cell Survival and Anchorage-Independent Growth Assays

Cultured NCI-H1573 and A549 cells were seeded at 2.0 × 105 cells per well in 6-well culture plates
and incubated overnight at 37 ◦C in 5% CO2/95% humidified air. The cells were treated with DHA (0
–10 µM) alone or with diclofenac (25 µM) for 48 h after which the plates were washed, trypsinized, and
counted. In another experiment, the cells were exposed to diclofenac (0–50 µM) alone or with DHA (5
µM) for 48 h. The cells were then plated at 1000 cells/well and incubated in fresh medium containing
10% (v/v) fetal bovine serum for an additional 10–14 days. The resulting colonies were fixed with a 10:1
(v/v) mixture of methanol and acetic acid, stained with 1% crystal violet, and the number of colonies
containing > 50 cells were counted.

Anchorage-independent growth was assayed based on growth in soft agar prepared in medium
containing serum and 0.5% agarose (Sigma, St. Louis, MO, USA) in 6-well culture plates and overlayered
with 5000 cells resuspended in medium containing serum and 0.33% agarose (Sigma, St. Louis, MO,
USA). Cells were incubated at 37 ◦C for 3 weeks. Resulting colonies were stained overnight with the
MTT (Sigma, St. Louis, MO, USA) and the number of colonies containing > 7 µm in diameter were
estimated using ImageJ (https://imagej.nih.gov/ij/).

4.6. Effects of DHA with Diclofenac on the Expression of Cancer-Related Genes

To determine which pathways were affected by the combination treatments, lung cancer A549 and
NCI-H1573 cells were seeded at a density of 1 × 105 per well in 12-well culture plates and allowed to
attach overnight at 37 ◦C in 5% CO2/95% humidified air. The cells were then treated with either solvent

https://imagej.nih.gov/ij/
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(vehicle control) or DHA (5 µM and 10 µM) alone or with diclofenac (25 µM). After 48 h of treatment,
the cells were detached with trypsin, washed once with PBS, counted, and 5000 cells were lysed in
5 µL RLT buffer (Qiagen, Valencia, CA, USA). The analysis for the relative expression of cancer-related
genes was assessed using the nCounter PanCancer Pathways Panel, which targets 770 genes from 13
canonical pathways (NanoString Technologies, Seattle, WA, USA). Expression data were normalized
using the nSolver 3.0 analysis Software (NanoString Technologies, Seattle, WA, USA) analysis module
and custom scripts in R 2.13.1. Background correction was done by subtracting the geometric mean
of the eight negative-control probes. Expression values were normalized with the most stable 31
housekeeping genes, which were selected based on the geNorm algorithm. Expression values were
then log2-transformed and standardized within each sample. Multi Experiment Viewer (MeV v4.6.2)
was used to cluster the data sets to obtain the heat maps resulting from the numerical fold-change
expression levels compared to the control. Before clustering, the data was filtered using criteria set such
that only data values ≥ ± 2-fold changes were employed. A total of 60 genes common to both cell lines
passed the filtering criteria were further grouped according to their associated signaling pathways,
as described by the nCounter PanCancer Pathways code set. Genes associated with Ras/MEK/ERK
and PI3K/AKT were used for the heat map analyses. Color scale limits were set at “−3.0, 0.0, 3.0”,
meaning that the brightest red represents ≥ 3-fold upregulation relative to the controls, the brightest
green represents ≥ 3-fold downregulation, and black represents no change.

4.7. Immunoblotting

Cultured cells were seeded at 2 × 105 cells per well in 6-well culture plates overnight at 37 ◦C in 5%
CO2/95% humidified air. The cells were treated with DHA (0–10 µM) alone or with diclofenac (25 µM)
for 48 h. The cells were lysed in ice-cold RIPA buffer (10 mM Tris-HCl, 150 mM NaCl, 1% sodium
deoxycholate, 1% Triton X-100, and 0.1% SDS) containing protease inhibitors, centrifuged at 10,000 × g
for 5 min, and the supernatant was saved. Protein in the lysate was quantitated using the BCA Protein
Quantification Kit (Thermo Fisher Scientific, MA, USA), according to the manufacturer’s protocol.
Protein samples were run on precast 4 to 20% gradient Tris-HCl gels (Bio-Rad, CA, USA) and then
transferred onto polyvinylidene difluoride (PVDF) membranes (Bio-Rad, CA, USA). The membranes
were then blocked with 5% non-fat dried milk in Tris-buffered saline (TBS) and Tween 20 (50 mM
Tris-HCl pH 7.5, 150 mM NaCl, and 0.1% (v/v) Tween 20) for 1 h at room temperature and incubated with
the appropriate specific primary antibody overnight at 4 ◦C. After multiple TBST washes, membranes
were incubated with the corresponding horseradish peroxidase-conjugated secondary antibody for
1 h at room temperature. Blots were then visualized by enhanced chemiluminescence using the
ChemiDoc™ XRS+ Imaging System (Bio-Rad, CA, USA).

RAS Pull-Down Assay

Pull-down assay was performed using a glutathione S-transferase fusion protein corresponding
to the human Ras-binding domain of Raf-1, which specifically binds to the GTP-bound form of Ras
(Cytoskeleton Inc., CO, USA). A549 cells were treated with DHA (5 and 10 µM) alone or with DCF
(25 µM) for 48 h. Epidermal growth factor (100 ng/mL) was added after 48 h of treatment and the
cells were lysed 15 min later. Equal amounts of protein lysates were incubated with agarose beads
coated with Raf1 Ras-binding domain and active Ras was then analyzed by immunoblotting using
anti-pan-Ras and anti-K-Ras antibodies. Aliquots of total lysates containing 30 µg of protein each were
used to assess total Ras protein.

4.8. Statistical Analysis

All results were expressed as the means ± S.E.M. The concentration-response curves were
obtained by plotting the percentage inhibition against the log of the inhibitor concentrations. Nonlinear
regression plots were generated using GraphPad Prism version 5.0 for Windows (San Diego, CA,
USA). From these, the concentrations that inhibit 50% of the activity (IC50) were calculated. Statistical
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significance was determined by either one-way ANOVA with Dunnett’s post-hoc test or by Student’s
t-test as indicated in figure legends. For all the statistical analysis: * = p ≤ 0.05, ** = p ≤ 0.01,
*** = p ≤ 0.001.

5. Conclusions

The data from the current study demonstrate enhanced anti-cancer potential by combining
low doses of diclofenac with DHA, which can be further developed for chemopreventive/adjunct
therapeutic use. A safe and efficacious combination therapy of diclofenac and DHA can serve as
an adjunct to surgery and prevent the formation of new lesions, while lowering the overall risk of
disease progression.
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Abbreviations

DHA docosahexaenoic acid
EPA eicosapentaenoic acid
COX cyclooxygenase
NSCLC non-small cell lung cancer
NSAIDs non-steroidal anti-inflammatory drugs
DCF diclofenac
PUFAs polyunsaturated fatty acids
PGs prostaglandins
CI combination index
GTPase nucleotide guanosine triphosphate hydrolase
NFκB nuclear factor kappa-light-chain-enhancer of activated B
TGF-β transforming growth factor beta
MEK mitogen-activated protein kinase/extracellular signal-regulated kinase
ERK extracellular signal-regulated kinase
PPARs peroxisome proliferator-activated receptors
MAPK mitogen-activated protein kinase
PI3K phosphoinositide 3-kinase
Akt protein kinase B
mTOR mammalian target of rapamycin
JAK janus kinase
STAT signal transducer and activator of transcription
FITC fluorescein isothiocyanate
RIPA radioimmunoprecipitation assay
BCA bicinchoninic acid assay
GADD45A growth arrest and DNA damage-inducible alpha
TNFAIP3 tumor necrosis factor alpha-induced protein 3
CDC25C M-phase inducer phosphatase 3
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E2F1 transcription factor
PCNA proliferating cell nuclear antigen
CCNA2 cyclin-A2
CCNB1 G2/mitotic-specific cyclin-B1
CCNE2 cyclin E2
HDAC2 histone deacetylase 2
POLE2 DNA polymerase epsilon subunit 2
UBE2T ubiquitin-conjugating enzyme
HIST1H3B histone H3.1
CDKN2C cyclin-dependent kinase 4 inhibitor C
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