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Abstract

Genetic diversity within and among populations is frequently used in prioritization processes

to rank populations based on their vulnerability or distinctiveness, however, connectivity and

gene flow are rarely considered within these frameworks. Using a wood turtle (Glyptemys

insculpta) population graph, we introduce BRIDES as a new tool to evaluate populations for

conservation purpose without focusing solely on individual nodes. BRIDES characterizes

different types of shortest paths among the nodes of a subgraph and compares the shortest

paths among the same nodes in a complete network. The main objectives of this study were

to (1) introduce a BRIDES selection process to assist conservation biologists in the prioriti-

zation of populations, and (2) use different centrality indices and node removal statistics to

compare BRIDES results and assess gene flow among wood turtle populations. We con-

structed six population subgraphs and used a stepwise selection algorithm to choose the

optimal number of additional nodes, representing different populations, required to maxi-

mize network connectivity under different weighting schemes. Our results demonstrate the

robustness of the BRIDES selection process for a given scenario, while inconsistencies

were observed among node-based metrics. Results showed repeated selection of certain

wood turtle populations, which could have not been predicted following only genetic diversity

and distinctiveness estimation, node-based metrics and node removal analysis. Contrary to

centrality measures focusing on static networks, BRIDES allowed for the analysis of evolv-

ing networks. To our knowledge, this study is the first to apply graph theory for turtle conser-

vation genetics. We show that population graphs can reveal complex gene flow dynamics

and population resiliency to local extinction. As such, BRIDES offers an interesting comple-

ment to node-based metrics and node removal to better understand the global processes at

play when addressing population prioritization frameworks.
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Introduction

The conservation of units below the species level, commonly populations, is widely used in

wildlife management, as it provides critical information to support species survival and evi-

dence of within-species differences. Populations show important local adaptive variations that

are essential for species adaptation to changing environments [1–3]. Furthermore, they exhibit

greater sensitivity to extirpation, which may inform of the general trend at the species level [4].

The threats experienced by animal and plant populations require distinct management prac-

tices that must consider the economic, social and cultural aspects of the human society living

in closest proximity to them [5–7]. Rule-based methods have been developed by the Interna-

tional Union for Conservation of Nature (IUCN) to categorize populations based on the level

of threat they face [8–11]. Such multiple criteria have been used to categorize species at risk

and aid governmental and non-governmental organizations to define conservation units,

including: Management Units (MUs, [2, 12]), Evolutionary Significant Units (ESUs, [2]) and

Designable Units (DUs). The latter is used by the Committee on the Status of Endangered

Wildlife in Canada (COSEWIC) to define populations or subspecies of wildlife that require

protection under the Species at Risk Act (SC 2002, c 29).

Considering that two populations may be ranked in the same category even when faced

with entirely different threats, and the limited financial resources available for conservation

biology, prioritizing populations arose as an essential concept to target the most effective con-

servation actions. Multiple prioritization frameworks have been developed to provide objective

criteria during decision-making processes, and either estimate species extinction risks [5] or

prioritize threatened populations and determine the management actions required to support

them [13]. Prioritization frameworks are often reactive, targeting highly vulnerable popula-

tions in need of immediate management actions to avoid reducing genetic diversity and local

or global species extinction events [14]. However, for species with long generation times, it

may be beneficial to react in a proactive fashion and prioritize populations that exhibit low vul-

nerability to protect their global genetic diversity as a reservoir [15–17].

Population viability analysis (PVA) is frequently used to evaluate extinction risks given its

comprehensive and quantitative basis [18]. To complement such models, or, in cases where

data are unsuitable, the relative importance of each population can also be estimated to mea-

sure the impact of local extinction on species survival. A series of binary questions have been

proposed by Allendorf and colleagues [19] for the Pacific salmon (Oncorhynchus spp.) and

adapted for all freshwater fish by Clarkson and colleagues [20], thus providing a scoring system

for the biological consequence of local population extinctions for the entire species. Although

these rankings are intended to represent objective criteria, the list of questions may overlook

important features that deserve conservation attention.

Measures of genetic diversity within and among populations are frequently applied to pri-

oritize populations and define conservation units based on past bottleneck events, effective

population size and population distinctiveness [21, 22]. To bridge the gap between researchers

and practitioners, Ottewell and colleagues [22] developed a simple framework using popula-

tion differentiation, genetic diversity, and inbreeding coefficients. The quantification and

ranking of these parameters can be of great importance to estimate population isolation, pre-

dict their trends and target the most informative genetic processes for management purposes.

Although many of these estimators allow to understand the distinctiveness and diversity of a

population to predict its persistence, only few consider the dynamic structure underlying pop-

ulation networks. Some demographic studies have accounted for population connectivity by

using a metapopulation model in their prioritization framework. However, the data require-

ments of complex metapopulation models greatly limit their application in conservation
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studies, calling for a short-term decision-making time frame. For example, the incidence func-

tion model of metapopulation dynamics [23] requires estimates of patch colonization and

extinction rates that are obtained through longitudinal surveys of all available habitat patches

[24]. Yet, connectivity among isolated habitat patches is essential to several ecological pro-

cesses and should be considered in population prioritization models. Seasonal migration, dis-

persal of offspring, recolonization following local extinction events, range shifts caused by

climate change, and gene flow for the transmission of favourable alleles may all be distorted if

change occurs within the connectivity pattern [7, 25].

Gene flow is frequently cited as an evolutionary force that maintains connectivity among

populations [26, 27], but connectivity, in itself, can potentially operate at different time scales

other than demographic processes, such as dispersion and recolonization events [28, 29]. As

such, gene flow should also be considered in population prioritization as it offers complemen-

tary insights into population connectivity [28, 30]. Theoretical and empirical studies support

the use of gene flow as a measure of functional connectivity [29, 31–33], and graph theory is

a valuable tool emphasizing the relevance of connectivity in conservation planning [34]. The

processes underlying the structure of complex networks have been efficiently characterized in

many disciplines [35] and are increasingly applied in ecology and conservation where food

webs, metapopulation dynamics or reserve networks can be modelled [36]. More precisely,

population graphs have been developed by Dyer and Nason [37] as a network depicting popu-

lations (the nodes of the graph) connected by their genetic covariance (the edges of the graph).

Gene flow has since been modelled for many plant and animal species in marine, freshwater,

and terrestrial ecosystems using networks [38–40]. For management purposes, population pri-

oritization can be facilitated by the ranking of several node-based centrality indices [41], or by

using node removal to assess their relative impact on network connectivity [29]. Population

prioritization has also been studied with phylogenetic networks [42], for which genetic distinc-

tiveness was used to score each population. Yet, the choice of relevant network metrics is cru-

cial for the prioritization process using such methods [43–45].

The wood turtle (Glyptemys insculpta) is a threatened freshwater turtle species endemic to

North America and listed as endangered according to the IUCN red list, following an overall

decrease in population size [46]. It is a semi-terrestrial, long-lived species with longevity that

may exceed 50 years [47], delayed sexual maturity at 11–22 years [48, 49], and a long genera-

tion time estimated at 36–47 years [46]. Canadian wood turtle populations are protected under

the Species at Risk Act, but financial support is lacking to ensure the persistence of all popula-

tions. In cases where wildlife managers must decide which populations to protect, a sound

prioritization framework is required. Yet, considering the cost and short duration of radio-

telemetry studies, the temporal and spatial variation in nest predation, and the difficulty of

monitoring hatchlings and juveniles, PVA is not easily applicable to wood turtle populations

[50]. Population genetics have been previously used to characterize the population structure of

wood turtles [51–54] and the importance of peripheral populations for genetic diversity [55].

In addition, landscape genetics has revealed the importance of the watershed structure for

wood turtle population differentiation in Canada [56]. None of these previous studies, how-

ever, have relied on graph theory as a statistical tool to analyze connectivity and prioritize

populations.

Although many studies highlight the importance of connectivity and gene flow for the

maintenance of diversity and the persistence of populations in a fragmented landscape, few

frameworks consider connectivity as an important feature of the prioritization ranking. In

this paper, we apply BRIDES [57] as a new tool to evaluate whole population graphs for con-

servation purposes, rather than focusing only on individual patches. Thus, the main objectives

of our study are (1) to demonstrate the use of the BRIDES selection algorithm to assist
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conservation biologists and managers during decision-making processes, and (2) to use graph

theory to assess gene flow among wood turtle populations. To do this, we used a dataset of 19

wood turtle populations collected in eastern Canada and genotyped by Bouchard and col-

leagues [56]. Centrality indices and node removal statistics were first estimated from a popula-

tion graph. We then constructed six population subgraphs based on three different criteria

to protect populations in a proactive or reactive fashion, and using BRIDES, selected the opti-

mal number of additional nodes required to maximize network connectivity under different

weighting schemes. The results of the three methods were then applied within the perspective

of wood turtle conservation.

Materials and methods

The sampling protocol was approved by the Ministère des Forêts, de la Faune et des Parcs du

Québec.

Wood turtle population characterization

The original data set from Bouchard and colleagues [56] included 24 sites, but five sites were

excluded due to insufficient sample size (N<6). As a result, 327 wood turtles sampled at 19 dif-

ferent sites and genotyped for nine microsatellite loci as described in Bouchard and colleagues

[56] were used in the present study. Using microsatellite data, expected heterozygosity (HE)

was estimated using the diveRsity package with R version 3.5.1 [58]. Element occurrence (EO)

ranks were used to estimate the persistence probability of a population for a defined period of

time (20–100 years), while considering that current environmental conditions prevailed dur-

ing that time [59]. These EO ranks vary from excellent viability (A) to poor viability (D), and

some rank combinations can be used in cases of uncertain estimates. All EO ranks and esti-

mated population sizes were provided by wildlife biologists at the Québec Ministry of Forests,

Wildlife and Parks. Although other measures could have been used to demonstrate the appli-

cation of population graphs, HE and EO ranks were selected for their frequent use in conserva-

tion studies.

Wood turtle population graph

We constructed a population graph based on Dyer and Nason’s [37] conditional genetic dis-

tance (cGD) and pruning method using R v. 3.5.1 [60] popgraph [61] and gstudio [62] pack-

ages. In this network, nodes representing different sample sites are connected to each other

by undirected edges weighted by the genetic distances between them. However, as some edges

do not adequately describe overall among-population distances, the network was pruned by

removing redundant edges that did not contribute to the overall genetic covariance of the net-

work, as described by Dyer and Nason [37].

Node-based metrics of connectivity and node removal

To evaluate the importance of each node with respect to network connectivity, we used two

current methods: node-based metrics [45, 63] and the node removal approach [38, 64]. Several

node metrics were computed to estimate their contribution to gene flow and importance in

graph connectivity. Degree centrality (DC) is defined as the number of edges connected to a

node, whereas betweenness centrality (BC) is the number of shortest paths upon which the

node lies. Based on immediate neighbour connections, the eigenvector centrality (EC) may

also provide information on both direct and indirect levels of node connectivity. The cluster-

ing coefficient (CC) is the probability that two nodes connected to a neighboring node are also
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connected together. Computing strength as the sum of all edge weights connected to a given

node is another centrality measure of interest for conservation biology, since the average

inverse edge weight (AIEW) is positively correlated with the number of migrants to and from

a focal node [63].

The node removal approach was also used to estimate the effect of local extirpation on the

connectivity of the network and to obtain an overview of the resilience of the network to node

loss [38]. In this study, we simulated the effect of local extirpation by removing a node and its

associated edges from the graph and measuring the average path length in the resulting graph.

The process was repeated iteratively by removing each node, one at a time. Differences in aver-

age path lengths were estimated by comparing the reduced and complete networks, with larger

differences being associated with more important nodes for network connectivity. A cut node

is a node whose deletion, along with incident edges, results in a disconnected graph. Node-

based metrics and node removal statistics were used to estimate gene flow between wood turtle

populations and were compared with results of the BRIDES selection procedure described

below.

BRIDES analysis

Network connectivity was explored using BRIDES v1.2 [57], a software that allows the char-

acterization of dynamic networks through the comparison of shortest paths among pairs of

nodes of a subgraph with their respective paths among the same nodes in a complete graph

(Fig 1A). Both the complete graph and the subgraph are defined by the users and selected as

input networks for the BRIDES algorithm. When applied to population genetic data, the

paths identified by BRIDES may thus represent actual gene flow between populations, or

past gene flow between remnant populations or metapopulations relative to neutral genetic

markers.

Precisely, BRIDES is a polynomial-time algorithm used to characterize different types of

paths between a subgraph Xn and a complete graph Xall, where all nodes in Xn are a subset of

the nodes in Xall. The shortest paths between pairs of nodes in Xn are first computed. Then, the

lengths of the paths among the same pairs of nodes are recomputed in Xall by forcing these

paths to include at least one node present in the complete graph Xall but absent in the subgraph

Xn. The comparison of these corresponding path lengths thus allows six types of paths to be

distinguished (Fig 1A): a breakthrough (B) is a path that is impossible in Xn but possible in Xall

(path 4–6); a roadblock (R) is a path that is possible in Xn but impossible in Xall (path 1–4); an

impasse (I) is a path that is impossible in both Xn and Xall (path 5–6); a detour (D) is a path

that is shorter in Xn than in Xall (path 6–7); an equal (E) path has the same length in Xn and

Xall (path 6–8); a shortcut (S) is a path that is longer in Xn than in Xall (path 6–9). The results

are summarized in a vector [B, R, I, D, E, S] containing the numbers of each type of paths esti-

mated by the algorithm (see Fig 1A).

The six different types of paths are meant to capture specific network properties when forc-

ing subgraph paths to pass through additional nodes. With respect to conservation genetic

data, shortcuts are indicative of the addition of new populations that will in turn improve gene

flow, whereas detours are associated with populations that will reduce gene flow. Break-

throughs are created by populations connecting two (or more) components of the network,

similar to cut nodes that represent stepping-stones among isolated populations. Equal paths

are corresponding to redundant connections among populations for dispersal and gene flow.

In contrast, impasses and roadblocks are detrimental to network connectivity by separating

populations in isolated components. These latter types of paths are to be avoided in the priori-

tization process.
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BRIDES selection algorithm

We implemented an iterative selection algorithm in BRIDES to determine which candidate

node should be added to Xn to maximize the connectivity of Xn+1 (Fig 1B). Given that each

type of path may have a different impact on the choice of candidate nodes, distinct weighted

models could be defined by the user for the selection algorithm. For example, one may con-

sider only breakthroughs, equals and shortcuts to maximize network connectivity. In that case,

assuming a weight of 1 for each of the selected types of paths, the corresponding model would

be (1, 0, 0, 0, 1, 1), also denoted as B1E1S1. At each step of the algorithm, a selection score is

then computed as the sum of weighted numbers of path types in the BRIDES vector. The maxi-

mum score that can be achieved is estimated by including all candidate nodes in the subgraph

Fig 1. Illustration of the BRIDES algorithm and the selection process. (A) Example of the six types of paths computed in BRIDES by comparing the

shortest path between pairs of nodes in subgraph Xn (white nodes) and the shortest path between the same pairs of nodes in the complete graph Xall

including all candidate nodes (blue nodes). In Xall, the shortest path between any pair of nodes from Xn must include at least one of these candidate

nodes. (B) Each of the three nodes available for the selection process was iteratively added to Xn to create the subgraphs Xn+1 and corresponding scores

were computed with respect to the complete graph Xall. The selection process selected node 11 as the best candidate (score = 1) to maximize network

connectivity while minimizing the number of additional nodes. The weighted model used for the selection process was (1, 0, 0, 0, 1, 1).

https://doi.org/10.1371/journal.pone.0271797.g001
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Xn. For comparison purposes, this maximal score is set to one, and suboptimal solutions are

scaled by dividing their scores by the maximum value (see example in Fig 1B).

Weighted models and conservation scenarios

In the present study, five distinct weighting schemes were used for the six types of paths (B, R,

I, D, E, S) to select optimal solutions (maximum scores) under different scenarios, with posi-

tive weights (denoted with superscripts) attributed to preferred types of paths, negative weights

(denoted with subscripts) attributed to rejected types of paths, and null weights (zero) attrib-

uted to types of paths ignored in the final score computation. The first weighted model, S1 =

(0, 0, 0, 0, 0, 1), only considered shortcuts, whereas the second model, B3S1 = (3, 0, 0, 0, 0, 1),

and third model, B1S3 = (1, 0, 0, 0, 0, 3), also accounted for shortcuts and breakthroughs, but

with distinct weights. The fourth model, B1R1D1S = (1, -1, 0, -1, 0, 1), considered the negative

impact of roadblocks and detours with respect to breakthroughs and shortcuts. For the fifth

model, B3D1E2S3 = (3, 0, 0, 1, 2, 3), we used an ecological interpretation of BRIDES in which

breakthroughs, detours, equals and shortcuts were all considered to increase the connectivity

of the network, but with different weights.

In addition to the five weighting schemes, six scenarios encompassing three different

parameters important for management purposes were considered based on their frequent use

in conservation studies: genetic diversity (HE), estimated population size, and persistence

probability (EO ranks). These scenarios were used to generate different subgraphs Xn onto

which candidate nodes were added in turn to construct subgraphs Xn+1. For each parameter,

pairs of networks (subgraphs) were generated by selecting nodes with either the largest or

smallest values, representing nodes that prioritize a proactive (P) or a reactive (R) conservation

perspective, respectively. For the first pair of networks, populations with higher (Scenario AP)

and lower (Scenario AR) heterozygosity values (HE) were selected as possible subgraphs for the

prioritization process. For the next pair of networks, nodes with higher (Scenario BP) and

lower (Scenario BR) estimates of population sizes were selected. Finally, EO ranks were used to

select nodes for the fifth (Scenario CP) and sixth (Scenario CR) networks based on their persis-

tence probability for a period of time. The five weighting models were then applied to the six

scenarios to examine their impact on the node selection process.

Results

Population graph

The wood turtle population graph constructed with cGD resulted in 19 nodes and 37 edges

(19% of the edges in a saturated network) after the pruning procedure. Eight nodes were

located on the north shore and eleven nodes on the south shore of the St. Lawrence River (Fig

2). Sample sizes and estimated population sizes of different sites ranged respectively from 6 to

56 accounting for 6 to 2000 individuals per node (Table 1).

Network metrics and node removal

The population graph was analyzed with different node-based metrics to determine which sites

contributed most to network connectivity (Table 1). One node (GA3) ranked top in all metrics,

whereas two nodes ranked at the very bottom (MA1 and MA2). Above all, these results illus-

trated a clear separation between sites located on the northern and southern shores of the

St. Lawrence River, and the importance of only two edges connecting them. Several nodes with

high betweenness centrality values may act as stepping-stones or bridges [38]. Namely, four of

the nodes with large betweenness values (MI2, LO1, LA1, SF3) connected the two shores
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together. In contrast, nodes with a high-clustering coefficient may act as an anchor of intercon-

nected groups of nodes. The maximum value of the clustering coefficient was obtained for two

nodes on the north shore (SM1 and MD1), whereas four nodes on the south shore had null val-

ues. To further identify nodes that contributed to both direct (immediate connection) and indi-

rect (connection to its neighbors) network connectivity, node eigenvector centrality was

computed. Once again, our results show opposite patterns for nodes located on distinct shores,

with those on the northern shore exhibiting much larger eigenvector centrality values com-

pared to nodes in the south. Finally, AIEW was calculated to provide estimates of the numbers

of migrants to and from a node. Nodes with higher values (AIEW> 0.065) were all located on

the south shore of the St. Lawrence River (Table 1). Average path length of the complete net-

work was 2.708. While the removal of a single node (MI2) increased the value up to 3.353

(Table 1), the removal of six individual nodes (MA3, MD1, GA2, GA4, MA24, SM1) provided

results close to that of the complete graph (ranging between 2.595 and 2.706), meaning less

contributions to network connectivity. There were no cut nodes in our population graph.

BRIDES selection procedure

Using the BRIDES selection process, we explored which nodes were the most important for

network connectivity using six subgraphs that were constructed from the complete population

Fig 2. Population graph of 19 wood turtle populations based on conditional genetic distance (cGD). Redundant edges were pruned when they did

not contribute to the overall genetic covariance structure. Node sizes are scaled according to the average inverse edge weight (AIEW), where greater

AIEW values are reflected through proportinaly larger circular diameters. Populations located on the northern and southern shores of the St. Lawrence

River are identified with gray and white nodes, respectively. Source: Esri. " Light Gray Canvas Map" [basemap]. https://www.arcgis.com/home/webmap/

viewer.html?layers=ed712cb1db3e4bae9e85329040fb9a49 Orignal data are from Bouchard and colleagues [56].

https://doi.org/10.1371/journal.pone.0271797.g002
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graph including 19 wood turtle populations under different conservation scenarios. Depend-

ing on the criteria selected, these networks contained between 6 and 13 nodes (Fig 3). Net-

works based on genetic heterozygosity included populations with HE values greater than

(Scenario AP) or lower than 0.72 (Scenario AR). Those based on estimated population sizes

Table 1. Sampled population parameters and corresponding node-based metrics, node removal statistics and BRIDES results.

Shore Id N HE Psize EO BC DC EC Strength AIEW CC APL Selection

North GA2 12 0.65 75 BC 3.483 4 0.85 82.002 0.049 0.67 2.673 0.21

GA3 31 0.72 2000 A 18.3 5 0.55 74.951 0.068 0.4 2.778 0.22

GA4 7 0.63 250 B 5.383 5 0.94 98.256 0.051 0.6 2.68 0.00

GA5 15 0.62 2000 AB 12.22 4 0.58 64.178 0.064 0.5 2.745 0.07

LA1 11 0.701 50 BC 25.05 5 1 114.731 0.044 0.4 2.948 0.43

LO1 21 0.754 50 B 47.18 4 0.24 56.732 0.071 0.33 3.281 0.50

MD1 18 0.724 100 B 0 3 0.76 64.692 0.047 1 2.627 0.00

SM1 56 0.771 250 AB 0 2 0.13 26.862 0.074 1 2.68 0.00

South BE1 24 0.634 100 B 22.6 5 0.09 96.79 0.053 0.2 2.843 1.00

DC1 17 0.736 50 AB 13.23 4 0.05 55.792 0.073 0.5 2.765 0.42

MA1 9 0.68 20 BC 9.4 3 0.04 51.131 0.06 0 2.706 0.93

MA2 10 0.625 30 AB 7.5 3 0.03 46.923 0.065 0.33 2.68 0.31

MA3 25 0.75 25 AB 0.7 2 0.01 26.783 0.075 0 2.595 0.17

MI1 20 0.73 500 AB 8.45 4 0.08 60.582 0.07 0.5 2.778 0.08

MI2 20 0.71 30 BC 49.63 5 0.08 64.001 0.079 0.4 3.353 0.78

MI3 6 0.74 100 B 12 4 0.05 59.394 0.068 0.5 2.77 0.23

SF1 6 0.74 25 AB 27.82 3 0.17 72.665 0.041 0 2.987 1.00

SF3 6 0.61 6 C 23.82 2 0.38 50.147 0.04 0 2.889 0.36

SF4 13 0.73 25 BC 5.233 5 0.06 73.463 0.069 0.5 2.732 0.62

Site identification (Id), number of genotyped individuals (N), expected heterozygosity (HE), estimated population size (PSize), element occurrence rank (EO),

betweenness centrality (BC), degree centrality (DC), eigenvector centrality (EC), strength, average inverse edge weight (AIEW), clustering coefficient (CC), average path

length (APL) estimated after node removal, and selection probability of each node using the BRIDES’s stepwise selection procedure (Selection). Values in bold indicate

the top three populations within each of the metrics, node removal and the selection process.

https://doi.org/10.1371/journal.pone.0271797.t001

Fig 3. Different population subgraphs based on distinct node selection parameters using a proactive or reactive conservation approach. A: Node

selection based on heterozygosity (HE) values. B: Node selection based on estimated population size. C: Node selection based on element occurrence

(EO) values. For each of these experimental scenarios, nodes included in the subgraph represented populations with the largest (Proactive) or smallest

(Reactive) parameter values. Populations located on the northern and southern shores of the St. Lawrence River are identified with gray and white

nodes, respectively.

https://doi.org/10.1371/journal.pone.0271797.g003
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were created by including populations with more (Scenario BP) or less than (Scenario BR) 75

individuals. Networks based on element occurrence included populations with EO ranks

greater than BC (Scenario CP) or lower than B (Scenario CR) (Table 1). The five weighting

models were then used to examine their impact on the node selection procedure and explore

BRIDES flexibility under a wide range of experimental conditions. The identity of the selected

nodes was very similar (90%) regardless of the weighted model selected for a given scenario

(S1 Fig and S1 Table).

Results of the node selection process revealed that regardless of the weighting schemes

and conservation scenarios, maximum scores were obtained by adding from one to six nodes

to the subgraph Xn (Table 2). A positive relationship was observed between the number

of candidate nodes required to reach the maximum score and the complexity of the weight-

ing scheme, with higher complexity models allowing for more diverse path types, but also

requiring more candidate nodes (Kendall Tau = 0.634, p < 0.001) (see S1 Fig for examples).

Namely, for the first weighting scheme (Model S1) that only accounted for shortcuts (com-

plexity of 1), three out of six scenarios returned no solution as no shortcuts were possible by

adding candidate nodes to the subgraph. In three other cases, one or two candidate nodes

were required to reach a maximal score. Models B3S1 and B1S3 considered shortcuts as well

as breakthroughs (complexity of 2), but with different weighting schemes, and the number

of nodes required to reach the maximum score varied from one to three. Model B1R1D1S1

contained contrasting roadblocks and detours with respect to breakthroughs and shortcuts

(complexity of 4), and two to five candidate nodes were required to reach a maximal score.

Finally, Model B3D1E2S3 accounted for breakthroughs, detours, equals, and shortcuts (com-

plexity of 4), and three to six nodes were required to reach a maximal score. In some cases,

multiple solutions with equal scores were available at any given step of the procedure. To

represent these equally multiple solutions, we depicted alternative paths with different types

of edges in corresponding graphs (Fig 4). This redundancy was observed in the results from

five of the six subgraph Xn selections for at least one step of the node selection procedure

(Table 2).

Table 2. Summary of the BRIDES node selection procedure providing the minimum number of nodes required to reach a maximal score, and the number of multi-

ple solutions with the same score for different scenarios and weighted model schemes.

Scenarios AP AR

Models S1 B3S1 B1S3 B1R1D1S1 B3D1E2S3 S1 B3S1 B1S3 B1R1D1S1 B3D1E2S3

No. of nodes 1 3 3 3 4 - 1 1 3 6

No. of solutions 1 2 2 2 2 - 1 1 1 4

Scenarios BP BR

Models S1 B3S1 B1S3 B1R1D1S1 B3D1E2S3 S1 B3S1 B1S3 B1R1D1S1 B3D1E2S3

No. of nodes - 3 3 5 5 1 1 1 2 3

No. of solutions - 5 5 5 4 1 1 1 1 1

Scenarios CP CR

Models S1 B3S1 B1S3 B1R1D1S1 B3D1E2S3 S1 B3S1 B1S3 B1R1D1S1 B3D1E2S3

No. of nodes 2 2 2 5 5 - 2 2 2 4

No. of solutions 2 1 1 2 2 - 1 1 1 1

A: Node selection based on heterozygosity (HE) values. B: Node selection based on estimated population size. C: Node selection based on element occurrence (EO)

values. For each scenario, nodes included in the subgraph represented populations with the largest (Proactive) or smallest (Reactive) parameter values. Scenarios for

which no nodes were selected (-) are also shown.

https://doi.org/10.1371/journal.pone.0271797.t002
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Discussion

Properties of the BRIDES selection procedure

BRIDES can repetitively assess the impact of multiple conservation scenarios without consid-

ering a priori models of population dynamics. The selection process thus allows the user to

test different scenarios and weighting schemes to decide which one is best for population pri-

oritization. When applied jointly with PopGraph, BRIDES will select the minimum number of

nodes required to optimize gene flow and network connectivity. Moreover, BRIDES can iden-

tify multiple solutions with identical scores, thus allowing for alternative node combinations in

the prioritization process. Its node selection process is robust for a given subgraph. In addition,

BRIDES is highly flexible and provides the user with the opportunity to determine which types

of paths need to be accounted for, and how they should be weighted to compute scores.

The BRIDES selection algorithm ranks all nodes based on their contribution to path lengths

in the subgraph Xn with respect to the complete network Xall (Fig 1). Based on hypothetical

conservation scenarios, our results highlighted the relative importance of some candidate

nodes in the complete network, when their addition increased the numbers of shortcuts or

breakthroughs. However, node selection can vary depending on the nodes chosen for the

construction of subgraph Xn. When divergent scenarios are considered, BRIDES provides an

objective criterion to guide the decision-making process. Yet, considering the high variation

observed in the ranking given the subgraph used, the prioritization process should account for

sensitivity to missing data and subgraphs must be chosen carefully. Namely, we suggest to

experiment with different measures of interest for management purposes. Our results also

Fig 4. BRIDES node selection process for scenario Ap and Model B3D1E2S3 (3, 0, 0, 1, 2, 3). All selection steps are shown, even when multiple

solutions had identical scores. In such cases, distinct solutions (i.e., MA1 or MA2) are identified by dashed edges connecting the selected nodes.

Maximum score (1.00) was reached with the addition of four candidate nodes. At each step of the procedure, the selected nodes and their

corresponding links are presented in blue.

https://doi.org/10.1371/journal.pone.0271797.g004
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highlight the need to further evaluate potential sources of uncertainty in network analysis,

especially when applied to conservation biology where the impact of missing nodes on path

lengths and component connectivity has yet to be assessed [65, 66].

Important ranking information is largely provided by node-based metrics, as nodes can be

compared across a multitude of indices operating at different scales and patterns of connectiv-

ity. Cross and colleagues [45] argue that this flexibility can be beneficial when top-ranking

nodes are first targeted by conservation actions. Yet, as pointed out by Creech and colleagues

[29], the choice of a biologically relevant metric to quantify connectivity has a direct effect on

the prioritization rankings, and our results revealed such inconsistencies among node-based

metrics (Table 1). Similarly, node removal is highly sensitive, and it may produce inconsistent

outcomes in habitat connectivity analysis [43, 44]. In agreement with previous studies, we

trust that network metrics are valuable tools to understand complex patterns of connectivity

and gene flow. On the other hand, we believe that node-based metrics should not be applied

as the only prioritization criteria. Contrary to centrality measures focusing on static networks,

BRIDES allows the analysis of dynamic networks onto which candidate nodes and edges are

added. As shown in our results, the nodes more frequently selected by BRIDES were not

always consistent with those selected by node-based metrics and node removal (Table 1).

BRIDES identifies six different types of paths, each one capturing specific properties of path

lengths within evolving networks. Yet, as it targets nodes based on their connectivity, BRIDES

might miss some important peripheral or isolated nodes. For example, isolated nodes in a sub-

graph may remain disconnected when their selection leads to more detours and roadblocks

than the selection of a central node (see S1 Fig, Scenario CR). For that reason, BRIDES may be

used jointly with complementary tools, such as phylogenetic networks developed by Volkman

and colleagues [42] to account for genetic distinctiveness and identify peripheral populations.

Prioritization process of wood turtle populations

In the context of wood turtle conservation genetics, the results we obtained with population

graphs are consistent with previous landscape genetics analyses [56], however, relationships

among populations are much more detailed. As opposed to pairwise methods, population

graphs account for genetic covariance among all populations simultaneously [37, 67]. It is

already known that the St. Lawrence River acts as a barrier to gene flow among wood turtle

populations located on opposite shores [51, 56, 68] but the population graph revealed which

populations and corresponding links are more connected across the river (Fig 2). The network

also depicted a detailed account of the interaction patterns between populations located on

the two shores. We observed four nodes (LA1, LO1, MI2, SF3) linking the two shores, which

could be viewed as stepping-stones or bridges between populations [38]. The results obtained

after node removal also support the interconnection among populations on the north shore,

except for two nodes linking the southern shore (LA1, LO1) that affect average path lengths.

This implies that gene flow among north shore populations makes them less susceptible to

local extinctions. On the other hand, populations on the south shore are more loosely con-

nected, except for some sites exhibiting high values of AIEW (MA3, MI2). Metapopulation

dynamics should be further investigated for these sites since AIEW is an accurate measure of

reproductive success and the number of migrants between nodes [63].

The BRIDES algorithm was applied in this study to demonstrate how it may be used to

select wood turtle populations with either a reactive or proactive prioritization procedure.

To do so, we considered six hypothetical scenarios and five different weighting schemes, and

applied a node selection procedure to prioritize populations. For example, the first scenario

only included populations with large heterozygosity values. Even when neutral genetic
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diversity is not correlated to functional diversity [69], heterozygosity may still identify well-

connected sites, large population sizes despite isolation, habitat fragmentation, and pertur-

bance. In a proactive conservation plan, such populations with low vulnerability may be

selected first to protect the genetic variability of the species before it erodes [15–17]. Namely,

the link between the north and south shores of the St. Lawrence River was included in the sub-

graphs only when a proactive conservation perspective was used. meaning that some of theses

populations might be characterized by small HE, population sizes, and high EO ranks.

Regardless of their genetic diversity, the topological relationships among nodes within the

network may be of importance for connectivity [70]. Peripheral populations associated with

MA sites are thus of great interest to quantifying functional connectivity. Although MA3 pres-

ents high neutral genetic diversity, all MA sites are clustered together in Bouchard and col-

leagues [56]. Likewise, node-based metrics for these populations were in the low to mid-range,

except for MA3, which exhibited a large AIEW value. Removal of these three nodes had no

impact of the average path length of the network. These results are in stark contrast with those

obtained with BRIDES, where the MA1 was very likely to be selected to maximize network

connectivity. Such a discrepancy illustrates that node-based metrics may overlook important

nodal features that BRIDES actually considers during its selection process.

In Québec, riverbeds and riverbanks which are part of wood turtle habitats are protected in

public land, but stronger management actions are still needed to ensure long-term survival of

populations [71]. To do so, one can apply BRIDES to prioritize populations in a reactive fash-

ion. That is that populations with the smallest sizes–those needing high priority management

actions such as nest protection from predators or a head-starting program–would first be

selected to construct a subgraph (Scenario BR, Fig 3 and S1 Fig). As the resulting subgraph

may be disconnected and these small populations may face extirpation, one could also adopt a

proactive perspective to protect larger populations that support them. More precisely, large

turtle populations, as a source of genetically similar individuals, may add redundancy and

resilience to population extirpation in the network. Namely, BRIDES can be applied to select

these candidate populations based on path lengths and other connectivity indices (Model

B3D1E2S3, S1 Fig). In this particular case, populations BE1, MI3 and GA5 (Model B3D1E2S3, S1

Fig) would be selected by BRIDES to guide the complex decision-making process of popula-

tion prioritization.

Subgraph constructions in our study were based on proactive and reactive procedures to

illustrate the method, but it is entirely up to the user to select populations in the starting sub-

graphs. The subgraphs could also be based on characteristics independent of the species, such

as land ownership or jurisdictions involved allowing for nesting sites or for hibernacula that

can be easily protected and managed. Because the choice of populations in subgraphs greatly

influences the subsequent selection of candidate nodes, we suggest to use practical conserva-

tion criteria to select the nodes of a subgraph, especially when BRIDES is applied for popula-

tion prioritization.

Uncertainties about genetic connectivity, genetic differentiation, isolation by distance, and

population assignment may all be addressed with a single heuristic approach: the network.

Moreover, many levels of connectivity can be considered at a different time and spatial scales

when using evolving networks, especially those analyzed with BRIDES. Network analysis also

offers an alternative model to population genetic analysis when populations are not considered

to be at a mutation-drift balance and depart from the Hardy-Weinberg equilibrium [70, 72,

73]. Yet, networks are not free of a priori assumptions that are associated with the choice of a

genetic distance, the pruning procedure, and the criteria selected for the construction of the

subgraph. HE, notably, may not be the most relevant criteria since it was very similar in several

populations. In the present case, subgraphs were created by removing nodes and their
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corresponding edges from the complete population graph among 19 wood turtle populations.

Considering that the graph pruning method is based on the removal of redundant edges that

do not contribute to the overall genetic covariance of the network, population graphs should

be re-estimated every time a node is removed.

Given the specific, historic life traits of long-lived organisms with low recruitment and late

sexual maturity, the genetic characterization of recent perturbation events can be challenging

[74]. As network topology stabilizes rapidly following a perturbation event, network analysis

could be part of the solution to detect more precisely the genetic signal [67, 75]. For example,

many species with high levels of gene flow could benefit from this network approach, like

many turtle and tortoise species [74, 76]. Likewise, it could apply to other long-lived species

of vertebrates [77, 78], as well as some plant species without any geographical barriers to gene

flow [79, 80]. More precisely, BRIDES represents an interesting avenue to study trophic net-

works or to compare various scenarios during the design of protected area networks. Managers

could benefit from using such tools to understand the impact of the addition or removal of a

species within a food web, whether it be through the impact of the introduction of an invasive

exotic species or the selection of a biocontrol agent. Namely, a scenario with fewer break-

throughs or shortcuts could be preferred to limit the impact of introduced invasive species.

BRIDES could also be applied to optimize the connectivity among isolated habitat patches,

with respect to historical levels of connectivity, when protected areas are designed. In a time

where environmental challenges are pressing and greater emphasis is given to temporal scales

when modeling climate change, population graphs and evolving networks may provide a bet-

ter understanding of the evolving ecosystem, trophic networks and population structures.

Supporting information

S1 Fig. Results of the BRIDES node selection procedure for two scenarios and three

weighted models. In each case, networks with optimal scores while minimizing the number of

candidate nodes are presented. Nodes from the subgraph Xn are depicted by empty circles,

whereas candidate nodes and corresponding edges in Xn+1 are depicted by blue circles.

(TIF)

S1 Table. Results of the BRIDES node selection procedure for six scenarios (A, B, C) and

five weighted models (S1, B3S1, B1S3, B1R1D1S1, B3D1E2S3). For each node, the initial pres-

ence of a population in the subgraph is identified by (x) and its selection (1) or not (0) in at

least one of the optimal solutions is indicated. Scenarios for which no nodes were selected (-)

are also shown.

(PDF)
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72. Neigel JE. A comparison of alternative strategies for estimating gene flow from genetic markers. Annu

Rev Ecol Evol Syst. 1997; 28: 105–128.

73. Rozenfeld AF, Arnaud-Haond S, Hernández-Garcı́a E, Eguı́luz VM, Serrão EA, Duarte CM. Network

analysis identifies weak and strong links in a metapopulation system. Proc Natl Acad Sci U S A. 2008;

105(48): 18824–18829. https://doi.org/10.1073/pnas.0805571105 PMID: 19022909

74. Kuo CH, Janzen FJ. Genetic effects of a persistent bottleneck on a natural population of ornate

box turtles (Terrapene ornata). Conserv Genet. 2004; 5(4): 425–437.

75. Dyer RJ. The evolution of genetic topologies. Theor Popul Biol. 2007; 71: 71–78. https://doi.org/10.

1016/j.tpb.2006.07.001 PMID: 16919694

76. Dutcher KE, Vandergast AG, Esque TC, et al. Genes in space: what Mojave desert tortoise genetics

can tell us about landscape connectivity. Conserv Genet. 2020; 21(2): 289–303.

77. Mcdougall CA, Welsh AB, Gosselin T, et al. Rethinking the influence of hydroelectric development on

gene flow in a long-lived fish, the Lake Sturgeon Acipenser fulvescens. PloS one, 2017; 12(3):

e0174269. https://doi.org/10.1371/journal.pone.0174269 PMID: 28329005

78. Mr Fuller, Doyle M. Gene flow simulations demonstrate resistance of long-lived species to genetic ero-

sion from habitat fragmentation. Conserv Genet. 2018; 19(6): 1439–1448.

79. Luna-Ortiz A, Arteaga MC, Bello-Bedoy R. et al. High genetic diversity and low structure in an endemic

long-lived tree, Yucca capensis (Asparagaceae). Plant Biol. 2022; 24(1): 185–191. https://doi.org/10.

1111/plb.13346 PMID: 34634170

80. Noutsos C, Borevitz JO, Hodges SA. Gene flow between nascent species: genotypic and phenotypic

differentiation within and between Aquilegia formosa and A pubescens. Mol Ecol. 2014; 23: 5589–98.

https://doi.org/10.1111/mec.12962 PMID: 25314338

PLOS ONE Applying novel connectivity networks to wood turtle populations

PLOS ONE | https://doi.org/10.1371/journal.pone.0271797 August 12, 2022 18 / 18

https://doi.org/10.1111/j.1365-294X.2010.04748.x
http://www.ncbi.nlm.nih.gov/pubmed/20723052
https://doi.org/10.1111/j.1365-294X.2007.03580.x
https://doi.org/10.1111/j.1365-294X.2007.03580.x
http://www.ncbi.nlm.nih.gov/pubmed/17971089
https://doi.org/10.1073/pnas.0805571105
http://www.ncbi.nlm.nih.gov/pubmed/19022909
https://doi.org/10.1016/j.tpb.2006.07.001
https://doi.org/10.1016/j.tpb.2006.07.001
http://www.ncbi.nlm.nih.gov/pubmed/16919694
https://doi.org/10.1371/journal.pone.0174269
http://www.ncbi.nlm.nih.gov/pubmed/28329005
https://doi.org/10.1111/plb.13346
https://doi.org/10.1111/plb.13346
http://www.ncbi.nlm.nih.gov/pubmed/34634170
https://doi.org/10.1111/mec.12962
http://www.ncbi.nlm.nih.gov/pubmed/25314338
https://doi.org/10.1371/journal.pone.0271797

