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Machine learning approaches 
for predicting arsenic adsorption 
from water using porous 
metal–organic frameworks
Jafar Abdi1* & Golshan Mazloom2

Arsenic in drinking water is a serious threat for human health due to its toxic nature and therefore, 
its eliminating is highly necessary. In this study, the ability of different novel and robust machine 
learning (ML) approaches, including Light Gradient Boosting Machine (LightGBM), Extreme Gradient 
Boosting, Gradient Boosting Decision Tree, and Random Forest was implemented to predict the 
adsorptive removal of arsenate [As(V)] from wastewater over 13 different metal–organic frameworks 
(MOFs). A large experimental dataset was collected under various conditions. The adsorbent dosage, 
contact time, initial arsenic concentration, adsorbent surface area, temperature, solution pH, and the 
presence of anions were considered as input variables, and adsorptive removal of As(V) was selected 
as the output of the models. The developed models were evaluated using various statistical criteria. 
The obtained results indicated that the LightGBM model provided the most accurate and reliable 
response to predict As(V) adsorption by MOFs and possesses  R2, RMSE, STD, and AAPRE (%) of 
0.9958, 2.0688, 0.0628, and 2.88, respectively. The expected trends of As(V) removal with increasing 
initial concentration, solution pH, temperature, and coexistence of anions were predicted reasonably 
by the LightGBM model. Sensitivity analysis revealed that the adsorption process adversely relates to 
the initial As(V) concentration and directly depends on the MOFs surface area and dosage. This study 
proves that ML approaches are capable to manage complicated problems with large datasets and can 
be affordable alternatives for expensive and time-consuming experimental wastewater treatment 
processes.

As a highly toxic material, arsenic is distributed all over environmental waters. Arsenic can be produced naturally 
through biological activity and earth crust. Also, it can be caused by human activity such as agriculture, min-
eral extraction, and discharge of industrial  wastewater1. Inorganic arsenic mainly exists in two forms; arsenite 
[As(III)] and arsenate [As(V)]. Arsenate is the main species found in natural surface water bodies, while arsenite 
predominantly exists in the  groundwater2. Both of them are highly toxic, but As(III) is approximately 60 times 
more toxic than As(V)3. Generally, As(III) holds neutral and un-dissociated forms, therefore its removal is very 
 challenging4 and it is required first to oxidize arsenite to arsenate for its effective removal. Arsenic is a global 
threat to human health. Long-term exposure to arsenic, mainly through contaminated water and food, can cause 
severe diseases such as kidney, liver, skin, and lung  cancers5. World Health Organization (WHO) has set the 
maximum level of 10 µg/L for arsenic in drinking  water6. Therefore, effective removal of this heavy metal is still 
a vital task. Different technologies have been developed for arsenic removal, including ion exchange, biological 
techniques, coagulation, precipitation, reverse osmosis, filtration, and  adsorption7,8. Among these technologies, 
adsorption over the porous adsorbents is generally one of the most promising methods due to the high efficiency, 
cost affordable, and mild operating  conditions9. Different porous adsorbents have been developed and studied for 
arsenic removal, such as zeolites, natural clay, carbonous materials, metal oxides, and metal–organic frameworks 
(MOFs)10,11. Recently, MOFs, as a new class of porous materials, have been attracted much interest in different 
 fields12–18. MOFs consist of metal ions or clusters, which are coordinated through organic linkers. Owning to 
their characteristic features; i.e., large surface area, high porosity, adjustable pore size, high crystallinity, good 
thermal and chemical  stability19,20. So far, many studies have shown the remarkable ability of different MOFs to 

OPEN

1Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran. 2Department 
of Chemical Engineering, Faculty of Engineering, University of Mazandaran, Babolsar, Iran. *email: Jafar.abdi@
shahroodut.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-20762-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16458  | https://doi.org/10.1038/s41598-022-20762-y

www.nature.com/scientificreports/

adsorb various contaminants, such as heavy  metals5,21,22. For example, the performance of ZIF-8 was evaluated in 
the adsorptive removal of As(III) and As(V) by Jian et al.23. The authors have reported the maximum adsorption 
capacity of 49.49 and 60.03 mg/g for As(III) and As(V), respectively, at pH = 7 and room temperature. UiO-66 was 
successfully synthesized by Audu et al.24 for adsorption of As(V) and As(III). They reported that faster and more 
efficient adsorption obtained as the pore sizes increased by reducing particle sizes. Li et al.25 was compared the 
performance of acetate modulated MOF-76(Y) with pristine MOF-76(Y) in the adsorptive removal of As(V) in 
the alkaline solutions. It was shown that the acetate modulated sample exhibited a higher pore volume and smaller 
particle size, which indicated excellent performance in the adsorption of arsenate with a maximum adsorption 
capacity of 201.46 mg/g. The superior performance of pristine MIL-88A(Fe) and MIL-88A(Fe) decorated on 
cotton fiber was reported by Pang et al.26 in the adsorption of As(III) and As(V).

Employing MOFs in the practical application requires many challenges and obstacles to be overcome. Evalu-
ation of the MOFs’ efficiency involves conducting the experiments, which are the most expensive and time-
consuming steps. In addition, the results obtained for the removal of the contaminants in laboratory operations 
cannot be scaled up to real plants. While studying the effects of different operating variables is necessary for 
control and consequently optimization in large-scale processes. The development of mathematical models is 
the first attempt to study the various processes widely studied by different  researchers27–31. However, providing 
mathematical models for complex processes is extensively CPU- and time-consuming requiring a lot of time and 
effort. Fortunately, other approaches based on machine learning (ML) have been developed for modeling and 
simulation of such complex processes. These robust alternative approaches can predict complicated processes 
without solving theoretical equations. Nowadays, ML methods have been utilized in various areas due to their 
excellent performance with acceptable accuracy and  reliability32–38.

In this study, we employ new approaches based on the ML for predicting As(V) adsorption from wastewater 
using MOFs at different operating conditions. The main novelty of the current work is the implementation of 
new innovative models that are efficient for managing extensive data collections. So far, the models based on 
the ML methods have not been previously employed for estimating As(V) removal over MOFs. Thus, a large 
dataset assigned to the As(V) adsorption by different MOFs adsorbents were collected at various conditions, 
including adsorbent dosage, arsenic concentration, contact time, temperature, solution pH, adsorbent surface 
area, and the presence of anions. Then, four powerful models Light Gradient Boosting Machine (LightGBM), 
Extreme Gradient Boosting (XGBoost), Gradient Boosting Decision Tree (GBDT), and Random Forest (RF) 
were implemented for predicting As(V) adsorption efficiency.

Theory of the utilized model
Light gradient boosting machine (LightGBM). The LightGBM is developed according to the most 
basic concepts of gradient  learning39. Comparing the LightGBM and the XGBoost throws light on the Light-
GBM’s better efficiency and consumption of less memory. These advantages expedite the training phase of the 
model  development40. Dividing eigenvalues, the LightGBM form ‘k’ different bins. Doing so, a histogram having 
a total width of ‘k’ can be constructed. As soon as the procedure mentioned above is completed, there would be 
no need for any ensemble with pre-sorted results. The resulting values could be stored in eight-bit memory space 
as an integer value. Therefore, the amount of memory needed for keeping the calculated values would be dipped 
drastically, and consequently, such an approach reduces the preciseness of the resulting model. The LightGBM 
also benefits from the Leaf-wise problem-solving method. It has been seen in investigations that the leaf-wise 
strategy is much more robust and expeditious than any other traditional strategy. The most salient and affect-
ing factor in making the leaf-wise strategy more powerful and reliable than any level-wise approach is the fact 
that all the leaves of a specific layer will possibly be taken into consideration for calculations, which decreases 
memory  allocation41.

Extreme gradient boosting model (XGBoost). To find the minimum answer for a series of objective 
functions defined for an ensemble, classification and regression trees (CARTs) can be used expeditiously. Among 
all various forms of gradient boosting structures, the XGBoost method could be mentioned as a highly efficient 
tree-shaped approach. Typically, a CART model comprises three primary layers. Firstly, the main nodes could 
also be referred to as the root layer. Secondly, the interiors or internal nodes and what is located at the third layer 
could be named as the leaves or leaf nodes. A range of processes known as binary decision-making operations 
is responsible for dividing the root node and forming the internal nodes. These processes expeditiously develop 
the internal nodes from data sets made available in the root node. Finally, the classification operations will be 
completed in leaves of the modeling tree, resulting in the final classes. The robustness and the accuracy of every 
model could be improved by introducing various ensembles to the CARTs and developing them by assigning 
specified weight factors. The mentioned weight factor will determine how much an ensemble could affect the 
final result of the  model42.

Gradient boosting decision tree (GBDT). In contrast with the Adaboost approach, the Gradient Boost-
ing model utilizes the previously made residual errors of its precursor  learners43. As in this method, a loss 
function is minimized during the model development procedure; it can be contemplated as a kind of decent 
gradient  approach44. The currently presented study seeks to benefit from a combination of the Gradient Boost-
ing approach and the decision trees, known as the gradient boosting decision tree (GBDT) method. Suppose 
an ensemble of experimentally obtained data with the form of 

{(

x1, y1
)

,
(

x2, y2
)

,
(

x3, y3
)

, . . . ,
(

xn, yn
)}

 , the 
GBDT’s steps could be presented as  follows41:

Step A. Initialization of f0(x).
Step B. Iteration on tree learners from b = 1 to b = B.
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B1. Calculation of negative gradient  (Zl).
B2. Setting Gb(x) (regression tree) to the targets  (Zl, l = 1,…,N).
B3. Determination of the size of each decent gradient.
B4. Continuously update fb(x).
Step C. the output corresponding to each data point of (x, b) will be fB(x).
For developing a predictive model, a range of hyper-parameters had to be assigned, such as the number of 

decision tree learners, a subset of the ensemble for initial feeding to the learners, the upper limit of the allowable 
depth, the lowest number of leaves, number of features, and number of data points in the separated sample as 
the sample  split45.

Random forest (RF). The random forest modeling approach is fabricated from a combination of various 
decision trees. The random forest will train each tree simultaneously with other trees. However, it does not 
mean that trees have equal importance. In this predicting method, the algorithm is responsible for determining 
the superiority of every individual  tree46. Additionally, to manage different features, the RF is enabled to select 
various features by implementing a built-in property of the RF classifier. This property will help the RF model 
to determine features without the elimination of some parameters and lowering the dimension of a complex 
 problem47. Furthermore, a process known as bagging, which is the abbreviated version of bootstrap aggregat-
ing, is employed by the RF model to prevent similarity between trees in the forest and preserve their diversity. 
In the model development, the tree’s population is typically determined for the model as an inputted integer. 
Afterward, data points will be discretized into various subgroups according to the number of required trees. As 
a method for randomized sampling, bagging will try to use approximately 30 percent of data points in the train-
ing phase of every individual subtree. The remaining 70 percent of data points must be considered out-of-bag 
(OOB) data points.

Models development
Data assembling. A large dataset consisting of 280 experimental dataset of As(V) elimination by various 
MOFs was collected using well-documented literature. The investigated MOFs include MIL-101(Fe), MIL-88A, 
MIL-100(Fe), UiO-66, UiO-66-NH2, MIL-53(Fe), Co-MOF-74, Zn-MOF-74, MIL-88B, ZIF-8, AUBM-1, GUT-
3, and MIL-125(Ti)4,23,48–57. The structures of the selected MOFs are schematically presented in Fig. 1.

The affecting parameters on adsorptive performance are the initial concentration of arsenic (mg/L), adsorbent 
dosage (g/L), contact time (min), solution pH, temperature (°C), the specific surface area of MOFs  (m2/g), and the 
presence of the anions. The statistical details of the dataset are listed in detail in Table 1. These parameters were 
considered as input data for the implemented models. At the same time, the removal percentage of As(V) was 
selected as the output of the models. Python, an open-source software, was used for modeling procedures. The 
training process of the models was performed using 85% of the data set called train subset. The performance of 
the models was investigated by 15% of the remaining dataset denoted test subset. Feature selection and classifica-
tion using different algorithms for predicting the adsorption efficiency of As(V) by MOFs is presented in Fig. 2.

Detection of outliers. Outliers are usually existed, especially in large datasets. The accuracy and reliability 
of the models can be significantly influenced by the outliers. Therefore, all datasets should be refined. In this 
work, the Leverage method was employed for detecting and eliminating outliers. The Hat matrix of the Leverage 
method was calculated based on Eq. (1)58,59:

In Eq. (1), Y is a matrix with m× n dimensions, where m is the number of experimental data and n stands 
for the number of input variables. The Hat matrix diagonal elements are the Hat value of data. Outliers can be 
recognized by developing William’s plot in which the normalized residuals are plotted versus the Hat values. The 
warning Leverage parameter (H∗) is calculated based on Eq. (2) and is also shown in William’s  plot60:

Evaluation of the models quality. The quality and reliability of the developed models were assessed 
using different statistical techniques described as follows:

1. The average absolute relative deviation of the model results from the experimental values was calculated by 
the average absolute percent relative error (AAPRE) (Eq. (3)):

2. The root mean square error (RMSE), which indicates the error dispersion, is calculated by Eq. (4):
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Figure 1.  The framework structure of the investigated MOFs.

Table 1.  Statistical details of the inputs and output parameters collected in this work.

Surface area  (m2/g) Adsorbent dosage (g/L)
Arsenic concentration 
(mg/L) Contact time (h) Temperature (°C) pH Presence of anions Removal efficiency (%)

Min 113.4 0.02 0.002 0.25 25 1.7 1 0.5

Max 1388 5 472.5 24 45 13 11 100
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3. The dispersion of data is investigated by the standard deviation of errors (STD), which can be calculated 
using Eq. (5):

4. The coefficient of determination 
(

R2
)

 which assigns the accuracy of the predictions, can be calculated by 
Eq. (6). The R2 value close to 1 determines that the estimation of experimental data is more accurate.

(4)RMSE =

(

∑n
i=1(X(i)model − X(i)exp)

2

n

)
1
/2

(5)STD =
1
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n
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Figure 2.  Feature selection and classification using different algorithm for predicting adsorption efficiency of 
arsenic by MOFs.
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Results and discussion
Validation of the developed models. The values of As(V) removal predicted by four developed models 
are illustrated in Fig. 3 regarding experimental data. When the predicted results are closer to the experimental 
data, the model with remarkable accuracy and reliability is  achieved61. As shown in Fig. 3, all developed mod-
els revealed great accuracy where the data points scattered close enough to the line with a unit slope. It can be 
observed that the LightGBM model has excellently matched with experimental data amongst all the proposed 
models. The error distributions of all four developed models are depicted in Fig. 4. As shown, the errors fluctu-
ated over zero line indicating that the models have been well developed with acceptable accuracy. However, the 
deviation of the LightGBM model from zero line was rarely notable compared with the others. The cumulative 
frequency of data versus AAPRE% is plotted in Fig. 5, visually indicating the model with higher accuracy. The 
model that is closest to the vertical axis is the most accurate. As can be seen, about 95% of data points can be pre-
dicted with AAPRE lower than 2% using the LightGBM and XGBoost. While, smaller than 40% of data points 
were predicted with AAPRE less than 2%, when RF and GBDT approaches were employed. Therefore, GBDT 
and RF models provided weak performance with less accuracy among the implemented models.

The performance of all developed models is also evaluated using additional statistical methods. Different sta-
tistical data attributed to the train, test and total data set of each model are listed in Table 2. With the highest total 
R2 value of 0.9958 and the least RMSE value of 2.0688, the LightGBM model exhibited supreme performance. 

(6)R2
= 1−

∑n
i=1

(

X(i)model − X(i)exp
)2

∑n
i=1

(

X(i)model − X(i)exp
)2

Figure 3.  Cross plots of the proposed machine learning models in this study: (a) LightGBM, (b) XGBoost, (c) 
GBDT, and (d) RF.
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Also, based on the AAPRE% and STD, the LightGBM model presented the best performance. In the LightGBM 
model, the values of AAPRE and STD for train, test and total dataset were 2.11%, 0.0554, and 2.43%, and 0.0825, 
2.88%, and 0.0628, respectively, which were the least obtained values among the developed models. In addition, 
the implemented models were selected before, and their accuracy in the training and testing stages and over the 
whole of the database was monitored using four statistical matrices. It is hard to most accurate one through visual 
inspection. Therefore, the ranking analysis is employed for doing  so62. Figure 6 provides the results of model 
ranking in each stage based on the average values of the four statistical criteria reported in Table 2. The LightGBM 
model in the learning step is the best; nevertheless, it shows the second-ranking in the testing stage, and XGBoost 
depicts the best performance. On the other hand, the LightGBM with the first ranks over the whole database is 

Figure 4.  Error distribution plots of machine learning models for training and test sets: (a) LightGBM, (b) 
XGBoost, (c) GBDT, and (d) RF.

Figure 5.  The cumulative frequency diagram of the proposed machine learning models.
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the best model for predicting arsenic removal using MOFs. According to the results, the developed predictive 
models can be summarily ranked in terms of their accuracy as follows: LightGBM > XGBoost > GBDT > RF.

Trend analysis of the LightGBM. The adsorptive removal of As(V) is highly influenced by operating con-
ditions. In this section, the capability of the most accurate model, the LightGBM, was examined for predicting 
the trends of different parameters on the arsenic adsorption using various MOFs. In Fig. 7, the obtained results 
of the developed LightGBM model are compared with experimental data. The affecting parameters examined 
under different conditions were temperature, As(V) concentration, solution pH, and the coexistence of anions. 
As seen in Fig. 7, for all operating conditions, the LightGBM model exhibited excellent performance, predicting 
experimental data with high accuracy. Figure 7a illustrates the maximum adsorption capacity of As(V) obtained 
from different MOFs in comparison with predicted values by the LightGBM model. MOFs with different struc-
tural and morphological properties depicted various adsorption capacities, but interestingly, the performance 
of MOFs could be predicted with excellent accuracy using the developed model. Comparison between all men-
tioned MOFs, the Zn-MOF-74 had a maximum capacity of 328 mg/g because of its high surface area (604  m2/g), 
nearly twelve times of GUT-3 (209  m2/g) with the adsorption capacity of 29 mg/g. It has also been found that 
the amount of arsenic adsorption on the MOF structure is directly attributed to surface properties (e.g., charge, 
functional group, morphology, etc.) besides the surface area.

Another important factor influencing the adsorption capacity of adsorbents is the initial concentration of 
pollutants. As shown in Fig. 7b, the effects of As(V) initial concentration on the adsorption capacity of UiO-
66-NH2 at different  temperatures51 can be precisely predicted using the developed LightGBM approach. It can be 
seen that the adsorption capacity of the adsorbent increased with increasing the initial concentration of As(V) 
due to the more available metal ions present in the solution. Moreover, the enhancement of temperature from 
25 to 45 °C resulted in a steady decrease in the adsorptive removal efficiency of As(V) over UiO-66-NH2. This 

Table 2.  Calculated statistical criteria for the developed models.

Statistical criteria R2 RMSE STD AAPRE (%)

LightGBM

Train 0.9983 1.4013 0.0554 2.11

Test 0.9852 3.6872 0.0825 2.43

Total 0.9958 2.0688 0.0628 2.88

XGBoost

Train 0.9931 2.6873 0.0668 2.66

Test 0.9832 3.7892 0.1007 3.52

Total 0.9879 2.8081 0.0854 3.19

GBDT

Train 0.9922 2.3791 0.2731 8.55

Test 0.9826 4.1125 0.2452 9.09

Total 0.9812 2.9137 0.2698 8.72

RF

Train 0.9804 2.0364 0.4561 9.59

Test 0.9762 4.4207 0.4233 10.72

Total 0.9799 3.3845 0.4507 10.13

Figure 6.  Comparison between AARPE of the developed models.
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observation confirms that As(V) adsorption is exothermic, therefore increasing temperature probably weakens 
the binding forces formed between the pollutants and the active sites of the  adsorbent63.

The solution pH is a very critical parameter affecting the adsorptive removal of different pollutants. The pH 
can influence the surface potential of the adsorbent as well as the type of the pollutant species in the  solution64. 
The effect of different solution pH on the As(V) removal over Fe-Co-based MOF-744 are compared with the 
estimated results by the LightGBM model in Fig. 7c. As depicted, the adsorption capacity indicated a steady 
decreasing trend with increasing pH from 3 to 10. Based on the obtained results, in the examined pH range, the 
adsorbent maintained a positive surface charge, while, As(V) existed in the form of negatively charged  species4. 
Thus, the electrostatic interaction between As(V) and Fe-Co based MOF-74 can explain the adsorption process. 
The decline in the adsorption capacity with increasing the solution pH can be assigned to the decreasing adsor-
bent surface  potential4. As seen in Fig. 7c, the LightGBM model was a reliable technique providing accurate 
predictions for adsorption capacity in the whole examined pH.

The effect of the coexistence of various anions such as NO−

3 , PO
3−
4 ,Cl−, SO2−

4 , F− on the adsorption capacity 
of As(V) using ZIF-865 was compared with the predicted results of the LightGBM model in Fig. 7d. It can be 
seen that PO3−

4  exhibited an intense inhibitory impact on the adsorption process. This may be due to the similar 
structure of PO3−

4  with AsO3−
4  and their competition for adsorption over active sites of MOFs. The presence of F− 

also revealed the adverse effects on the As(V) removal. While the negative effects of other ions were negligible. 
As it is obvious in Fig. 7d, the implemented LightGBM approach was strongly capable for predicting the impact 
of coexistence of anions on the adsorption of As(V).

Figure 7.  (a) The performance of different MOFs in the adsorption of As(V), (b) The effect of temperature on 
the adsorption capacity of UiO-66-NH2 in different As(V) concentration (pH = 9.2), (c) The effect of solution 
pH on arsenic removal by Fe-Co-MOF-74 (Initial arsenic concentration = 100 mg/L, adsorbent dose = 0.5 g/L, 
temperature = 25 °C), and (d) The effect of competition anions on the adsorption capacity of ZIF-8 (pH = 7).
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The applicability domain of the LightGBM model. To evaluate the applicability area of the LightGBM 
model with the best performance, William’s plot was plotted in Fig. 8. In the Leverage approach, the data in the 
area determined by standard residuals of + 3 to − 3 on the y-axis and 0 to H* on the x-axis are only valid. Based on 
Fig. 8, only six data points were placed out of the valid domain of William’s plot. Accordingly, these points were 
considered experimentally uncertain data. Since the number of doubtful data was small compared to the entire 
data set, it can be concluded that both collected experimental data and the LightGBM model were statistically 
valid and trustworthy.

The sensitivity analysis. The sensitivity analysis was performed to evaluate the magnitude of the impacts 
of all input parameters on the As(V) removal predicted by the LightGBM  model66. The value of the relevancy 
factor (r) determines the extent of each input parameter’s effect on the As(V)  adsorption67. The factor “r” can be a 
negative or positive value. A positive value for unique input data confirms that the output variable directly inter-
acts with that input data. Whereas the negative value reveals the inverse interaction between output and input 
 variable68. In addition, the greater the absolute value of “r” for a particular input parameter, the more significant 
the impact of that variable on the model  output69. The relevancy factor is computed by Eq. (7):

where ωj and ω are the jth and the mean value of the predicted As(V) removal, respectively. Iij and Ii  represent 
the ith and the mean value of the ith input variable, respectively. N is the total number of data.

The calculated relevancy factor of all input parameters on the As(V) adsorption predicted by the LightGBM 
model is plotted in Fig. 9. As mentioned above, the input parameters were MOFs surface area, adsorbent dosage, 
arsenic concentration, contact time, temperature, solution pH, and presence of anions. As illustrated in Fig. 9, 
the adsorbent dosage and surface area of the MOFs exhibited the most positive impacts on As(V) adsorption. 
This confirms that any increase in the adsorbent content, as well as the adsorbent specific surface area would 
result in increasing the amount of As(V) removal. On the other hand, the initial arsenic concentration inversely 
influenced the adsorption process. Other parameters such as the presence of anions and pH had negligible effects 
on the model output.

Conclusion
In this study, the potential of four different ML approaches, LightGBM, XGBoost, GBDT, and RF, were investi-
gated to estimate As(V) adsorption from wastewater. An experimental dataset of As(V) removal using 13 different 
MOFs was selected with various operating conditions. Validation of the proposed models was performed using 
statistical methods. The LightGBM model with the least AAPRE value of 2.88% and the least STD value of 0.0628 
was the most trustworthy model. Based on the cumulative frequency diagram of the LightGBM model, about 
95% of data points can be estimated with AAPRE lower than 2%. In addition, the Leverage approach proved 
that most of the data points of the LightGBM model were scattered within the valid domain of William’s plot. 
Moreover, the effects of different operating parameters such as initial arsenic concentration, temperature, solu-
tion pH, and the presence of anions can be predicted accurately on the As(V) removal. This study confirms ML 
approaches that are cost affordable and straightforward can be effectively employed for wastewater treatment.

(7)r(Ii ,ω) =

∑N
j=1
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)

(

∑N
j=1

(

Iij − Ij
)2 ∑n
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)2
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Figure 8.  Outlier detection using William’s plot for the LightGBM model.
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Data availability
The collected experimental databank has been added to the manuscript (please see Supplementary Information: 
Dataset).

Received: 10 May 2022; Accepted: 19 September 2022

References
 1. Smedley, P. L. & Kinniburgh, D. G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 

17, 517–568 (2002).
 2. Song, W., Zhang, M., Liang, J. & Han, G. Removal of As (V) from wastewater by chemically modified biomass. J. Mol. Liq. 206, 

262–267 (2015).
 3. Sigdel, A., Park, J., Kwak, H. & Park, P.-K. Arsenic removal from aqueous solutions by adsorption onto hydrous iron oxide-

impregnated alginate beads. J. Ind. Eng. Chem. 35, 277–286 (2016).
 4. Sun, J., Zhang, X., Zhang, A. & Liao, C. Preparation of Fe–Co based MOF-74 and its effective adsorption of arsenic from aqueous 

solution. J. Environ. Sci. 80, 197–207 (2019).
 5. Wang, C., Luan, J. & Wu, C. Metal-organic frameworks for aquatic arsenic removal. Water Res. 158, 370–382 (2019).
 6. Holm, T. R. Effects of CO32–/bicarbonate, Si, and PO43–on Arsenic sorption to HFO. J. Am. Water Works Assoc. 94, 174–181 

(2002).
 7. Choong, T. S., Chuah, T., Robiah, Y., Koay, F. G. & Azni, I. Arsenic toxicity, health hazards and removal techniques from water: 

An overview. Desalination 217, 139–166 (2007).
 8. Bissen, M. & Frimmel, F. H. Arsenic—a review. Part II: Oxidation of arsenic and its removal in water treatment. Acta Hydrochim. 

Hydrobiol. 31, 97–107 (2003).
 9. Mohan, D. & Pittman, C. U. Jr. Arsenic removal from water/wastewater using adsorbents—a critical review. J. Hazard. Mater. 142, 

1–53 (2007).
 10 Gupta, A. D., Rene, E. R., Giri, B. S., Pandey, A. & Singh, H. Adsorptive and photocatalytic properties of metal oxides towards 

arsenic remediation from water: A review. J. Environ. Chem. Eng. 9, 106376 (2021).
 11. Gupta, K., Joshi, P., Gusain, R. & Khatri, O. P. Recent advances in adsorptive removal of heavy metal and metalloid ions by metal 

oxide-based nanomaterials. Coord. Chem. Rev. 445, 214100 (2021).
 12 Tahir, M. A., Arshad, N. & Akram, M. Recent advances in metal organic framework (MOF) as electrode material for super capaci-

tor: A mini review. J. Energy Storage 47, 103530 (2021).
 13. Oladoye, P. O., Adegboyega, S. A. & Giwa, A.-R.A. Remediation potentials of composite metal-organic frameworks (MOFs) for 

dyes as water contaminants: A comprehensive review of recent literatures. Environ. Nanotechnol. Monit. Manag. 16, 100568 (2021).
 14. Al-Rowaili, F. N. et al. A review for metal-organic frameworks (MOFs) utilization in capture and conversion of carbon dioxide 

into valuable products. J. CO2 Util. 53, 101715 (2021).
 15. Duan, C. et al. Recent advances in the synthesis of nanoscale hierarchically porous metal–organic frameworks. Nano Mater. Sci. 

https:// doi. org/ 10. 1016/j. nanoms. 2021. 12. 003 (2022).
 16. Khataee, A. et al. State-of-the-art progress of metal-organic framework-based electrochemical and optical sensing platforms for 

determination of bisphenol A as an endocrine disruptor. Environ. Res. 212, 113536. https:// doi. org/ 10. 1016/j. envres. 2022. 113536 
(2022).

 17. Abdi, J., Izadi, M. & Bozorg, M. Improvement of anti-corrosion performance of an epoxy coating using hybrid UiO-66-NH2/
carbon nanotubes nanocomposite. Sci. Rep. 12, 10660. https:// doi. org/ 10. 1038/ s41598- 022- 14854-y (2022).

 18. Song, Y., Xie, W., Shao, M. & Duan, X. Integrated electrocatalysts derived from metal organic frameworks for gas-involved reac-
tions. Nano Mater. Sci. https:// doi. org/ 10. 1016/j. nanoms. 2022. 01. 003 (2022).

 19. Abdi, J., Sisi, A. J., Hadipoor, M. & Khataee, A. State of the art on the ultrasonic-assisted removal of environmental pollutants using 
metal-organic frameworks. J. Hazard. Mater. 424, 127558. https:// doi. org/ 10. 1016/j. jhazm at. 2021. 127558 (2022).

 20. Shahmirzaee, M. et al. Metal-organic frameworks as advanced sorbents for oil/water separation. J. Mol. Liq. 363, 119900. https:// 
doi. org/ 10. 1016/j. molliq. 2022. 119900 (2022).

 21. Abdi, J., Banisharif, F. & Khataee, A. Amine-functionalized Zr-MOF/CNTs nanocomposite as an efficient and reusable photocatalyst 
for removing organic contaminants. J. Mol. Liq. 334, 116129. https:// doi. org/ 10. 1016/j. molliq. 2021. 116129 (2021).

 22. Kobielska, P. A., Howarth, A. J., Farha, O. K. & Nayak, S. Metal–organic frameworks for heavy metal removal from water. Coord. 
Chem. Rev. 358, 92–107. https:// doi. org/ 10. 1016/j. ccr. 2017. 12. 010 (2018).

Figure 9.  Sensitivity analysis for the developed LightGBM model on different input variables.

https://doi.org/10.1016/j.nanoms.2021.12.003
https://doi.org/10.1016/j.envres.2022.113536
https://doi.org/10.1038/s41598-022-14854-y
https://doi.org/10.1016/j.nanoms.2022.01.003
https://doi.org/10.1016/j.jhazmat.2021.127558
https://doi.org/10.1016/j.molliq.2022.119900
https://doi.org/10.1016/j.molliq.2022.119900
https://doi.org/10.1016/j.molliq.2021.116129
https://doi.org/10.1016/j.ccr.2017.12.010


12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16458  | https://doi.org/10.1038/s41598-022-20762-y

www.nature.com/scientificreports/

 23. Jian, M., Liu, B., Zhang, G., Liu, R. & Zhang, X. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate 
framework-8 (ZIF-8) nanoparticles. Colloids Surf. A 465, 67–76 (2015).

 24. Audu, C. O. et al. The dual capture of As V and As III by UiO-66 and analogues. Chem. Sci. 7, 6492–6498 (2016).
 25. Li, Z. et al. Efficient capture of arsenate from alkaline smelting wastewater by acetate modulated yttrium based metal-organic 

frameworks. Chem. Eng. J. 397, 125292 (2020).
 26. Pang, D. et al. Superior removal of inorganic and organic arsenic pollutants from water with MIL-88A (Fe) decorated on cotton 

fibers. Chemosphere 254, 126829 (2020).
 27 Mazloom, G. & Alavi, S. M. Kinetic study of selective propane oxidation to acrylic acid over Mo1V0. 3Te0. 23Nb0. 12Ox using 

the genetic algorithm. React. Kinet. Mech. Catal. 110, 387–403 (2013).
 28. Mazloom, G., Farhadi, F. & Khorasheh, F. Kinetic modeling of pyrolysis of scrap tires. J. Anal. Appl. Pyrol. 84, 157–164 (2009).
 29. Khraibet, S. A., Mazloom, G. & Banisharif, F. Comparative study of different two-phase models for the propane oxidative dehy-

drogenation in a bubbling fluidized bed containing the VO x/γ-Al2O3 catalyst. Ind. Eng. Chem. Res. 60, 9729–9738 (2021).
 30. Mazloom, G. A modified three-phase multistage fluid bed model by considering axial dispersion in bubble side. Part. Sci. Technol. 

34, 648–657 (2016).
 31 Mazloom, G. & Alavi, S. M. Partial oxidation of propane over Mo1V0. 3Te0. 23Nb0. 12Ox. catalyst in a fluidized bed reactor. Part. 

Sci. Technol. 33, 204–212 (2015).
 32. Fan, M., Hu, J., Cao, R., Ruan, W. & Wei, X. A review on experimental design for pollutants removal in water treatment with the 

aid of artificial intelligence. Chemosphere 200, 330–343 (2018).
 33. Zhang, H. et al. Machine learning for novel thermal-materials discovery: early successes, opportunities, and challenges. arXiv 

preprint arXiv: 1901. 05801 (2019).
 34. Al Aani, S., Bonny, T., Hasan, S. W. & Hilal, N. Can machine language and artificial intelligence revolutionize process automation 

for water treatment and desalination?. Desalination 458, 84–96 (2019).
 35. Wang, Y. et al. A new machine learning algorithm to optimize a reduced mechanism of 2-butanone and the comparison with other 

algorithms. ES Mater. Manuf. 6, 28–37 (2019).
 36. Joshi, S. C. Knowledge based data boosting exposition on CNT-engineered carbon composites for machine learning. Adv. Compos. 

Hybrid Mater. 3, 354–364 (2020).
 37 Wu, L., Xiao, Y., Ghosh, M., Zhou, Q. & Hao, Q. Machine learning prediction for bandgaps of inorganic materials. ES Mater. Manuf. 

https:// doi. org/ 10. 30919/ esmm5 f756 (2020).
 38. Chen, C. et al. Recent advances in solar energy full spectrum conversion and utilization. ES Energy Environ. 11, 3–18 (2021).
 39. Ke, G. et al. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 30, 3146–3154 (2017).
 40. Yang, X., Dindoruk, B. & Lu, L. A comparative analysis of bubble point pressure prediction using advanced machine learning 

algorithms and classical correlations. J. Petrol. Sci. Eng. 185, 106598 (2020).
 41. Zhou, B. et al. Pressure of different gases injected into large-scale coal matrix: Analysis of time–space dependence and prediction 

using light gradient boosting machine. Fuel 279, 118448. https:// doi. org/ 10. 1016/j. fuel. 2020. 118448 (2020).
 42. Chen, T. & Guestrin, C. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 

Mining 785–794.
 43. Hastie, T., Friedman, J. & Tibshirani, R. Unsupervised Learning. In: The Elements of Statistical Learning. Springer Series in Statistics. 

(Springer, New York, NY, 2001). https:// doi. org/ 10. 1007/ 978-0- 387- 21606-5_ 14.
 44. Friedman, J. H. Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002).
 45. Amar, M. N., Shateri, M., Hemmati-Sarapardeh, A. & Alamatsaz, A. Modeling oil-brine interfacial tension at high pressure and 

high salinity conditions. J. Petrol. Sci. Eng. 183, 106413 (2019).
 46. Wu, Y. & Misra, S. Intelligent image segmentation for organic-rich shales using random forest, wavelet transform, and hessian 

matrix. IEEE Geosci. Remote Sens. Lett. 17, 1144–1147 (2019).
 47. Shaikhina, T. et al. Decision tree and random forest models for outcome prediction in antibody incompatible kidney transplanta-

tion. Biomed. Signal Process. Control 52, 456–462 (2019).
 48. Li, Z., Liu, X., Jin, W., Hu, Q. & Zhao, Y. Adsorption behavior of arsenicals on MIL-101 (Fe): The role of arsenic chemical structures. 

J. Colloid Interface Sci. 554, 692–704 (2019).
 49. Wu, H. et al. Arsenic removal from water by metal-organic framework MIL-88A microrods. Environ. Sci. Pollut. Res. 25, 27196–

27202 (2018).
 50. Cai, J., Wang, X., Zhou, Y., Jiang, L. & Wang, C. Selective adsorption of arsenate and the reversible structure transformation of the 

mesoporous metal–organic framework MIL-100 (Fe). Phys. Chem. Chem. Phys. 18, 10864–10867 (2016).
 51. He, X. et al. Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism 

insight. J. Colloid Interface Sci. 539, 223–234 (2019).
 52. Vu, T. A. et al. Arsenic removal from aqueous solutions by adsorption using novel MIL-53 (Fe) as a highly efficient adsorbent. RSC 

Adv. 5, 5261–5268 (2015).
 53. Yu, W. et al. Metal-organic framework (MOF) showing both ultrahigh As (V) and As (III) removal from aqueous solution. J. Solid 

State Chem. 269, 264–270 (2019).
 54. Hou, S. et al. Green synthesis and evaluation of an iron-based metal–organic framework MIL-88B for efficient decontamination 

of arsenate from water. Dalton Trans. 47, 2222–2231 (2018).
 55. Atallah, H., Mahmoud, M. E., Jelle, A., Lough, A. & Hmadeh, M. A highly stable indium based metal organic framework for 

efficient arsenic removal from water. Dalton Trans. 47, 799–806 (2018).
 56. Zheng, X. et al. Efficient removal of As (V) from simulated arsenic-contaminated wastewater via a novel metal–organic framework 

material: Synthesis, structure, and response surface methodology. Appl. Organomet. Chem. 34, e5584 (2020).
 57. Liu, Z. et al. Synthesis of uniform-sized and microporous MIL-125 (Ti) to boost arsenic removal by chemical adsorption. Polyhedron 

196, 114980 (2021).
 58 Abdi, J., Hadipoor, M., Hadavimoghaddam, F. & Hemmati-Sarapardeh, A. Estimation of tetracycline antibiotic photodegradation 

from wastewater by heterogeneous metal-organic frameworks photocatalysts. Chemosphere 287, 132135 (2021).
 59. Abdi, J. et al. Assessment of competitive dye removal using a reliable method. J. Environ. Chem. Eng. 2, 1672–1683 (2014).
 60. Rousseeuw, P. J. & Leroy, A. M. Robust Regression and Outlier Detection Vol. 589 (John Wiley & Sons, 2005).
 61. Abdi, J., Hadavimoghaddam, F., Hadipoor, M. & Hemmati-Sarapardeh, A. Modeling of CO2 adsorption capacity by porous metal 

organic frameworks using advanced decision tree-based models. Sci. Rep. 11, 24468. https:// doi. org/ 10. 1038/ s41598- 021- 04168-w 
(2021).

 62. Jiang, Y., Zhang, G., Wang, J. & Vaferi, B. Hydrogen solubility in aromatic/cyclic compounds: Prediction by different machine 
learning techniques. Int. J. Hydrogen Energy 46, 23591–23602 (2021).

 63. Al-Ghouti, M. A. & Al-Absi, R. S. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene 
blue dye onto cellulosic olive stones biomass from wastewater. Sci. Rep. 10, 1–18 (2020).

 64. Ye, S. et al. Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven 
by visible light. Appl. Catal. B 250, 78–88 (2019).

 65. Li, J. et al. Zeolitic imidazolate framework-8 with high efficiency in trace arsenate adsorption and removal from water. J. Phys. 
Chem. C 118, 27382–27387 (2014).

http://arxiv.org/abs/1901.05801
https://doi.org/10.30919/esmm5f756
https://doi.org/10.1016/j.fuel.2020.118448
https://doi.org/10.1007/978-0-387-21606-5_14
https://doi.org/10.1038/s41598-021-04168-w


13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16458  | https://doi.org/10.1038/s41598-022-20762-y

www.nature.com/scientificreports/

 66. Mousavi, S. P. et al. Viscosity of ionic liquids: Application of the Eyring’s theory and a committee machine intelligent system. 
Molecules 26, 156 (2021).

 67. Mousavi, S.-P. et al. Modeling surface tension of ionic liquids by chemical structure-intelligence based models. J. Mol. Liq. 342, 
116961 (2021).

 68. Hajirezaie, S., Wu, X. & Peters, C. A. Scale formation in porous media and its impact on reservoir performance during water 
flooding. J. Nat. Gas Sci. Eng. 39, 188–202 (2017).

 69. Hosseinzadeh, M. & Hemmati-Sarapardeh, A. Toward a predictive model for estimating viscosity of ternary mixtures containing 
ionic liquids. J. Mol. Liq. 200, 340–348 (2014).

Acknowledgements
The authors are thankful to Shahrood University of Technology for the support.

Author contributions
J.A. Writing-Review & Editing, Data curation, Methodology, Validation, Supervision. G.M. Writing-Original 
Draft.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 20762-y.

Correspondence and requests for materials should be addressed to J.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-20762-y
https://doi.org/10.1038/s41598-022-20762-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Machine learning approaches for predicting arsenic adsorption from water using porous metal–organic frameworks
	Theory of the utilized model
	Light gradient boosting machine (LightGBM). 
	Extreme gradient boosting model (XGBoost). 
	Gradient boosting decision tree (GBDT). 
	Random forest (RF). 

	Models development
	Data assembling. 
	Detection of outliers. 
	Evaluation of the models quality. 

	Results and discussion
	Validation of the developed models. 
	Trend analysis of the LightGBM. 
	The applicability domain of the LightGBM model. 
	The sensitivity analysis. 

	Conclusion
	References
	Acknowledgements


