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Abstract: Biomarkers for predicting individual response to radiation and for dose verification are
needed to improve radiotherapy. A biomarker should optimally show signal fidelity, meaning that
its level is stable and proportional to the absorbed dose. miRNA levels in human blood serum
were suggested as promising biomarkers. The aim of the present investigation was to test the
miRNA biomarker in leukocytes of breast cancer patients undergoing external beam radiotherapy.
Leukocytes were isolated from blood samples collected prior to exposure (control); on the day when
a total dose of 2 Gy, 10 Gy, or 20 Gy was reached; and one month after therapy ended (46–50 Gy
in total). RNA sequencing was performed and univariate analysis was used to analyse the effect
of the radiation dose on the expression of single miRNAs. To check if combinations of miRNAs
can predict absorbed dose, a multinomial logistic regression model was built using a training set
from eight patients (representing 40 samples) and a validation set with samples from the remaining
eight patients (15 samples). Finally, Broadside, an explorative interaction mining tool, was used
to extract sets of interacting miRNAs. The most prominently increased miRNA was miR-744-5p,
followed by miR-4461, miR-34a-5p, miR-6513-5p, miR-1246, and miR-454-3p. Decreased miRNAs
were miR-3065-3p, miR-103a-2-5p, miR-30b-3p, and miR-5690. Generally, most miRNAs showed
a relatively strong inter-individual variability and different temporal patterns over the course of
radiotherapy. In conclusion, miR-744-5p shows promise as a stable miRNA marker, but most tested
miRNAs displayed individual signal variability which, at least in this setting, may exclude them as
sensitive biomarkers of radiation response.

Keywords: miRNA; radiation; biomarker; radiotherapy

1. Introduction

Radiation therapy is an extreme form of planned radiation exposure in that it involves
very high doses which are lethal if given to a large part of the body [1]. Patients survive
radiotherapy because the high dose is confined to the tumour tissue and exposure of
normal tissue is minimised. Nevertheless, radiotherapy is associated with risks of side
effects, both of deterministic (tissue damage) [2] and stochastic (cancer) nature [3].

A certain degree of early and late tissue reactions is an inherent element of radiother-
apy. This is because the radiation doses given to critical organs are on the upper edge
of tolerability, which is defined for an average patient [4]. Nevertheless, some patients
develop severe side effects and one of the components may be a genetic-based, individual
sensitivity to radiation of normal tissues [5,6]. Attempts are being undertaken to develop
biomarkers of individual sensitivity to radiation so that highly sensitive patients can be

Int. J. Mol. Sci. 2021, 22, 8705. https://doi.org/10.3390/ijms22168705 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8004-9864
https://orcid.org/0000-0002-3951-774X
https://orcid.org/0000-0003-2023-7454
https://doi.org/10.3390/ijms22168705
https://doi.org/10.3390/ijms22168705
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22168705
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22168705?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 8705 2 of 13

identified prior to therapy [7,8]. Additionally, radiotherapy is a double-edged sword in
its use as a cancer treatment—being itself a carcinogen. Not surprisingly, patients who
are cured by radiotherapy live with an elevated risk of suffering from radiation-induced
cancers, which are termed second cancers or second malignant neoplasms (SMN) [3].
Biomarkers of susceptibility to radiation-induced damage might also help in identifying
patients with an enhanced risk of second cancers [8].

Given the fact that doses absorbed by normal tissues in the course of radiotherapy are
on the upper edge of their tolerability, precision of dose delivery and quality control are
elementary to the procedure [9]. Accidental over- and underexposures do occur and have
deleterious effects [1]. Overexposures lead to development of life-threatening normal tissue
reactions, and underexposures to loss of tumour control. Application of dose verification
methods is recommended, but the classical in vivo dosimetry using physical dosimeters
is increasingly difficult due to the development of sophisticated RT techniques [10,11].
An alternative in vivo dosimetry method is based on analysing biomarkers of radiation
exposure. Here, the gold standard is the dicentric test for peripheral blood lymphocytes.
Its applicability for verifying the doses absorbed during radiotherapy was tested by several
authors and its general problem was found to be the high inter-individual variability
(summarised in [12]).

Whether a biomarker is used for assessing the individual response to radiation or for
estimating the absorbed dose, an important criterion determining its usability is signal
fidelity. By this we mean that its level is stable upon repeated sample collection and that
it shows a consistent relationship to the absorbed dose. miRNA levels in mouse blood
serum have been suggested as promising biomarkers of absorbed dose [13,14]. The aim
of the present investigation was to test the fidelity of leukocyte miRNA expression as an
in vivo dosimeter. To this end we collected peripheral blood mononuclear cells (PBMC)
from patients before, during, and after external radiotherapy for breast cancer. Global
levels of miRNA were measured by RNA sequencing. miRNA candidates were selected
by univariate analysis, multinomial logistic regression model building, and interaction
searches.

2. Results
2.1. Sample Description

Blood was sampled from breast cancer patients given fractionated radiotherapy, where
each patient received 2 Gy per fraction, five days per week (Monday–Friday). Sampling was
performed before radiotherapy, on the day of exposure to 2, 10 (5 × 2), and 20 (10 × 2) Gy,
and one month after the full fractionation scheme ended, which varied between 23 and 25
fractions of 2 Gy (“1 month”, for 46 or 50 Gy in total from 23 or 25 × 2 Gy, respectively, is
used throughout the figures/tables to discriminate the late from the earlier responses). Of
the original cohort of 16 breast cancer patients, due to technical reasons (see Patient Samples
section) we had complete sets of samples from only five patients (patients 7, 9, 14–16) and
all doses, except one, for three patients (patients 8, 12, 13) (Table 1). This eight-patient set,
representing 40 samples after applying imputation of missing dose measurements (see
Section 4.4), was combined into a training set, while the remaining patient specimens were
used as a validation set (15 samples).
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Table 1. Description of patients and samples used in the study. The group column shows which patient sample sets were
used in the training or validation cohort. The total dose column shows the doses (given in 2 Gy fractions over five days per
week) received by the patients after which miRNA expression could (green colour) or could not (no colour) be measured.
Sampling was performed on the day when an accumulated dose of 2, 10, and 20 Gy, and one (1) month after the full dose of
46 or 50 Gy, was reached.

Patient ID Age Smoker Group Total Dose [Gy]

0 2 10 20 46–50/1 Month
1 61 No Validation
2 65 No Validation
3 56 No Validation
4 72 No Validation
5 74 No Validation
6 66 NK Validation
7 57 Yes Training
8 67 No Training
9 64 No Training
10 75 No Validation
11 81 No Validation
12 65 No Training
13 58 Yes Training
14 65 No Training
15 68 Yes Training
16 60 No Training

NK: not known.

2.2. Principal Component Analysis

We first analysed whether blood samples collected after the various doses could
be differentiated. Sequencing libraries from all samples were of similar quality. The
outlier and missing expression values were randomly spread across different miRNAs
and samples (Figure S1). After normalization, miRNA expression measurements were
comparable between all samples (Figure S2). Principal component analysis (PCA) based
on 573 miRNAs left after removing low expression data (see Section 4.4), shows that the
different doses received by the patients could not be discriminated from one another
(Figure 1).
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Figure 1. Principal component analysis plot based on 573 miRNAs left after filtering with each dose/collection time point
in a different colour. The accumulated dose is shown in all figures, where 10 Gy was given as 5 × 2 Gy, 20 Gy as 10 × 2 Gy,
and 1 month represents the time of sampling after reaching, in total, 46–50 Gy, given as 23 or 25 × 2 Gy. Euclidean distance
was used. Training sets (a) and validation sets (b) were analysed separately.

2.3. Radiation-Responsive miRNAs

Next, we analysed the trends of radiation-induced miRNA changes in the training
set by pairwise comparison between each dose. Two hundred and fifty-six miRNAs



Int. J. Mol. Sci. 2021, 22, 8705 4 of 13

were differentially expressed (DE) in at least one comparison (uncorrected p-value < 0.05).
Overall, there were more up- than downregulated miRNAs versus the control or the
adjacent dose (Table 2). The highest number of DE miRNA was observed in the 2 vs. 0 Gy
comparison, which reflects a fast response to radiation, and at 1 month after therapy ended
vs. 0 Gy, which reflects a late response (Figure 2a). Most DE miRNAs were unique to each
dose comparison. When false discovery rate (FDR) control was applied, only miR-3065-3p
was significantly downregulated at 2 Gy in comparison to control, with the same trend after
the other doses. However, a large inter-individual variability was observed (Figure 2b).
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Figure 2. Discovery of differentially expressed (DE) miRNAs analysed in the training cohort. (a) UpSet plot that shows
intersection of DE miRNAs among comparisons between different total doses. M represents one month after end of therapy
(46/50 Gy in total); (b) Expression of a significantly different miRNA in 2 Gy versus control, after multiple testing correction;
(c) Trend patterns diagram of miRNAs. Box colours represent downregulation (blue), no change (grey), or upregulation
(red) versus the adjacent, lower total dose (or versus control for 2 Gy). The lowest branch level is drawn vertically to save
space. The numerical value corresponds to the number of miRNAs in that branch.
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Table 2. Number of regulated miRNAs in the training set when comparing two groups using a t-test, prior to multiple
correction. The numbers 0, 2, 10, and 20 represent total doses in Gy, and M is one month after end of therapy (when a total
dose of 46 or 50 Gy was accumulated).

Dose 2 vs. 0 Gy 10 vs. 2 Gy 20 vs. 10 Gy M vs. 20 Gy 10 vs. 0 Gy 20 vs. 0 Gy M vs. 0 Gy

Up-regulated miRNAs 74 12 24 22 36 46 61
Down-regulated miRNAs 20 44 21 18 14 18 16

The miRNAs from the training cohort were then grouped according to a significant
change (up (U) or down (D), uncorrected p-value < 0.05) or no change (N) in the expression
level between subsequent doses (higher versus lower) (Figure 2c). The largest branch
(pattern group) contained no significantly altered miRNAs at any dose (380 miRNAs).
The second largest branch displayed an upregulation of miRNAs by the first fraction
and then no significant change with dose (51 miRNAs), while the third largest branch
contained miRNAs which were downregulated at 10 Gy vs. 2 Gy, with no change in
the other comparisons (22 miRNAs). Following the initial N response, there were both
up- and downregulated miRNAs after 10 Gy; however, after initial U response there
were no upregulated miRNAs after 10 Gy, and, after initial D response, there were no
downregulated miRNAs after 10 Gy. In none of the cases were significant changes in
miRNA expression consistently correlated with the increasing or decreasing dose (UUUU
or DDDD patterns).

2.4. Dose Predictive miRNA Signatures

In the next step, we searched for miRNA signatures which could predict the absorbed
dose. A multinomial logistic regression with five possible outcomes representing dose
points was used to build a statistical model with non-redundancy of the most discrimina-
tive miRNAs, relative to 0 Gy. Due to the small sample size, no additional feature selection
method was used. After filtering (see Statistical Analysis section), 185 miRNAs were used
to construct multinomial logistic regression models, and 1,055,425 multinomial logistic re-
gression models (185 with 1 miRNA, 17,020 with 2 miRNAs, and 1,038,220 with 3 miRNAs)
were built on 40 samples from the training dataset, and validated on the 15 samples lacking
measurements for all doses (by-chance classification error rate equals 80.0% in training
set and 78.2% in validation set). For each size of the miRNA signature (n = 1, 2, or 3), the
two best models were selected, as described in the Statistical Analysis section (Table S1;
Figure S3).

The best single miRNA in the training set was miR-744-5p (training set error = 57.5%;
validation set error = 66.7%), the best pair was miR-4461; miR-6513-5p (training set
error = 42.5%; validation set error = 73.3%), and the best triplet was miR-103a-2-5p; miR-
1246; miR-454-3p (training set error = 30.0%; validation set error = 73.3%) (Figure 3a).
For the best miRNAs in the validation set, the overlap was better: the best single was
miR-34a-5p (training set error = 65.0%; validation set error = 46.7%), the best pair was
miR-30b-3p; miR-34a-5p (training set error = 62.5%; validation set error = 20.0%), and the
best triplet contained the miRNAs from the best pair plus miR-5690 (training set error
= 50.0%; validation set error = 20.0%) (Figure 3b). Although the overall level of falsely
identified miRNAs was relatively high (Table S1; Figure S3), the general patterns of the
identified miRNAs displayed a clear concordance in upregulation or downregulation.
However, at an individual level, a high level of variability was evident.
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2.5. Interacting, Dose Informative miRNAs

With the available information on the expression patterns of all miRNAs, it was
interesting to identify miRNA which showed the highest level of interaction with other
miRNA as a function of dose. When comparing each dose to 0 Gy using the Broadside
algorithm (Figure 4a), the highest main effects (the impact of individual miRNA to dose
change) were estimated for miR-181a-2-3p and miR-181b-2-3p. The strongest interactions
(added value of using two miRNAs together) were observed between miR-181b-2-3p, miR-
181a-2-3p, miR-873-5p, and miR-4461, and also between miR-1538 and miR-659-5p. In the
analysis of adjacent doses (Figure 4b), the highest main effects were found for miR-181a-5p,
miR-1246, and miR-7977. Two main miRNAs interacted with many miRNAs: namely,
miR-1246 interacted with miR-4746-5p and miR-889-3p, and miR-181a-5p interacted with
miR-146a-5p, miR-34a-5p, and miR-26a-1-3p. Both miR-1246 and miR-4461 were already
discovered in the model building step, which supports the hypothesis that these miRNAs
may be promising dose predictors when in cooperation with other miRNAs; however,
analyses in larger cohorts are needed.
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3. Discussion

The aim of this investigation was to analyse the suitability of miRNAs in peripheral
blood leukocytes as biomarkers of exposure and response to radiation. To this end, we
analysed global miRNAs in leukocytes from breast cancer patients after they received total
tumour doses of 2, 10, 20, or 48–50 Gy, given in 2 Gy fractions. The PCA plots indicate
that there is a high level of intra- and inter-donor variability since few overall consistent
patterns were visible using this method. Still, the average levels of several miRNA, alone
or in combination, were recurrently modulated by radiation exposure.

Following multiple testing correction, only miR-3065-3p was found to be significantly
decreased after 2 Gy with a trend towards a further decrease at higher doses. Although
decreased in our study, previous reports indicated that miR-3065-3p is involved in DNA
damage induction via the p53 signalling pathway, since it was upregulated by stable trans-
fection of wild type p53 [15] and repressed when mutant p53 was stably transfected [16].
Although a 3p strand miRNA is considered to play a minor role as compared with 5p, there
are indeed numerous situations where the 3p form is expressed and functional [17].

The most stably increased miRNA, miR-744-5p, was reported to be high in the plasma
of pancreatic cancer patients and an independent marker of cancer progression and recur-
rence [18]. We cannot rule out the possibility that its increase reflects other tumour-related
events, such as an enrichment of radiation resistant stem-like cells during therapy. Ex vivo
experiments could shed more light on the relation between radiation-induced cellular dam-
age and expression of this miRNA. miR-103a-2-5p showed, in combination with miR-1246
and miR-454-3p, the lowest classification error in both the training and validation sets.
miR-103a-2-5p expression was elevated at 4, 8, and 24 h post X-ray exposure, while it was
decreased at 12 h after exposure in TK6 cells [19]. In our samples, the expression pattern
was also sigmoidal but the timing was different. miR-103a-2-5p controls the expression
level of the single strand break repair protein poly-(ADP-ribose) polymerase 1 (PARP1)
and pre-miR-103a-2-5p transfection decreased PARP1 mRNA and enhanced DNA damage
in primary human aortic endothelial cells [20]. Hence, its downregulation by radiotherapy
is plausible and could possibly reflect a compensatory elevation of DNA damage response
via PARP1.
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miR-1246 was a highly elevated exosomal miRNA at 24–48 h after irradiation in
non-small cell lung cancer (NSCLC) cells [21] and is proposed to be a potential diagnostic
serum biomarker for diverse cancers [21,22]. Our daily fractionation might have allowed
miR-1246 to remain elevated at 2–10 Gy, although we measured intracellular levels. Tumour
removal might have contributed to the minor decrease at 1 month post-therapy. The last
triplet miRNA, miR-454-3p, targets the tumour suppressor gene B cell translocation gene
1 (BTG1), which is induced in response to stressors including X-rays [23]. Transfection of
cells with miR-454-3p or BTG1 siRNA increased cellular radiosensitivity [23].

Model building on the validation set identified miR-34a-5p as the best candidate.
Its gradual increase up to 20 Gy correlates with elevated levels in stimulated human T
lymphocytes [24], as well as in total abdominal irradiated (TAI) mice, where effects were
prevented by injecting an antagonistic miR-34a-5p [25]. miR-34a-5p is a well-known p53-
regulated tumour suppressor miRNA targeting RAD51, thereby inhibiting double strand
break repair and sensitising to radiation [26]. The other two miRNAs identified were
miR-30b-3p—weakly reduced after 10 Gy and also decreased at 12 h in TK6 cells [19]—
and miR-5690, with no previous connection to radiation response. As shown for these
miRNAs, the temporal miRNA response has a role in the interpretation of the data. Due to
the fractionation schedule, the dose increase is paralleled by an increase in time, but the
response of certain miRNAs may be affected by time and not only dose. This is a factor to
consider, since it is not possible to compare 2, 10, and 20 Gy of acute irradiation to each
other using this setup.

What limits the use of radiation-modulated miRNAs as biomarkers of radiation
exposure is the large individual variability. Generally, high variability in control miRNA
levels restricts the creation of a calibration curve which could be used for assessing an
absorbed dose in a person whose background level is not known. Such a strategy is
possible with cytogenetic biomarkers of radiation exposure, because the background level
of chromosomal damage is very low [27]. It is likely that the strong individual variability
is related to the partial body exposure of radiotherapy patients. Similar observations
were made for chromosomal aberrations and micronuclei in PBL of radiotherapy patients
exposed to a single dose of radiation [28], as well as for gamma H2AX foci after fractionated
irradiation [29], and is obviously related to the relatively low and variable fraction of
lymphocytes which are in the radiation field when a dose is delivered [30]. Breast cancer
patients were selected for this study largely due to the availability of samples, yet this
choice may in retrospect have been a limitation of the study. It has lately become evident
that this tumour type receives a lower calculated mean dose to blood cells than a number of
other tumour types, and it also, therefore, has a relatively low increase in expression of the
radiation-responsive gene FDXR per dose given externally at 24 h after the first fraction [31].
It is logical that irradiated blood volume has been suggested as an important determinant
for the radiation-induced transcriptional response when comparing tissues [31,32], and
since the irradiated tumour volume is not constant, this creates variability between patients.
Thus, high individual variability does not preclude the possibility that a more homogeneous
response is achieved after whole body exposure. Indeed, reproducible dose–response
relationships were obtained with mRNA measurements in lymphocytes of cancer patients
receiving total body irradiation [33]. It is also possible that serum samples, containing
secreted miRNA from the irradiated tissue, can represent the irradiated tissue better
than leukocytes in the case of partial body irradiation. Finally, the number of patients
in this study posed a limitation as well, although it would have been less of a problem
if the baseline levels were as stable as when using the chromosomal aberration assay.
Additional patients could not easily be included in this study later, however, due to altered
fractionation schemes for breast cancer radiotherapy at the nearby hospital.

In conclusion, our study reports on several potentially radiation-induced miRNAs,
in particular the increase in miR-744-5p. Additionally, this type of analysis of samples
from radiotherapy patients further suggests that the irradiated blood volume may be an
important factor when analysing leukocytes.
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4. Materials and Methods
4.1. Patient Samples

Blood samples were drawn from 16 patients with breast cancer undergoing radiother-
apy (details in [12]). Ten millilitres of blood was sampled before radiotherapy, on the day
when 1 × 2 Gy (100% prescription isodose to the tumour), 5 × 2 (10) Gy, 10 × 2 (20) Gy
was reached, and one month after 23 or 25 fractions of 2 Gy (“1 month”, 46 or 50 Gy from
23 or 25 × 2 Gy, respectively). Reasons for incomplete data were that the cell pellets were
limited for some samples and did not yield RNA of sufficient quantity or quality. The
ethical approval was performed by the regional ethical review board (no. 2016/1361-32,
which is an amendment to 2010/1726-31/4). The early side effects to radiotherapy of these
patients were classified as grade 1–2 using the Radiation Therapy Oncology Group scale.

4.2. Sample Preparation

Blood was collected in heparinised tubes and kept on ice for at least 10 min. Leukocytes
were separated from red blood cells by gentle mixing of blood with red blood cell lysis
buffer (RCLB, containing 0.15 M NH4Cl, 10 mM KHCO3, and 0.1 mM EDTA, set to pH 7.3)
for 20–60 min at 4 ◦C. After centrifugation at 300× g at 4 ◦C for 5 min, cells were washed
with RCLB again, then with phosphate-buffered saline (PBS). The prepared leukocytes
were frozen at −150 ◦C in RPMI medium supplemented with 10% defined bovine serum
(DBS), 1% PEST, and 10% DMSO (all from Sigma-Aldrich, Stockholm, Sweden). Before
RNA preparation, samples were thawed quickly using a 37 ◦C water bath, cells were
pelleted at 1500 rpm for 4 min, and washed with PBS.

The miRNeasy Mini Kit (Qiagen, Sollentuna, Sweden) was used for RNA preparation,
combining phenol/guanidine-based lysis of samples with silica membrane purification of
total RNA from 18 nucleotides and upwards. RNA quality was assessed using an Agilent
2100 Bioanalyzer with an Agilent RNA 6000 Nano Kit (2100 Expert Eukaryote Total RNA
Nano, Agilent Technologies Sweden AB, Kista, Sweden), where an RNA integrity number
(RIN) > 5 is regarded as good quality, and >8 as perfect [34]. Our samples displayed
RIN of 5.9 ± 1.6 (average ± standard deviation), however the value was not available for
18/52 samples (35%). Upon receipt at the National Genomics Infrastructure Sweden, RIN
values of 4.5 ± 0.5 were given using the Qubit Fluorometer. We decided to proceed with
the samples, despite the relatively low RIN values, since RIN values were reported to have
negligible or no effect on miRNA analysis, while accuracy is more commonly reduced for
mRNA analysis [35].

4.3. RNA Sequencing and Reads Pre-Processing

Library preparation was carried out by a modified version of the Illumina TruSeq
Small RNA library preparation protocol. Sequencing was performed on the Illumina HiSeq
2500 platform with high output mode, V4 reagents, and 1 × 50 single-end setup. Raw
sequence reads were trimmed with trim_galore v. 0.4.5. [36]. Sequence reads shorter than
18 bp after trimming or Phred quality score lower than 20 were removed from downstream
analysis. Alignment was performed against human mature miRNA sequences in miRBase
v21 containing, in total, 35,828 mature miRNA products in 223 species, where 2588 mature
miRNAs were human. For this purpose, the QuickMIRSeq algorithm was used, which
incorporates the strand information in the alignment, filters out reads potentially arising
from background noise, and remaps sequences aligned to miRNAs with mismatches to a
reference genome to further reduce false positives [37]. The application of QuickMIRSeq
with filtering and remapping of mismatches gave quantified expression for 879 miRNAs.

4.4. Data Cleaning and Imputation

In the first step, for each miRNA and radiation dose of 5 patients with complete
information (patients 7, 9, 14–16, Table 1), outlier expression values were detected using
Dixon’s Q-test. For each dose separately, detected outlier values were replaced with
the corresponding values from the nearest-neighbour patient. Patients’ similarity was
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estimated using correlation-based measures. In the second step, cleaned expression data
for 5 patients were used to impute measurements for 3 patients with only one single
dose missing (patients 8, 12, 13, Table 1). For each miRNA and patient, a missing dose
measurement was imputed with the corresponding value from the nearest-neighbour
patient from the complete 5-patient set. Imputed values did not change the distribution of
the miRNA’s expression level. In this step, 3 from 40 samples (7.5%) were imputed.

4.5. Statistics of Sequencing Data

In total, 20–50 million sequence reads were obtained for all samples, and 80–95% of
them were retained after adapter trimming and quality filtering. The mean insert sizes
were 25–35 bp, which is slightly longer than the theoretical length of miRNA (20–22 bp).
This is acceptable since, during library preparation, other types of small RNAs are also
selected. For all samples 90–97% of filtered reads could be aligned to the human reference
genome GRCh37. For most of the samples, 10–30% of reads were aligned to human mature
miRNA in miRbase [38], and 10–20% of reads aligned to human miRNA precursors. Since
we aligned reads to miRBase, only miRNA expression was analysed in this study.

4.6. Filtering and Normalisation

Low-expression miRNAs were filtered using the threshold of a minimum of 5 counts
in at least 50% of the samples, as suggested in [39]. In the training set, 306 miRNAs with low
expression were removed (573 miRNAs left). In the validation group, the same miRNAs
were removed. Normalization was performed using the upper quartile (UQ) method. It
scales the expression data using the third quantile of expression values for each sample
separately. Finally, data were transformed using log2(x + 1) to reduce the skewness and the
number of extreme values.

4.7. Statistical Analysis

A t-test for paired samples was used to find differences in miRNA expression between
subsequent doses. Left-tail and right-tail hypotheses were investigated separately to
estimate the direction of expression change between doses. The Benjamini–Hochberg
algorithm was used for multiple testing correction by controlling the false discovery rate.
Due to small sample sizes in this study, miRNA was treated as differentially expressed if
the p-value, without correction for multiple testing, was smaller than 0.05.

Prior to model building, miRNAs with p-values from univariate analysis higher than
0.05 in all comparisons between each dose and no radiation (0 Gy) were filtered away
(185 miRNAs left). A multinomial logistic regression with 5 possible outcomes representing
dose points (relative to 0 Gy) was used to build a statistical model on the training set, which
was then tested on the validation set. No additional feature selection method was used,
except the feature filtering described above. Instead, the best combinations of 1, 2, and
3 miRNAs were found, giving miRNA signatures of dose prediction. For each size of the
signature, we selected two final models assuming the following scenarios: (1) from the pool
of models with the lowest classification errors in the training set, we chose the one with the
lowest classification error in the validation set, and tagged the selected signature as the
best training set miRNAs; (2) from the pool of models with the lowest classification errors
in the validation data, we chose the one with the lowest classification error in the training
data, and tagged the selected signature as best validation set miRNAs. The by-chance
classification error rate was computed as a sum of squared proportions of samples classified
to each dose point.

An explorative feature selection and interaction mining tool called Broadside (down-
loaded from http://zaed.aei.polsl.pl/index.php/pl/oprogramowanie-zaed on 10 Novem-
ber 2017) was used to discover sets of interacting informative miRNAs [40]. Broadside
consists of a series of miRNA permutations, combined with a flexible decomposition of
the miRNA total effect into main and interaction effects. Main effect measures the impact
of individual miRNA on the outcome (dose change), and interaction effect represents the

http://zaed.aei.polsl.pl/index.php/pl/oprogramowanie-zaed
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added value of using two miRNAs together. To preserve the paired nature of the data, two
analysis scenarios were introduced: (1) expression differences were calculated between
any dose and 0 Gy; (2) expression differences were calculated between adjacent doses
(0 vs. 2 Gy, 2 vs. 10 Gy, 10 vs. 20 Gy, and 20 Gy vs. 1 month).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22168705/s1.
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