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Abstract

Compared to simple sugars, complex carbohydrates have been assumed invisible to taste.

However, two recent studies proposed that there may be a perceivable taste quality elicited

by complex carbohydrates independent of sweet taste. There is precedent with behavioural

studies demonstrating that rats are very attracted to complex carbohydrates, and that com-

plex carbohydrates are preferred to simple sugars at low concentrations. This suggests that

rats may have independent taste sensors for simple sugars and complex carbohydrates.

The aim of this paper is to investigate oral sensitivities of two different classes of complex

carbohydrates (a soluble digestible and a soluble non-digestible complex carbohydrate),

and to compare these to other caloric and non-nutritive sweeteners in addition to the proto-

typical tastes using two commonly used psychophysical measures. There were strong

correlations between the detection thresholds and mean intensity ratings for complex carbo-

hydrates (maltodextrin, oligofructose) (r = 0.94, P < 0.001). There were no significant corre-

lations between the detection thresholds of the complex carbohydrates (maltodextrin,

oligofructose) and the sweeteners (glucose, fructose, sucralose, Rebaudioside A, erythritol)

(all P > 0.05). However, moderate correlations were observed between perceived intensities

of complex carbohydrates and sweeteners (r = 0.48–0.61, P < 0.05). These data provide

evidence that complex carbohydrates can be sensed in the oral cavity over a range of con-

centrations independent of sweet taste sensitivity at low concentrations, but with partial

overlap with sweet taste intensity at higher concentrations.

Introduction

Complex carbohydrates and simple sugars are two essential sources of energy in our diet.

Except for some fruits, complex carbohydrates are more abundant than simple sugars in

plants, but it is sugars with their hedonically pleasing sweet taste that are the sought-after car-

bohydrate [1]. In line with this, there is also growing evidence demonstrating that rodents

(e.g., rats, mice, gerbils, hamsters) and even some non-human primates are attracted to the
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taste of complex carbohydrates derived from maltodextrin (also known as glucose polymer)

[2, 3]. This evidence has been summarised in Lapis et al. [4, 5] indicating independent taste

peripheral physiology for complex carbohydrates and simple sugars [3, 6], but the taste recep-

tor remains unknown [7]. Furthermore, recent behavioural studies from exercise science sup-

port the notion that humans can detect complex carbohydrates within the oral cavity (see

Lapis et al. [4, 5] and systematic review by e Silva et al. [8]).

Two recent human psychophysical studies propose that humans may perceive complex

carbohydrates independent of sweet taste (i.e., glucose and sucrose were significantly corre-

lated with each other, but not with complex carbohydrates) [4, 5]. For example, Lapis et al.

[5] found that humans (n = 25) were able to discriminate complex carbohydrate solutions

(glucose oligomers but not glucose polymers) from water even when the sweet taste recep-

tors (T1R2-T1R3 heterodimer) are inhibited by lactisole treatment. Lactisole is a sweet taste

blocker known to bind to a pocket in the transmembrane region of the T1R3 and thus

inhibits the sweet taste perception of sugars, proteins, and non-nutritive sweeteners. [5, 9]

While the human taste perception of complex carbohydrate (starch) has been investigated

by Lapis et al. [4, 5], it needs replication and also extension.

At present, there is also only one known human psychophysical study that has investigated

if oral sensitivity to complex carbohydrates is independent of some of the other basic tastes

(i.e., sweet and salty taste). Lapis et al. [4] showed no significant correlations between the

intensity ratings of glucose (sweet taste), sucrose (sweet taste), and sodium chloride (salty

taste) with the intensity ratings of complex carbohydrates. However, it is still uncertain if this

measure is independent of the intensity ratings of the remaining common prototypical tastes

stimuli such as monosodium glutamate (umami taste), caffeine (bitter taste), and citric acid

(sour taste). As each measure of taste function (detection threshold, recognition threshold, and

suprathreshold intensity perception) represents a different dimension of the sense of taste,

there is currently no single method to measure taste function in totality [10, 11]. Even though

the perceptual relationship between a range of caloric and non-nutritive sweeteners have been

reported, there is currently no single study that has investigated the relationships between

complex carbohydrates and multiple sweeteners (caloric and non-nutritive) using a range of

psychophysical measures within a single group of individuals. It is also important to test other

stimuli within a single class to access similarities in terms of perception between soluble digest-

ible and soluble non-digestible complex carbohydrates.

The aim of this paper was to investigate if humans can perceive two different classes of com-

plex carbohydrates (a soluble digestible and a soluble non-digestible carbohydrate), and to

associate the oral sensitivities of these complex carbohydrates to other caloric and non-nutri-

tive sweeteners using two commonly used psychophysical measures. Although the terminology

“polysaccharide taste” has been recommended by Sclafani [1] to denote starch-derived saccha-

rides containing three or more glucose units, it can be confusing as the word “polysaccharide”

is generally used to describe complex carbohydrates, comprising more than ten monosaccha-

ride units organised in chains. The word “oligosaccharide taste” (two to nine monosaccharide

units) would be the more appropriate terminology, nonetheless, and it is not user friendly.

However, at the present time, it cannot be confirmed if perception of oligosaccharides is inde-

pendent of textural differences. Therefore, at this stage of knowledge we use “oral sensitivity to

complex carbohydrate”, which correctly comprises all types of complex carbohydrates and

derivatives including fibres (e.g., oligofructose), while not diminishing the prospect that oral

perception of complex carbohydrates could be due to textural differences. Whilst dietary “car-

bohydrate” is an umbrella term for the monosaccharide and disaccharide sugars as well as

starches and fibres, the term “sweet taste” has been collectively used to indicate sweetness.

Thus “oral sensitivity to complex carbohydrate” would at the current state of knowledge be as
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correct as possible without oversimplifying tasting complex carbohydrates, but not easily con-

fused with other sensations such as sweetness.

Materials and methods

Study design

This study comprised a total of 28 laboratory-based sessions in which data on two measures of

taste perception routinely used in chemosensory research was collected: (1) detection thresh-

old (DT) and (2) suprathreshold intensity rating (ST). These measures were determined for all

participants for each of two complex carbohydrates (soluble digestible and non-digestible

complex carbohydrate), six sweeteners (caloric and non-nutritive sweeteners) and prototypical

stimuli for sour, salty, umami, and bitter. The 28 laboratory-based sessions consisted of 14 test-

ing sessions to measure oral complex carbohydrate sensitivity (seven repeated testing sessions

for each complex carbohydrate); 12 sessions to measure sweet taste function (each sweetener

measurements collected over two repeated testing sessions); one session to measure the proto-

typical stimuli (each measurement collected in duplicates in a single testing session); and one

session for general Labeled Magnitude Scale (gLMS) training and standardisation. All repeated

testing sessions were separated by at least an hour apart. For DT measures, if there were more

than three concentration step differences between the repeated measures, participants

attended another session to complete the assessment. Participants in the present study were

part of a larger study focusing on the psychophysics of sweet taste measures for the six sweet-

eners [12]. The present study shared the same dataset (sweet taste function only) with Low

et al. [12]. DT and ST tasks were conducted in computerised, partitioned sensory booths in the

Centre for Advanced Sensory Science using Compusense Cloud Software as part of the Com-

pusense Academic Consortium (Compusense Inc., Ontario, Canada). Filtered deionised water

was used as an oral rinsing agent. Participants were instructed to rinse their mouths with fil-

tered deionised water for five seconds before beginning each task and between each sample

set. To eliminate any potential visual and olfactory input, all testing sessions were conducted

under red lighting, and participants were asked to wear nose clips during testing. All solutions

were served at room temperature, with a three-digit code allocated to each sample.

Participants

Participants [(n = 34): 16 males, age 26.2 ± 0.4 years (range, 24–30 years), BMI 25.2 ± 0.9 kg/

m2 (range, 18.9–30.0 kg/m2); 18 females, age 29.4 ± 2.1 years (range, 24–55 years), BMI

24.3 ± 0.8 kg/m2 (range, 20.0–29.6 kg/m2)] were recruited via email and flyer distribution

from locations adjacent to the Melbourne Burwood campus of Deakin University, Australia.

Potential participants were excluded if they were: (1) smokers; (2) pregnant or lactating; (3)

taking any prescription medication that may interfere with their ability to taste; or (4) had a

history of food allergies that may interfere with the study. Participants were asked to refrain

from eating, drinking (except room temperature water), brushing their teeth, and chewing

gum for one hour prior to testing. All participants gave written informed consent and were

compensated for their participation. This study was approved by the institutional review board

regulations of Deakin University (HEAG_H_182_2014) and recruitment started from 02/03/

2015-30/09/2015. The experimental protocol was also registered under the Australian New

Zealand Clinical Trials Registry (ACTRN12616001356459), www.anzctr.org.au. This study

also complies with the Declaration of Helsinki for Medical Research involving Human

Subjects.
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Participant training

Prior to using the general Labeled Magnitude Scale (gLMS) to rate taste intensity, participants

were trained using the standard protocol outlined by Green et al. [13, 14] except the top of the

scale was described as the strongest imaginable sensation of any kind [15]. The 100-point scale

comprised the following adjectives: ‘no sensation’ = 0, ‘barely detectable’ = 1.5, ‘weak’ = 6,

‘moderate’ = 17, ‘strong’ = 35, ‘very strong’ = 52, and ‘strongest imaginable’ = 100 [15]. Scales

with only adjectives (not numbers) were presented to participants. During the training session,

participants were taught to rate the intensity of the perceived sensation relative to a remem-

bered or imagined sensation when using the gLMS scale. Participants were required to rate a

list of seven remembered or imagined sensations, such as the warmth of the lukewarm water,

the pain from biting of the tongue, and the sweetness of fairy floss (known as cotton candy in

the USA, or candy floss in the UK).

Stimuli

Maltodextrin and oligofructose were used to investigate oral complex carbohydrate sensitivity

(DTs and STs for both complex carbohydrates; for details of stimuli see Table 1). Maltodextrin

with a dextrose equivalent (DE) of five was used in this study as it contains the lowest possible

amount of free sugar (glucose, maltose) yet is soluble in water. DE is a measure of the percent-

age of reducing sugars relative to glucose on a dry basis [16].

Both caloric (glucose, fructose, sucrose, and erythritol) and non-nutritive sweeteners

(NNS) (sucralose and Rebaudioside A) were used to investigate sweet taste (for details of sti-

muli see Table 1). Prototypical stimuli [sodium chloride (Saxa, Premier Foods Inc, Seven Hills,

Australia), citric acid (Ward McKenzie Private Limited, Altona, Australia), caffeine (Sigma

Table 1. Complex carbohydrate and sweetener concentrations used for determination of detection thresholds.

Stimulus Concentration (% w/v)

1 2 3 4 5 6 7 8 9 10 11 12

Maltodextrin 0.04 0.06 0.1 0.2 0.3 0.6 1.1 1.9 3.6 6.3 11.2 20.0

Amount of Glucose in Maltodextrin (10−3) 0.3 0.5 0.9 1.6 2.8 5.8 9.0 15.9 28.4 50.5 90.0 160.0

Amount of Total Sugars in Maltodextrin (10−3) 1.1 1.6 3.0 5.6 9.8 17.6 31.4 55.7 99.4 176.7 314.7 560.0

Oligofructose 0.04 0.06 0.1 0.2 0.3 0.6 1.1 1.9 3.6 6.3 11.2 20.0

Amount of Fructose in Oligofructose (10−3) 0.5 0.8 1.5 2.8 4.9 8.8 15.6 27.8 49.7 88.3 157.3 280.0

Amount of Total Sugars in Oligofructose (10−3) 1.2 1.8 3.3 6.6 10.5 18.9 33.6 59.7 106.5 189.3 337.2 600.0

Glucose 0.02 0.03 0.05 0.09 0.1 0.2 0.4 0.6 1.1 1.8 2.9 4.8

Fructose 0.01 0.02 0.03 0.05 0.08 0.1 0.2 0.3 0.5 0.9 1.5 2.5

Sucrose 0.01 0.02 0.03 0.06 0.09 0.1 0.2 0.4 0.7 1.2 1.8 3.0

Sucralose (10−3) 0.02 0.04 0.06 0.09 0.1 0.2 0.4 0.7 1.1 1.9 3.1 5.1

Rebaudioside A (10−3) 0.03 0.05 0.09 0.1 0.2 0.3 0.6 1.0 1.7 2.8 4.6 7.7

Erythritol 0.02 0.03 0.05 0.08 0.1 0.2 0.3 0.6 0.9 1.6 2.6 4.4

The concentration series for sucrose was adapted from ISO3972 [17]. The concentration series for maltodextrin, oligofructose, glucose, fructose, sucralose,

erythritol, and Rebaudioside A were prepared with successive 0.25 log dilution steps. Reference chemical details: maltodextrin (Star-Dri 5, Tate & Lyle

Ingredients Americas, USA); oligofructose (Fibrulose F97, CoSucra-Groupe Warcoing, Belgium); glucose (The Melbourne Food Depot, Melbourne,

Australia); fructose (The Melbourne Food Depot, Melbourne, Australia); sucrose (CSR, Yarraville, Australia); sucralose (The Melbourne Food Depot,

Melbourne, Australia); Rebaudioside A (AuSweet, Melbourne, Australia); and erythritol (AuSweet, Melbourne, Australia). Calculation of the amount of

common and total sugars in maltodextrin and oligofructose concentrations were according to the report of analysis by the Australian Government National

Measurement Institute from samples used in this study, where there were a total of 2.8g/100g (2.8% w/w) of free sugars for the maltodextrin (Glucose: 0.8%

w/w) and 3.0g/100g (3.0% w/w) of free sugars for the oligofructose (Fructose: 1.4% w/w).

https://doi.org/10.1371/journal.pone.0188784.t001
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Aldrich, Steinham, Germany), and monosodium glutamate (MSG; Ajinomoto Cooperation,

Tokyo, Japan)] were used to investigate taste function for salty, sour, bitter, and umami. All

samples were prepared fresh on the day of testing using filtered deionised water (Cuno Filter

Systems FS117S, Meriden, CT, USA) and stored in glass beakers at room temperature

(20 ± 1˚C).

Analysis of common sugars in maltodextrin and oligofructose samples. To determine

if the maltodextrin and oligofructose used in this study would be suitable products, four per-

cent w/v maltodextrin and oligofructose solutions were prepared for High Performance Liquid

Chromatography (HPLC).

The complex carbohydrate extracts were clarified with 25mL acetonitrile and filtered

through a 0.45um filter into a 2mL vial. To determine the amount of common sugars in sam-

ples, filtered solutions were analysed by HPLC using amino column with an acetonitrile/water

mobile phase containing salt and refractive index detection. Quantitation was made using a

standard solution containing known amount of fructose, glucose, sucrose, maltose and lactose.

Samples were measured in duplicate.

There were a total of 2.8g/100g (2.8% w/w) of free sugars for the maltodextrin (Glucose:

0.8% w/w) and 3.0g/100g (3.0% w/w) of free sugars for the oligofructose (Fructose: 1.4% w/w)

used in this study (Table 2). Detailed in Table 1 are the amounts of common sugars and total

sugars (% w/v) present in each complex carbohydrate DT concentration.

Detection threshold determination for sweet taste and oral sensitivity to

complex carbohydrates

Detailed in Table 1 are the concentration ranges used to assess DT for sweet taste and oral

complex carbohydrate sensitivity. The concentration series for sucrose was adapted from

ISO3972 [17]; concentrations for the remaining sweeteners and complex carbohydrates were

prepared with successive 0.25 log dilution steps [12]. Initial starting concentrations for sweet-

eners were determined through informal bench-top testing, based on modified findings of

matching sweetness intensity ratios published by Keast et al. [18]. Concentrations for complex

carbohydrates were derived based on previous published findings of perceptually distinctive

oral sensation concentrations (i.e., see Lapis et al. [4] and systematic literature review by e Silva

et al. [8]) and without perceivable viscosity. After pilot testing, a concentration range between

0.04–20.0 percent (w/v) was used to measure DT levels for complex carbohydrates. As

Table 2. Saccharide composition of the oligosaccharides used in the present study.

Proximates Sample Reference (% w/w)

Maltodextrin Oligofructose

Glucose 0.8 < 0.2

Fructose < 0.2 1.4

Sucrose < 0.2 1.3

Maltose 0.9 < 0.2

Lactose < 0.2 < 0.2

Maltotriose 1.1 < 0.2

Galactose < 0.2 < 0.2

Total sugars* 2.8 3.0

*Total Sugars = Glucose, Fructose, Sucrose, Maltose, Lactose, Maltotriose, and Galactose.

These analyses were determined by the Australian Government National Measurement Institute, and were conducted by High Performance Liquid

Chromatography (HPLC). 20g of each sample were sent for analyses.

https://doi.org/10.1371/journal.pone.0188784.t002

Evidence supporting oral sensitivity to complex carbohydrates independent of sweet taste sensitivity in humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0188784 December 27, 2017 5 / 20

https://doi.org/10.1371/journal.pone.0188784.t002
https://doi.org/10.1371/journal.pone.0188784


maltodextrin is similar in oral sensation and appearance to oligofructose, similar concentra-

tions were used for both complex carbohydrates [19–22]. DTs for each of the sweeteners and

complex carbohydrates were determined using ascending forced choice triangle methodology

[23, 24], in which the participants were provided with sets of three 25 mL samples, two of

which were controls (filtered deionised water) and one contained sweetener/complex carbohy-

drate, in ascending order from the lowest to the highest concentration level. Participants were

instructed to select the ‘odd’ one out which contained a fixed concentration of particular

sweetener/complex carbohydrate. If the participant was incorrect, a second sample set with the

next highest concentration of sweetener/complex carbohydrate was presented. However, if

correct, a second set was presented with the same concentration as the preceding tray. This

continued until the participant could identify the odd sample correctly for three consecutive

times. DT was defined as the concentration of sweetener/complex carbohydrate required for a

participant to correctly identify the sweetened/complex carbohydrate sample as the odd one

out in three consecutive sample sets at one concentration level [23].

Detection threshold determination for salty, sour, bitter, and umami taste

DT was determined using the procedure outlined in the International Standards Organisation

(ISO) Method of Investigating Sensitivity of Taste [17]. Nine concentrations were used for

each taste quality with the ninth concentration being presented only when participants were

unable to differentiate the solutions from water in the previous eight concentrations [concen-

tration ranges: sodium chloride (salty) 0.01–0.33% w/v; caffeine (bitter) 0.006–0.045% w/v; cit-

ric acid (sour) 0.013–0.10% w/v; and MSG (umami) 0.008–0.17% w/v] [17]. The eight samples

from each taste quality were served in ascending concentration (15 mL per sample, in accor-

dance with the standard ISO method), and each taste quality was presented to participants

independently. Participants were unaware of the presentation order but were informed of the

possible taste qualities. Participants were instructed to taste each sample for five seconds then

expectorate and record whether: there was an absence of taste (water-like); a taste was identi-

fied but not recognised; or a taste quality was perceived [17]. DT was defined as the concentra-

tion at which the participants selected the ‘taste identified, but unknown taste quality’ response

[17].

Suprathreshold intensity ratings for the sweeteners, complex

carbohydrates, and prototypical tastants

Three concentrations (weak, medium, and strong) and a control (blank) solution were pre-

pared to determine perceived ST for each prototypical tastant and sweetener (Table 3). For

complex carbohydrates, four concentrations of complex carbohydrate solutions [weak (3.6%

w/v), medium (6.3% w/v), medium-strong (11.2% w/v), strong intensity (20.0% w/v)] and a

control (blank) solution were prepared. These concentrations were derived through informal

bench-top testing (ascending taste intensity), but were similar to the concentrations outlined

by Webb et al. [12]. The concentrations for each stimulus ranged from “weak” to “strong” on

the gLMS. Each stimulus was presented to participants independently (sets), but in a rando-

mised order.

Standardisation of gLMS usage with weight ratings

To standardise gLMS usage within participants, a modified version of the method used by Del-

wiche et al. [25] was adapted for this study. To control for idiosyncratic scale usage, partici-

pants were asked to rate the heaviness of six, visually identical weights (opaque bottles filled

with sand and stone and completely wrapped in aluminium foil; weights of 53, 251, 499, 724,
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897, and 1127g). Participants were asked to hold out their non-dominant hand palm up, while

the experimenter placed the weighted bottle on the palm of the hand. Participants were

instructed to rate the heaviness of each weight using the gLMS.

There was a significant correlation between the overall mean prototypical ratings and over-

all mean heaviness ratings (r = 0.39, P< 0.05). Assuming that the intensity ratings of prototyp-

ical tastants and the heaviness of the bottles were unrelated, the significant correlation

indicates that the gLMS ratings were subject to differences in individual scale-use and thus

require standardisation across participants [10, 11, 25]. To determine a personal standardisa-

tion factor, the grand mean for heaviness across weight levels and participants was divided by

each participant’s average intensity for heaviness [11]. Each individual’s prototypical taste

intensity and sweetness intensity ratings were multiplied by his or her personal standardisation

factor for scale-use bias [11, 25].

Statistical analysis

Statistical analysis was performed using IBM SPSS statistical software version 23.0 (SPSS, Chi-

cago, IL, USA). Data are presented as means with standard errors of mean (SEM). The DTs

and STs were determined as the arithmetic mean of the repeated measures, and Intraclass Cor-

relation Coefficient (ICC) was used as an indicator of reliability. For STs, the geometric mean

score of the three/four ratings (weak, medium, medium-strong, and strong) was calculated

[10]. Spearman’s rank correlation coefficient was calculated between distinct measures of taste

function. In order to simplify the data presentation for correlations between DTs and STs, neg-

ative r-values were converted to positive and vice versa [11, 12]. The criterion for statistical sig-

nificance was set at P< 0.05.

DTs for each complex carbohydrate, sweetener, and prototypical tastant were treated as

grouping variables (tertiles) with participants categorised as more sensitive (1/3), normal sen-

sitive (2/3), and less sensitive (3/3) to explore relationships between oral complex carbohydrate

sensitivity, sweet taste function, and prototypical taste function. STs for each complex carbohy-

drate, sweetener, and prototypical tastant were treated as grouping variables (tertiles) with par-

ticipants categorised as those who experienced low intensity (1/3), moderate intensity (2/3),

and high intensity (3/3) to explore relationships between oral complex carbohydrate sensitiv-

ity, sweet taste function, and prototypical taste function. DTs and STs for each complex carbo-

hydrate, sweetener, and prototypical tastant were grouped into tertiles to allow comparison of

most and least sensitive groupings or those groups who experienced low and high intensity

Table 3. Concentrations (weak, medium, and strong intensity) of prototypical tastants and sweeteners used for determination of suprathreshold

taste intensity.

Taste quality Stimulus Concentration (% w/v)

Weak Medium Strong

Salty Sodium chloride 0.6 1.2 2.3

Bitter Caffeine 0.02 0.04 0.08

Sour Citric acid 0.02 0.06 0.13

Umami Monosodium glutamate (MSG) 0.05 0.10 0.20

Sweet Glucose 5.3 10.6 21.2

Sweet Fructose 2.9 5.6 11.2

Sweet Sucrose 3.4 6.9 13.7

Sweet Sucralose (10−3) 5.7 11.4 22.8

Sweet Rebaudioside A (10−3) 8.6 17.2 34.4

Sweet Erythritol 5.7 9.8 19.7

https://doi.org/10.1371/journal.pone.0188784.t003
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(i.e., 24 sets of tertiles were determined: one for DT for each complex carbohydrate, sweetener,

and prototypical tastant, and one for ST for each complex carbohydrate, sweetener, and proto-

typical tastant).

Results

Test-retest reliability of complex carbohydrates

All measured thresholds and suprathreshold intensities proved reliable. For maltodextrin, the

test-retest correlation reached significance for both detection [r = 0.91–0.95 (ICC = 0.95),

P< 0.001] and suprathreshold intensity perception [r = 0.50–0.98 (ICC = 0.66–0.85), P< 0.001].

Similarly, for oligofructose, the test-retest correlation reached significance for both detection

[r = 0.88–0.97 (ICC = 0.95), P< 0.001] and suprathreshold intensity perception [r = 0.47–0.96

(ICC = 0.51–0.94), P< 0.001].

Oral detection thresholds of complex carbohydrates and relationship

with taste detection thresholds of sweeteners

There were no significant differences in both oral complex carbohydrate sensitivity and sweet

taste function between male and female participants; therefore, the data are presented together

(all P> 0.05). Mean (± SEM) DT values for the complex carbohydrates are presented in

Table 4. There was large individual variation among the participants, for example DT for

maltodextrin ranged from 0.04 to 6.31% w/v (Fig 1). Mean DT values and frequency distribu-

tion of DTs for the six sweeteners has previously been published in Low et al. [12].

The DTs of complex carbohydrates (maltodextrin, oligofructose) were strongly correlated

with one another (r = 0.94, P< 0.001; Table 4; Fig 2). Similarly, caloric sweeteners (glucose,

fructose, sucrose, and erythritol) were strongly correlated with one another (r = 0.84–0.93,

P< 0.001), as were NNS (sucralose, Rebaudioside A) (r = 0.68, P< 0.001) [12]. To verify that

free sugars in complex carbohydrate solutions were below DT, if a participant is able to detect

glucose in water (DT) at the lowest concentration (0.02% w/v), potentially that would trigger

detection for maltodextrin solution at step 6 (total sugars in maltodextrin: 0.018% w/v). How-

ever, there were no significant correlations between the DTs of the complex carbohydrates

(maltodextrin, oligofructose) and the sweeteners (glucose, fructose, sucralose, Rebaudioside A,

erythritol) (all P> 0.05) [12]. This suggests that threshold sensitivity to complex carbohydrates

(maltodextrin, oligofructose) does not predicate that the person will be sensitive to the sweet-

ness of sweeteners.

Suprathreshold intensities for the complex carbohydrates and

relationship with measures of taste function

Fig 3 shows the psychophysical functions for both complex carbohydrates. Psychophysical

functions for the six sweeteners have previously been published in Low et al. [12]. As expected

there were monotonic increases in perceived intensity as the concentration of the stimuli was

increased. Spearman’s rank correlation revealed a significant relationship between the STs at

Table 4. Detection thresholds for complex carbohydrates (% w/v), including mean, standard error of

mean (SEM), and range.

Mean ± SEM Range

Maltodextrin 1.7 ± 0.3 0.04–6.3

Oligofructose 1.8 ± 0.4 0.04–7.7

https://doi.org/10.1371/journal.pone.0188784.t004
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Fig 1. Frequency distributions of detection thresholds. (a) maltodextrin, (b) oligofructose.

https://doi.org/10.1371/journal.pone.0188784.g001

Fig 2. Spearman rank correlations between detection thresholds (DTs) of complex carbohydrates and sweeteners. (1) Spearman rank

correlations between detection thresholds of maltodextrin and oligofructose. (2a-d) Correlations between detection thresholds of maltodextrin and

caloric sweeteners: (2a) glucose; (2b) fructose; (2c) sucrose; (2d) erythritol. (2e-h) Correlations between detection thresholds of oligofructose and

caloric sweeteners: (2e) glucose; (2f) fructose; (2g) sucrose; (2h) erythritol. (3a, 3b) Correlations between detection thresholds of maltodextrin and

non-nutritive sweeteners: (3a) sucralose; (3b) Rebaudioside A. (3c, 3d) Correlations between detection thresholds of oligofructose and non-

nutritive sweeteners: (3c) sucralose; (3d) Rebaudioside A. *P < 0.05; **P < 0.001.

https://doi.org/10.1371/journal.pone.0188784.g002
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the four concentrations on a complex carbohydrates’ psychophysical function: (maltodextrin

r = 0.77–0.92, P< 0.001); (oligofructose r = 0.76–0.95, P< 0.001). Analysis of variance showed

significant differences between all incremental steps on the psychophysical functions (P<0.05).

This indicates that when a participant is given increasing concentration of a complex carbohy-

drate (above the DT); there is an ordinal increase in intensity relative to STs across all partici-

pants. For each participant, there were strong correlations between the mean STs of complex

carbohydrates (maltodextrin, oligofructose) (r = 0.95, P< 0.001; Fig 4). There were also moder-

ate correlations between the geometric mean of the STs of complex carbohydrates and sweeten-

ers (r = 0.48–0.61, P< 0.05). Significant correlations were observed between DTs and STs for

maltodextrin and oligofructose (r = 0.39–0.53, P< 0.05).

Taste function of prototypical tastants and relationships between oral

complex carbohydrate sensitivity, sweet taste function, and prototypical

taste function

DTs and STs of the four-prototypical tastes are presented in Tables 5 and 6. No robust correla-

tions were observed between prototypical taste function (DTs and STs) and DTs and STs of

both maltodextrin and oligofructose. Participants were stratified into tertile groups according

to the complex carbohydrates and sweeteners tested and all taste measures. We observed that

those who were able to detect maltodextrin in water at low concentrations (lower tertile; n = 8)

were also more sensitive to oligofructose. Similarly, those who were able to detect maltodextrin

in water at higher concentrations (higher tertile; n = 11) were also less sensitive to oligofruc-

tose. Interestingly, we also observed that five participants were more sensitive only towards

complex carbohydrates (maltodextrin, oligofructose) but were less sensitive to caloric sweeten-

ers (glucose, fructose, sucrose, erythritol).

Seven participants were more sensitive towards maltodextrin but not to glucose. Similarly,

six participants were more sensitive towards oligofructose but not to fructose. Looking at the

concentrations, it is likely that they detected the complex carbohydrates in the sample rather

than any free sugars in the complex carbohydrate sample. For example, one participant was

able to detect maltodextrin at 0.04% w/v (Glucose: 0.0003% w/v, total sugars in maltodextrin:

Fig 3. Psychophysical curves of the group mean and examples of a participant who experienced high intensity and a participant who

experienced low intensity. (a) Maltodextrin (b) Oligofructose. Included in each graph is the mean psychophysical curve as well as an example of a

participant who experienced high intensity (highest curve) and a participant who experienced low intensity (lowest curve) for that complex carbohydrate. The

y-axis is a numerical measure of intensity perception from the gLMS. The x-axis is the actual concentration in % w/v.

https://doi.org/10.1371/journal.pone.0188784.g003
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0.0011% w/v) but only able to detect glucose at 1.1% w/v. Likewise, one participant was able

to detect oligofructose at 0.04% w/v (Fructose: 0.0005% w/v, total sugars in oligofructose:

0.0012% w/v) but only able to detect fructose at 0.57% w/v. For STs, we observed that some

participants experienced low intensity (lower tertile; n = 2) or high intensity (higher tertile;

n = 5) for all complex carbohydrates and sweeteners measured. No participant was more sensi-

tive and experienced high intensity or less sensitive and experienced low intensity to all com-

plex carbohydrates and sweeteners tested across both measures (DTs and STs).

Fig 4. Spearman rank correlations of suprathreshold intensity ratings (STs) between complex carbohydrates and sweeteners.

Spearman rank correlations of intensity ratings between maltodextrin and oligofructose. (2a-d) Correlations between intensity ratings of

maltodextrin and caloric sweeteners: (2a) glucose; (2b) fructose; (2c) sucrose; (2d) erythritol. (2e-h) Correlations between intensity ratings of

oligofructose and caloric sweeteners: (2e) glucose; (2f) fructose; (2g) sucrose; (2h) erythritol. (3a, 3b) Correlations between intensity ratings of

maltodextrin and non-nutritive sweeteners: (3a) sucralose; (3b) Rebaudioside A. (3c, 3d) Correlations between intensity ratings of oligofructose

and non-nutritive sweeteners: (3c) sucralose; (3d) Rebaudioside A. **P < 0.001.

https://doi.org/10.1371/journal.pone.0188784.g004

Table 5. Detection thresholds for four prototypical tastants (% w/v), including mean, standard error of

mean (SEM), and range.

Detection Threshold

Mean ± SEM Range

Sodium chloride 0.02 ± 0.002 0.02–0.07

Citric acid 0.015 ± 0.0004 0.013–0.025

Caffeine 0.007 ± 0.0002 0.006–0.009

Monosodium glutamate (MSG) 0.012 ± 0.0007 0.008–0.02

https://doi.org/10.1371/journal.pone.0188784.t005
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When participants were further stratified into tertile groups (DTs) according to the four

taste primaries (sour, salty, bitter, umami) and complex carbohydrates, we observed that two

participants (n = 2) were more sensitive towards all four-taste primaries. Similarly, some par-

ticipants experienced high intensity (n = 4) or low intensity (n = 4) when stratified into tertile

groups (STs) according to the four taste primaries (sour, salty, bitter, umami) and complex

carbohydrates. No participant was more sensitive and experienced high intensity or less sensi-

tive and experienced low intensity towards all four taste qualities and complex carbohydrates

across both measures (DTs and STs).

Discussion

Our data support the hypothesis that complex carbohydrates (maltodextrin, oligofructose) can

be sensed in the oral cavity over a range of concentrations by human participants. Further-

more, our data predicate that oral sensitivity to complex carbohydrates (maltodextrin, oligo-

fructose) is not related to DTs of sweeteners (and other prototypical tastants) but there is

overlap with perceived sweetener intensities.

The prevailing understanding at present is that the human taste system is now widely

accepted to include five basic tastes (sweet, sour, bitter, salty, and umami taste), and fat taste

being accepted by a few [24, 26–35]. Nevertheless, fat taste does not appear to have the same

perceptual salience as the other five basic taste qualities [24]. Rather, the reported “taste”

resembling effects from orally perceivable fatty acids only appear to be true at a DT level (low-

est level at which a difference can be detected) as fatty acids do not stimulate suprathreshold

taste intensity perception like the other five primary taste qualities [24, 36]. Furthermore,

intensity perception for long chain fatty acids is controversial as intensity may be a function of

irritation, smell, or any textural sensation. In order for oral perception of complex carbohy-

drates to be classified as a taste component, certain criteria that have been proposed previously

should be met [31, 37]. These criteria comprise the following: 1) provides an adaptive (evolu-

tionary) advantage; 2) is elicited by a unique class of chemicals; 3) has an independent trans-

duction mechanism; 4) signals are detected through gustatory nerves that are processed in the

gustatory cortex; 5) is perceptible and has a unique sensation that does not overlap with any

other prototypical taste qualities; and 6) raises a behavioural and/or physiological reaction [31,

37, 38]. In the following paragraphs, the discussion will consider the evidence supporting com-

plex carbohydrate as a “taste” component related to each of these criteria.

Table 6. Suprathreshold intensity ratings for four prototypical tastants on gLMS, given by mean and standard error of mean (SEM).

Concentration (% w/v) Mean ± SEM

Sodium chloride 0.6 16.7 ± 2.6

1.2 24.4 ± 3.6

2.3 32.8 ± 4.1

Citric acid 0.02 21.5 ± 4.7

0.06 27.3 ± 4.7

0.13 34.4 ± 4.9

Caffeine 0.02 11.6 ± 3.0

0.04 19.8 ± 3.4

0.08 30.3 ± 4.1

Monosodium glutamate (MSG) 0.05 11.6 ± 1.5

0.10 18.0 ± 2.6

0.20 22.5 ± 3.6

https://doi.org/10.1371/journal.pone.0188784.t006
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In regards to complex carbohydrates, the evidence outlined in the present study provides

support for two of the stipulated criteria for a taste primary, i.e., is elicited by a unique class of

chemicals and perceptual independence (perceptual independence with sweet taste is at DT

only, but overlap with sweetness at intensity). At present, our data provide evidence that com-

plex carbohydrates (oligosaccharides: maltodextrin, oligofructose) are perceptible and there

were no robust correlations observed between the four basic taste primaries (both DTs and

STs) and DTs and STs of both complex carbohydrates (maltodextrin and oligofructose). For

sweet taste, DTs of the complex carbohydrates (maltodextrin, oligofructose) and the sweeten-

ers (glucose, fructose, sucralose, Rebaudioside A, and erythritol) were not correlated. However,

there were moderate correlations between the STs of the complex carbohydrates and sweeten-

ers. In light of our methodological approach, that is: a) participants were asked not to swallow

any samples during testing, mouth rinsing with deionised water between tasting samples, and

the use of nose clips to eliminate any orthonasal and retronasal olfaction cues; b) use of red

lights to reduce any perceptual differences due to colour (visual) of samples; c) repeated testing

of up to seven times per complex carbohydrate and good test-retest reliability of complex car-

bohydrates; d) a wide range of concentrations used starting from low concentration levels; and

e) solutions were prepared fresh on the day, we are confident that the DTs and STs reported

were unique to oral taste sensitivity to complex carbohydrates, and not based on additional

orosensory cues such as olfaction and visual. However, the most challenging potential con-

found is with texture/viscosity and hydrolysis of complex carbohydrates by α-amylase which

could result in liberation of free glucose in the tasting procedure, especially at higher concen-

tration levels. While we observed that some participants were able to consistently differentiate

complex carbohydrate solutions from water at the lowest concentration levels tested (0.04% w/
v), still, the evidence is not conclusive that the DTs and STs reported were not due to addi-

tional textural cues. Interestingly, though, we used oligofructose which could not be hydro-

lysed by α-amylase and the present results between maltodextrin and oligofructose were highly

correlated (both DTs and STs) indicating free glucose in the maltodextrin was not a significant

confounding factor. Therefore, while not diminishing the prospect that oral complex carbohy-

drate sensitivity could be due to textural differences and oral perception of liberated free glu-

cose, the present finding suggests that complex carbohydrates are perceptible in the oral cavity

and have a distinct oral sensation that does not overlap with any primary taste qualities. These

findings are consistent with Lapis et al. [4], where the STs of maltodextrin (DE5 and 10) were

not significantly correlated to sodium chloride (salty taste), glucose (sweet taste) and sucrose

(sweet taste). Furthermore, the present finding refutes the historical assumption that complex

carbohydrates are tasteless to the human palate system [39–42].

One obstacle to acceptance of complex carbohydrate as a taste quality has been the identifi-

cation of potential pathways and or receptor(s). At present, it is widely accepted that the sweet

taste receptors are the only carbohydrate sensing receptors in the oral cavity. The primary

sweet sensor, the sweet taste receptor consists of two heterodimer G-protein coupled receptors,

the T1R2-TIR3 [43]. The T1R2 and T1R3 dimers entail a large extracellular area (i.e., Venus

fly trap domain), which is connected to the transmembrane via a cysteine-rich domain [44]. It

has been suggested that the cysteine-rich domains activate sweet proteins, whereas, the Venus

flytrap domain of T1R2 targets a large variety of sweet substances (caloric sweeteners and most

of the NNS) and the Venus flytrap domain of T1R3 targets other NNS, such as cyclamate and

sweet receptor blocker, lactisole [44, 45]. A significant issue is whether or not complex carbo-

hydrates are detected through the same taste receptor that detects sweetness (i.e., T1R2-T1R3

heterodimer). The present results showed that the discriminability of the caloric sweeteners

(glucose, fructose, sucrose, and erythritol) from water were about the same, as were NNS

(sucralose and Rebaudioside A). There were also strong correlations between the DTs of the
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complex carbohydrates (maltodextrin, oligofructose). However, the DTs of the complex carbo-

hydrates and all of the sweeteners were not correlated, highlighting that mechanisms other

than the T1R2-T1R3 are responsible for the detection of complex carbohydrates. Considering

the concentrations used, it is possible that the participants detected the complex carbohydrates

in the maltodextrin samples instead of the free sugars. The current data is consistent with the

previous psychophysical studies where participants were found to be able to perceive complex

carbohydrates (glucose polymer, glucose oligomers), and the sensitivity to simple sugar (glu-

cose, sucrose) was independent of that to complex carbohydrates [4, 5]. In the study by Lapis

et al. [5], it was found that humans (n = 25) were able to discriminate complex carbohydrate

solutions (glucose oligomers) from water even when the sweet taste receptor (T1R2-T1R3 het-

erodimer) was inhibited by lactisole treatment–a sweet taste blocker known to bind to a pocket

in the transmembrane region of the T1R3 and thus inhibits the sweet taste perception of sug-

ars, proteins and NNS [9]. Remarkably, although Lapis et al. [4] observed large individual vari-

ances between participants in terms of α-amylase activity, taste responsiveness to maltodextrin

(DE 20, 10, and 5) was not significantly different between groups of participants with high α-

amylase activity and low α-amylase activity. The present study is also in line with the results of

animal studies in which knockout mice missing functional genes for both components of the

sweet taste receptor (heterodimer of T1R2 and T1R3) show no genetic, electrophysiological,

and behavioural reactions to simple sugars (glucose, fructose, or sucrose) but respond nor-

mally to complex carbohydrates [46–52]. Besides, acceptability of complex carbohydrate

(maltodextrin) was found to be unaccounted for by the small amount of free sugars (~0.05–

2.88% w/v glucose and maltose) contained in maltodextrin, but rather, rodents appear to be

highly attracted to the complex carbohydrate (maltooligosaccharide) itself [1, 53, 54].

Together, these findings raise the potential existence of an unidentified complex carbohydrate

taste receptor in humans that responds to complex carbohydrates independently of those of

sweet tastants [3].

Interestingly, at present, there were moderate correlations between the STs of complex car-

bohydrates and sweeteners. Potential explanation for this is that a novel receptor might still be

involved in the transduction mechanism used to detect complex carbohydrates, but only for

the detection range. At the perceptual range, the perception of complex carbohydrates (malto-

dextrin) could be partly mediated by the T1R-independent sweet sensing pathways in addition

to the putative complex carbohydrate detection receptor (see discussion in Lapis et al. [4, 5]).

It is also possible that the orally expressed enzymes such as salivary α-amylase, sucrose-isomal-

tase, and maltase-glucoamylase enzymes may locally break down dietary oligosaccharides,

disaccharides, and starch hydrolysis products into monosaccharides [55]. Thus, the monosac-

charides and free sugars in complex carbohydrates (maltodextrin) may combine to activate the

T1R2-T1R3 sweet taste receptor and/or T1R-independent sweet pathway in taste receptor cells

[55], which could explain the commonality seen with sweet taste in the perceptual range. How-

ever, at the detection range, the amount of free sugars in complex carbohydrates (maltodex-

trin) may be too low to activate conscious sweet taste perception [56]. Thus, this explanation

may potentially explain why we only observed commonality with the sweet taste mechanism

for the perceived intensity range, but not at the detection ranges. Given that orally expressed

enzymes do not have any known effect in hydrolysing oligofructose, it is unknown at this stage

why commonalities were observed between oligofructose and the sweeteners measured.

The finding that complex carbohydrates, maltodextrin and oligofructose, were strongly cor-

related with each other suggests some sort of similarity between both complex carbohydrates

in terms of transduction pathways. We are uncertain why these similarities were observed

given that oligofructose has been described to provide around thirty percent of the sweetness

of sucrose and has been used in combination with NNS to replace sucrose in foods [57, 58].
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Furthermore, the chemical structure is different between both of these complex carbohydrates

and to our knowledge there does not appear to be any published animal data suggesting simi-

larities in taste between maltodextrin and oligofructose. However, in studies investigating the

effects of oligofructose on appetite profiles, maltodextrin was used as placebo supplements as

they have been suggested to have a similar appearance and oral sensation as oligofructose [19,

20, 22]. It is also possible that similarities were observed between both complex carbohydrates

in this study as they have a similar texture or mouthfeel, thus seeing commonalities between

them.

There was large inter-individual variation in oral complex carbohydrate perception, and

individuals may be classified as more or less sensitive to complex carbohydrates based on their

sensitivity towards complex carbohydrates. For example, the concentration required to reach

DT for maltodextrin varied 158 folds across the sample population. There was also large indi-

vidual difference in perceived complex carbohydrate intensity. For example, the same malto-

dextrin sample (20% w/v) was rated 2.5 gLMS by one participant but 32.9 gLMS by another.

Inter-individual differences or variability in taste function has also been previously observed

for other taste qualities such as sweet [10, 59–61]. However, it is possible that large inter-indi-

vidual differences in oral complex carbohydrate sensitivity were observed because of individ-

ual differences in AMY1 gene copy number and salivary α-amylase levels [62] but not taste. In

this study, individuals with lower salivary amylase levels reported slower and significantly

lesser decrease in perceived oral starch viscosity (oral viscosity thinning) in comparison to

individuals with higher salivary amylase activity [62].

The current evidence from animal studies and human exercise studies provides support for

the remaining stipulated criteria for oral complex carbohydrate sensitivity as a taste compo-

nent (i.e., criteria 1, 4, and 6). Considering the evolutionary advantages of our taste system, it

could be argued that the physiological regulation and functional significance of sensing low

amounts of complex carbohydrate is beneficial to the survival of human beings, especially dur-

ing times when foods are scarce as complex carbohydrates represent a major source of energy

for body functioning [63]. The adaptive advantage of complex carbohydrate sensing in the oral

cavity is supported with the behavioural evidence from animal studies where rodents prefer

complex carbohydrate solutions to solutions containing simple sugars, especially at low equi-

molar concentrations [39, 64]. In addition, Sclafani and Mann [65] found that the preference

profiles for five different carbohydrates varies as a function of concentration in three minute

two-bottle choice tests. For example, at low molar concentrations, rats preferred maltodextrin

to sugars (maltose, sucrose, glucose, fructose), whereas at higher molar concentrations, rats

preferred sucrose and maltose in comparison to maltodextrin [65]. In a recent study by Poole

et al. [66] investigating the phenotypic differences among eight inbred strains of mouse, strain

variation in complex carbohydrate (maltodextrin) perception that is distinct from variation in

sweet (sucrose) perception has been observed. More recent physiological evidence from exer-

cise science found that exercise performance significantly improved after participants rinsed

their mouth with solutions containing complex carbohydrate (maltodextrin) compared to

NNS control solutions. Similarly, these findings were also replicated by other exercise scientists

[67–75]. Additionally, Chambers et al. [76] further investigated the cortical response to oral

maltodextrin and glucose solutions, revealing a similar pattern of brain activation in response

to both solutions, including brain areas believed to be involved in the reward system (i.e., acti-

vates brain reward centres in orbitofrontal cortex and striatum similar to oral glucose, which

were unresponsive to NNS). Together, these findings provide strong behavioural and physio-

logical evidence that there may be taste transduction pathways that respond to complex carbo-

hydrate independently of those for sweet taste [69]. Supporting one of the six criteria for oral

perception of complex carbohydrates to be classified as a taste component, one study by
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Vigorito et al. [77] provided evidence that there is some specialisation of function within the

rat’s peripheral gustatory system in response to complex carbohydrates. The results of this

study revealed that selective gustatory nerve transection of the chorda tympani nerve, glosso-

pharyngeal nerve, greater superficial petrosal nerve, and the pharyngeal branch of the vagus

nerve differentially altered the intake of sucrose and maltodextrin solutions [77]. Interestingly,

gustatory denervation of all four gustatory nerves (chorda tympani, glossopharyngeal nerve,

greater superficial petrosal nerve, and chorda tympani nerve) in rats reduced their intake of

both sucrose and maltodextrin solutions by the same degree [77]. These results indicate that

while the intake of sucrose and maltodextrin appeared to be facilitated to the same level by the

gustatory system, the pathways involved appear to vary [1, 77].

The evidence outlined in the present paper provides support for each of the proposed crite-

ria for a taste component. However, due to the limited studies conducted in humans, the evi-

dence supporting most of the criteria is not conclusive and thus warrants further investigation.

There are some limitations that need to be taken into account when considering the results. It

is important to acknowledge that this study does not control for salivary α-amylase during

sample testing. Salivary amylase has been shown to hydrolyse α-1, 4 glycosidic bonds once

mixed with complex carbohydrates, resulting in changes in texture [62]. Thus, we were unable

to rule out the possibility that participants experienced differences in oral complex carbohy-

drate sensitivity due to differences in texture instead of the “taste” component. Therefore,

more evidence from tribology studies is required to ensure that the DTs and STs reported

were not due to textural cues. Furthermore, we also cannot rule out hydrolysis by salivary α-

amylase could have liberated free glucose in maltodextrin samples, especially at higher concen-

tration levels.

Conclusion

Contrary to the previous understandings of the human taste system where complex carbohy-

drates have long been assumed to be tasteless to the human palate, our data highlight that com-

plex carbohydrates (maltodextrin, oligofructose) are perceptible in the oral cavity and have a

distinct oral sensation that does not overlap with any primary taste qualities. Additionally, our

data indicate that oral sensitivity to complex carbohydrate is not related to a range of sweeten-

ers at low concentration levels (DTs). The findings are consistent with the proposition of an

independent mechanism for complex carbohydrates, but only for lower concentration levels.

At the perceptual range, it is possible that the perception of complex carbohydrates may be

partly mediated by the T1R-independent sweet sensing pathways in addition to the putative

complex carbohydrate detection receptor. Another possibility is that the taste cell expressed

enzymes such as the salivary α-amylase enzymes may locally break down dietary oligosaccha-

rides, disaccharides, and starch hydrolysis products into monosaccharides. Thus, the mono-

saccharides and free sugars in complex carbohydrates (maltodextrin) combine to activate the

T1R2-T1R3 sweet taste receptor and/or T1R-independent sweet pathway in taste receptor cells

thereby showing the commonality with sweet taste in the perceptual range. However, it is

unknown at this stage why commonalities were observed between oligofructose and the sweet-

eners measured.

Acknowledgments

This study was supported by the Centre for Advanced Sensory Science (CASS) funding from

Deakin University, Australia. Our friend and colleague Dr Rob McBride passed away during

preparation of the paper after a short illness.

Evidence supporting oral sensitivity to complex carbohydrates independent of sweet taste sensitivity in humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0188784 December 27, 2017 16 / 20

https://doi.org/10.1371/journal.pone.0188784


Author Contributions

Conceptualization: Julia Y. Q. Low, Kathleen E. Lacy, Robert L. McBride, Russell S. J. Keast.

Data curation: Julia Y. Q. Low.

Formal analysis: Julia Y. Q. Low.

Funding acquisition: Russell S. J. Keast.

Investigation: Julia Y. Q. Low, Robert L. McBride, Russell S. J. Keast.

Methodology: Julia Y. Q. Low, Robert L. McBride, Russell S. J. Keast.

Project administration: Julia Y. Q. Low.

Resources: Russell S. J. Keast.

Supervision: Kathleen E. Lacy, Robert L. McBride, Russell S. J. Keast.

Visualization: Russell S. J. Keast.

Writing – original draft: Julia Y. Q. Low.

Writing – review & editing: Julia Y. Q. Low, Kathleen E. Lacy, Robert L. McBride, Russell S. J.

Keast.

References
1. Sclafani A. Carbohydrate taste, appetite, and obesity: An overview. Neuroscience & Biobehavioral

Reviews. 1987; 11(2):131–53.

2. Sclafani A. Starch and sugar tastes in rodents: an update. Brain research bulletin. 1991; 27(3):383–6.

3. Sclafani A. The sixth taste? Appetite. 2004; 43(1):1–3. https://doi.org/10.1016/j.appet.2004.03.007

PMID: 15262010

4. Lapis TJ, Penner MH, Lim J. Evidence that humans can taste glucose polymers. Chemical senses.

2014; 39(9):737–47. https://doi.org/10.1093/chemse/bju031 PMID: 25326592

5. Lapis TJ, Penner MH, Lim J. Humans can taste glucose oligomers independent of the hT1R2/hT1R3

sweet taste receptor. Chemical senses. 2016; 41(9):755–62.

6. Spector AC, Schier LA. Behavioral evidence that select carbohydrate stimuli activate T1R-independent

receptor mechanisms. Appetite. 2016.

7. Ackroff K, Sclafani A. Maltodextrin and sucrose preferences in sweet-sensitive (C57BL/6J) and subsen-

sitive (129P3/J) mice revisited. Physiology & behavior. 2016; 165:286–90.

8. de Ataide e Silva T, Di Cavalcanti Alves de Souza ME, de Amorim JF, Stathis CG, Leandro CG, Lima-

Silva AE. Can carbohydrate mouth rinse improve performance during exercise? A systematic review.

Nutrients. 2013; 6(1):1–10. https://doi.org/10.3390/nu6010001 PMID: 24451304

9. Jiang P, Cui M, Zhao B, Liu Z, Snyder LA, Benard LM, et al. Lactisole interacts with the transmembrane

domains of human T1R3 to inhibit sweet taste. Journal of Biological Chemistry. 2005; 280(15):15238–

46. https://doi.org/10.1074/jbc.M414287200 PMID: 15668251

10. Webb J, Bolhuis DP, Cicerale S, Hayes JE, Keast R. The relationships between common measure-

ments of taste function. Chemosensory perception. 2015; 8(1):11–8. https://doi.org/10.1007/s12078-

015-9183-x PMID: 26110045

11. Keast RS, Roper J. A complex relationship among chemical concentration, detection threshold, and

suprathreshold intensity of bitter compounds. Chemical senses. 2007; 32(3):245–53. https://doi.org/10.

1093/chemse/bjl052 PMID: 17220518

12. Low JY, McBride RL, Lacy KE, Keast RS. Psychophysical Evaluation of Sweetness Functions Across

Multiple Sweeteners. Chemical Senses. 2016:bjw109.

13. Green BG, Shaffer GS, Gilmore MM. Derivation and evaluation of a semantic scale of oral sensation

magnitude with apparent ratio properties. Chemical senses. 1993; 18(6):683–702.

14. Green BG, Dalton P, Cowart B, Shaffer G, Rankin K, Higgins J. Evaluating the ‘Labeled Magnitude Sca-

le’for measuring sensations of taste and smell. Chemical senses. 1996; 21(3):323–34. PMID: 8670711

Evidence supporting oral sensitivity to complex carbohydrates independent of sweet taste sensitivity in humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0188784 December 27, 2017 17 / 20

https://doi.org/10.1016/j.appet.2004.03.007
http://www.ncbi.nlm.nih.gov/pubmed/15262010
https://doi.org/10.1093/chemse/bju031
http://www.ncbi.nlm.nih.gov/pubmed/25326592
https://doi.org/10.3390/nu6010001
http://www.ncbi.nlm.nih.gov/pubmed/24451304
https://doi.org/10.1074/jbc.M414287200
http://www.ncbi.nlm.nih.gov/pubmed/15668251
https://doi.org/10.1007/s12078-015-9183-x
https://doi.org/10.1007/s12078-015-9183-x
http://www.ncbi.nlm.nih.gov/pubmed/26110045
https://doi.org/10.1093/chemse/bjl052
https://doi.org/10.1093/chemse/bjl052
http://www.ncbi.nlm.nih.gov/pubmed/17220518
http://www.ncbi.nlm.nih.gov/pubmed/8670711
https://doi.org/10.1371/journal.pone.0188784


15. Bartoshuk LM. Comparing sensory experiences across individuals: recent psychophysical advances

illuminate genetic variation in taste perception. Chemical senses. 2000; 25(4):447–60. PMID:

10944509

16. Dokic P, Jakovljevic J, Dokic-Baucal L. Molecular characteristics of maltodextrins and rheological

behaviour of diluted and concentrated solutions. Colloids and Surfaces A: Physicochemical and Engi-

neering Aspects. 1998; 141(3):435–40.

17. ISO3972. International Organisation for Standardization. Sensory analysis-Methodology-Method of

Investigating Sensitivity of Taste. 1991.

18. Keast RS, Canty TM, Breslin PA. Oral zinc sulfate solutions inhibit sweet taste perception. Chemical

senses. 2004; 29(6):513–21. https://doi.org/10.1093/chemse/bjh053 PMID: 15269123

19. Verhoef SP, Meyer D, Westerterp KR. Effects of oligofructose on appetite profile, glucagon-like peptide

1 and peptide YY3-36 concentrations and energy intake. British journal of nutrition. 2011; 106

(11):1757–62. https://doi.org/10.1017/S0007114511002194 PMID: 21679485

20. Verhoef S, Meyer D, Westerterp K. Effects of oligofructose on appetite profile, GLP-1 and PYY concen-

trations and energy intake. Body weight loss and maintenance as affected by environment and genetic

predisposition. 2013: 17.

21. Liber A, Szajewska H. Effect of oligofructose supplementation on body weight in overweight and obese

children: a randomised, double-blind, placebo-controlled trial. British Journal of Nutrition. 2014; 112

(12):2068–74. https://doi.org/10.1017/S0007114514003110 PMID: 25327394

22. Dehghan P, Gargari BP, Jafar-Abadi MA. Oligofructose-enriched inulin improves some inflammatory

markers and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized controlled

clinical trial. Nutrition. 2014; 30(4):418–23. https://doi.org/10.1016/j.nut.2013.09.005 PMID: 24332524

23. Meilgaard MC, Carr BT, Civille GV. Sensory evaluation techniques: CRC press; 2006.

24. Stewart JE, Feinle-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RS. Oral sensitivity to fatty

acids, food consumption and BMI in human subjects. British Journal of Nutrition. 2010; 104(01):145–52.

25. Delwiche JF, Buletic Z, Breslin PA. Relationship of papillae number to bitter intensity of quinine and

PROP within and between individuals. Physiology & Behavior. 2001; 74(3):329–37.

26. Stewart JE, Feinle-Bisset C, Keast RS. Fatty acid detection during food consumption and digestion:

associations with ingestive behavior and obesity. Progress in lipid research. 2011; 50(3):225–33.

https://doi.org/10.1016/j.plipres.2011.02.002 PMID: 21356242

27. Stewart J, Keast R. Recent fat intake modulates fat taste sensitivity in lean and overweight subjects.

International journal of obesity. 2012; 36(6):834. https://doi.org/10.1038/ijo.2011.155 PMID: 21829156

28. Newman L, Haryono R, Keast R. Functionality of fatty acid chemoreception: a potential factor in the

development of obesity? Nutrients. 2013; 5(4):1287–300. https://doi.org/10.3390/nu5041287 PMID:

23595136

29. Newman LP, Keast RS. The test–retest reliability of fatty acid taste thresholds. Chemosensory percep-

tion. 2013; 6(2):70–7.

30. Newman LP, Bolhuis DP, Torres SJ, Keast RS. Dietary fat restriction increases fat taste sensitivity in

people with obesity. Obesity. 2016; 24(2):328–34. https://doi.org/10.1002/oby.21357 PMID: 26813525

31. Mattes RD. Accumulating evidence supports a taste component for free fatty acids in humans. Physiol-

ogy & behavior. 2011; 104(4):624–31.

32. Running CA, Craig BA, Mattes RD. Oleogustus: the unique taste of fat. Chemical senses. 2015; 40

(7):507–16. https://doi.org/10.1093/chemse/bjv036 PMID: 26142421

33. Tucker RM, Edlinger C, Craig BA, Mattes RD. Associations between BMI and fat taste sensitivity in

humans. Chemical senses. 2014; 39(4):349–57. https://doi.org/10.1093/chemse/bju006 PMID:

24591531

34. Mattes RD. Oral fat exposure pattern and lipid loading effects on the serum triacylglycerol concentration

of humans. Chemosensory perception. 2009; 2(4):180. https://doi.org/10.1007/s12078-009-9062-4

PMID: 20352072
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