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Abstract
Purpose Recent studies have increasingly linked Ephrin receptor B2 (EPHB2) to cancer progression. However, 
comprehensive investigations into the immunological roles and prognostic significance of EPHB2 across various 
cancers remain lacking.

Methods We employed various databases and bioinformatics tools to investigate the impact of EPHB2 on prognosis, 
immune infiltration, genome instability, and response to immunotherapy. Validation of the correlation between 
EPHB2 expression and M2 macrophages included analyses using bulk and single-cell transcriptomic datasets, spatial 
transcriptomics, and multi-fluorescence staining. Moreover, we performed cMap web tool to screen for EPHB2-
targeted compounds and assessed their potential through molecular docking and dynamics simulations. Additionally, 
in vitro validation using lung adenocarcinoma (LUAD) cell lines was conducted to confirm the bioinformatics 
predictions about EPHB2.

Results EPHB2 dysregulation was observed across multiple cancer types, where it demonstrated significant 
diagnostic and prognostic value. Gene Set Enrichment Analysis (GSEA) indicated that EPHB2 is involved in enhancing 
cellular proliferation, invasiveness of cancer cells, and modulation of the anti-cancer immune response. Furthermore, 
it is emerged as a pan-cancer marker for M2 macrophage infiltration, supported by integrated analyses of 
transcriptomics and multiple fluorescence staining. In LUAD cells, knockdown of EPHB2 expression led to a decrease 
in both cell proliferation and migratory activity.

Conclusion EPHB2 expression may serve as a pivotal indicator of M2 macrophage infiltration, offering vital insights 
into tumor dynamics and progression across various cancers, including lung adenocarcinoma, highlighting its 
significant prognostic and therapeutic potential for further exploration.
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Introduction
Cancer significantly impacts global mortality and pub-
lic health. According to data from the Global Cancer 
Research Center for the year 2020, there were approxi-
mately 19.3 million new cancer cases and almost 10 mil-
lion deaths attributed to cancer [1]. Despite advancements 
in surgical techniques and early detection have reduced 
mortality rates, the heterogeneous nature of tumors and 
their propensity to relapse and spread continue to result 
in generally low survival rates for many cancers [2]. The 
integration of prognostic biomarkers from research into 
clinical practice remains sluggish, despite the growing 
adoption of personalized cancer therapies [3]. Immuno-
therapy, particularly immune checkpoint inhibitors, has 
become a pivotal component of cancer treatment, dem-
onstrating the potential for long-term remission and 
offering prospects for lasting cures [4]. This underscores 
the importance of identifying immune-related biomark-
ers for broader clinical application.

Eph receptors, the largest group of receptor tyrosine 
kinases, play crucial roles in developmental processes 
and cellular balance, such as cell adhesion, migration, 
and axon guidance [5–7]. Specifically, Ephrin receptor 
B2 (EPHB2) has been implicated in promoting invasion 
in glioblastoma multiforme (GBM)via paxillin phos-
phorylation [8], and is linked to enhanced proliferation, 
invasion, and metastasis in various cancers, including 
cutaneous squamous cell carcinoma [9], cholangiocar-
cinoma [10], cervical cancer [11], lung adenocarcinoma 
[12], gastric cancer [13], and medulloblastoma [14]. 
Conversely, reduced EPHB2 expression has been linked 
with poorer outcomes in colorectal cancer [15], illus-
trating its diverse regulatory roles in cancer progression 
and potential impact on the tumor immune microenvi-
ronment. Despite these associations, there is a notable 
gap in pan-cancer studies exploring EPHB2’s compre-
hensive predictive value for prognosis and immuno-
therapy responsiveness. Focused research on individual 
cancer types may fail to capture the broader mechanis-
tic insights of this gene across cancers, underscoring the 
need for systematic, pan-cancer investigations to fully 
understand EPHB2’s multifaceted roles in oncology, 
which could drive future research and clinical strategies. 
In this study, we conducted a comprehensive pan-cancer 
analysis of EPHB2, employing multiple datasets spanning 
various cancers to elucidate the correlations between 
EPHB2 expression, clinical features, and multi-omic het-
erogeneity. This study particularly investigates EPHB2’s 
potential role in modulating immune cell infiltration 
across cancers, with a focus on its status as a biomarker 
for M2 macrophage infiltration, validated via fluores-
cent staining. Furthermore, connectivity map analyses 
were conducted to identify potential compounds target-
ing EPHB2’s oncogenic effects, complemented by in vitro 

experiments in lung adenocarcinoma cell lines to confirm 
its regulatory impact on cell proliferation. These efforts 
provide valuable insights that could inform the develop-
ment of new cancer therapies and enhance our under-
standing of EPHB2 in cancer progression and therapy. An 
overview of the study’s methodology is depicted in Fig. 1.

Materials and methods
Comprehensive Data gathering and Processing Across 
multiple cancers
We sourced pan-cancer data on EPHB2 expression and 
related clinical characteristics through the UCSC Xena 
platform, utilizing The Cancer Genome Atlas (TCGA, 
http://cancergenome.nih.gov/) and Genotype-Tissue 
Expression (GTEx, https://gtexportal.org/home/) data-
bases [16]. Additionally, EPHB2 expression across pan-
cancer cell lines was examined using the Cancer Cell 
Line Encyclopedia (CCLE, https://sites.broadinstitute.
org/ccle) [17]. The single-nucleotide variation (SNV) data 
were sourced from the cBioPortal (http://cbioportal.org) 
for Cancer Genomics [18, 19]. Detailed information on 
the 33 tumor types analyzed is available in Supplemen-
tary Table 1.

Comparative analysis of EPHB2 expression across Pan-
cancer
Initial analyses of EPHB2 mRNA expression were per-
formed using data from TCGA and GTEx databases. 
Expression differences across cancer subtypes and stages 
were visualized using boxplots. Protein level compari-
sons between tumors and corresponding healthy tissues 
were conducted using Clinical Proteomic Tumor Analy-
sis Consortium (CPTAC, https://portal.gdc.cancer.gov/) 
data [20].

Analysis of diagnostic and prognostic potential
Receiver Operating Characteristic (ROC) curves were 
generated using the “pROC” R package and Kaplan-
Meier survival analyses were conducted with the the 
“survminer” R package [21]. Optimal cut-off scores were 
used to evaluate overall survival (OS), disease-specific 
survival (DSS), progression-free interval (PFI), and dis-
ease-free interval (DFI) in cohorts, maintaining a mini-
mum high-to-low expression ratio of 0.3. The “survfit” 
function facilitated the log-rank tests, and univariate Cox 
regression analyses were performed to assess EPHB2’s 
prognostic relevance using the “survival” and “forestplot” 
packages in R.

Genomic alteration and mutational burden analyses
Mutation types and distributions of EPHB2 were ana-
lyzed using the COSMIC database (https://cancer.sanger.
ac.uk/cosmic/) [22] and cBioPortal. Spearman’s corre-
lation analysis examined associations between EPHB2 
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expression and tumor mutational burden (TMB) [23], 
microsatellite instability (MSI), and SNV.neoantigens.

Assessment of DNA mismatch repair, stemness, and 
epigenetic alterations
Relationships between EPHB2 expression, mismatch 
repair (MMR) genes [24], and DNA methyltransferases 

(DNMTs) [25] were visually analyzed. A previous study 
[26] was referenced to collect data on 15 homologous 
recombination repair (HRR) genes to examine their cor-
relation with EPHB2 expression via the GEPIA2 tool [27].

DNA methylation-based stem score (DNAss) and 
RNA methylation-based stem score (RNAss) were cal-
culated from methylation characteristics of each tumor 

Fig. 1 Flowchart depicting the study’s methodology
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[28], and their correlations with EPHB2 mRNA expres-
sion were analyzed through heatmaps, focusing on genes 
modifying N1-methyladenosine (m1A), 5-methylcytosine 
(m5C), and N6-methyladenosine (m6A) [29].

Functional enrichment and interaction analyses
Protein-protein interaction data for EPHB2 were 
retrieved from ComPPI (https://comppi.linkgroup.hu/) 
and annotated through the “ID mapping” function of the 
UniProt database [30]. The “cor.test” function identified 
the top 200 genes co-expressed with EPHB2 for further 
analysis. Gene Ontology (GO) enrichment analyses for 
these genes were performed using the “clusterProfiler” 
package in R, with a significance threshold set at a false 
discovery rate-corrected P-value of below 0.05 [31, 32]. 
Additionally, Gene Set Enrichment Analysis (GSEA) was 
applied to quantitatively evaluate the functional enrich-
ment of EPHB2 [33, 34].

Role of EPHB2 in immune function across cancers
We utilized the ESTIMATE algorithm to calculate the 
Immune, Stromal, and ESTIMATE scores across pan-
cancer [35, 36]. EPHB2 expression was also assessed in 
tumors across six immunological subtypes using the 
TISIDB subtype module [37]. Samples were grouped 
based on high and low EPHB2 expression using median 
values. The distribution of the six immunological sub-
types in these groups was examined using the chi-square 
test [38]. The influence of cytokine treatment on EPHB2 
levels was evaluated using the Tumor Immune Syngeneic 
Mouse (TISMO) online tool [39]. The TIDE algorithm 
(http://tide.dfci.harvard.edu/) evaluated tumor immune 
evasion by examining cytotoxic T lymphocyte (CTL) 
dysfunction and exclusion [40]. Moreover, an indepen-
dent immunotherapy cohort (PRJEB23709) was used to 
study the relationship between EPHB2 and the efficacy 
of immunotherapy in metastatic melanoma [41]. Various 
algorithms including CIBERSORT [42], quanTIseq [43], 
CIBERSORT-ABS [44], EPIC [45], xCell [46], TIMER 
[47], TIDE [48], and MCP-counter [49] quantified the 
proportions of immune cells infiltrating tumors, corre-
lating these with EPHB2 expression through Spearman’s 
correlation coefficients. We also explored the spatial 
correlations between EPHB2, the general macrophage 
marker CD68, and the M2 macrophage marker CD163 
in lung adenocarcinoma (LUAD) using deconvolution 
analysis techniques. Initially, we gathered single-cell RNA 
sequencing data from samples of tumors diagnosed with 
LUAD (GSM5420754) sourced from the Gene Expres-
sion Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo), 
and then constructed a comprehensive scRNA refer-
ence library. To ensure the reliability of our analysis, we 
implemented stringent quality control measures on the 
single-cell transcriptome data, which included assessing 

the number of expressed genes, counting unique molecu-
lar identifiers (UMIs), and evaluating the percentage of 
mitochondrial RNA in each cell. Following this, we calcu-
lated the average expression of the top 25 specific genes 
for various cell types within the scRNA-seq reference 
data to create a signature score matrix. Finally, using the 
get_enrichment_matrix and enrichment_analysis func-
tions from the “Cottrazm” R package, we successfully 
generated an enrichment score matrix, providing robust 
support for subsequent cell composition analysis. The 
expression landscape of genes in each micro-region was 
visualized using the SpatialFeaturePlot function from the 
“Seurat” R package. Expression of EPHB2 across multiple 
cancer types were conducted at the single-cell level using 
data from the Tumor Immune Single-cell Hub (TISCH) 
database [50]. EPHB2 mRNA expression data were 
sourced from multiple cell types across various datasets 
and were visualized using the “pHeatmap” R package. 
Additionally, Umap plots depicted EPHB2 expression 
across various cell types. The association between EPHB2 
and 14 functional states in cancer was explored using the 
CancerSEA “correlation plot” module [51].

Connectivity map (cmap) analysis
Differential expression analysis between high and low 
EPHB2 expression identified the top 150 regulated genes 
in each cancer type. These genes formed an EPHB2-
related signature used in Connectivity Map analyses 
to match with compound-related signatures from the 
CMAP_gene_signatures. RData file (https://www.pmge-
nomics.ca/bhklab/sites/default/files/downloads) [28, 52].

Molecular docking and molecular dynamics simulation
Molecular docking began with the preparation of the 
EPHB2 protein using AutoDock Tools, focusing on resi-
due repair, hydrogen bond optimization, and energy 
minimization [53]. The ligand library was ionized and 
underwent energy minimization with Chem 3D 22.00. 
Virtual screening was conducted using AutoDock Vina 
1.05.36, and the resultant figures were visualized using 
Pymol (Educational open source) [54].

Molecular dynamics simulations to examine the inter-
actions between EPHB2 and small molecules were per-
formed using Gromacs 2022.3 [55, 56]. Small molecules 
were prepared using AmberTools22 to apply the general 
amber force field (GAFF) force field, and Gaussian 16 W 
was used to add hydrogens and calculate restrained elec-
trostatic potential (RESP) potentials. Simulations were 
conducted at a constant temperature of 300 K and pres-
sure of 1 Bar using the Amber99sb-ildn force field in a 
Tip3p water solvent, with system charge neutralized by 
adding Na + ions. Energy minimization was followed 
by 100,000 steps each of isothermal isovolumic ensem-
ble (NVT) and isothermal isobaric ensemble (NPT) 

https://comppi.linkgroup.hu/
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equilibration, with a coupling constant of 0.1 ps and 
duration of 100ps. A free molecular dynamics simulation 
ran for 5,000,000 steps with a step length of 2 fs, totaling 
100ns. Post-simulation trajectory analysis was conducted 
to assess metrics such as root-mean-square variance 
(RMSD), protein rotation radius of each amino acid tra-
jectory, solvent-accessible surface area (SASA), and root-
mean-square fluctuation (RMSF).

Multiple fluorescence staining of LUAD paraffin sections
Multiple fluorescence staining was performed on LUAD 
paraffin sections to assess EPHB2 as a potential bio-
marker for M2 macrophages. The sections underwent 
deparaffinization, blocking with 5% bovine serum albu-
min. Samples were first incubated with primary antibod-
ies: one group with EPHB2 (1:500, ImmunoWay) and 
CD163 (1:1000, ImmunoWay), and another group with 
EPHB2 (1:500, ImmunoWay) and CD68 (1:500, Immu-
noWay). After treatment with appropriate secondary 
antibodies, nuclei were counterstained with DAPI, and 
slides were mounted using an antifade medium. Imaging 
was carried out with a confocal microscope (Pannoramic 
MIDI, 3DHistech), and the multispectral images were 
analyzed for cell-specific fluorescence using Caseviewer 
software (C.V 2.4).

Cell line culture and siRNA delivery
The PC9 lung adenocarcinoma cell line was cultured in 
1640 medium with 10% fetal bovine serum (FBS, Ser-
vicebio) and 1% penicillin-streptomycin (Meilunbio) at 
37°C in a 5% CO2 incubator (Heal Force). EPHB2 knock-
down was executed using siRNA from GenePharma and 
Lipofectamine™ 2000 for transfection. The cells were 
seeded in 6-well plates, and siRNA was combined with 
Lipofectamine™ 2000 following manufacturer’s protocol 
before being introduced to the cells. The cells were har-
vested 48 hours post-transfection for analysis of EPHB2 
knockdown efficiency and to conduct proliferation and 
migration assays. The specific siRNA sequences used 
were: siEPHB2#1, sense 5’-  A C C C G A C T A C A C C A G C T 
T T A A-3’sense; siEPHB2#2, sense 5’-  C T G G G T G G C C G 
C G T C A T G A A A-3’.

RNA isolation and quantitative Real-time PCR (RT-PCR)
Total RNA was isolated using RNA fast200 (Fijie 
Reagent) following the manufacturer’s guidelines. cDNA 
synthesis and qPCR were performed using Vazyme 
reagent. GAPDH served as the internal reference dur-
ing experiments. The primer sequences for RT-PCR 
were: for GAPDH, forward 5’- G T C A G C C G C A T C T T C 
T T T − 3’, reverse 5’- C G C C C A A T A C G A C C A A A T − 3’; 
and for EPHB2, forward 5’- C A A C T G G C T A C G G A C C A 
A A T-3’, reverse 5’-  T C T C C A T C C A G T T G G G A A A G-3’. 

Quantification of gene expression was carried out using 
the 2−ΔΔCt method.

Colony Formation Assay
After transfection for 24  h, PC9 cells were seeded in 
6-well plates at a density of 1000 cells per well and cul-
tured for 7–14 days until colony formation, which were 
then processed with PBS, fixed with 4% polyoxymeth-
ylene for 30  min, and stained with 1% crystal violet for 
10 min.

Wound Healing Assay
PC9 cells were seeded in 6-well plates at a concentra-
tion of 2.5 × 105 cells per well. After transfection with 
siEPHB2#1, siEPHB2#2, or siNC using the previously 
described siRNA delivery method, cells were allowed to 
confluence. A scratch was made in the cell layer using a 
200 µL pipette tip, after which the medium was replaced 
with serum-free medium, and images were captured at 0 
and 24 h using an inverted microscope.

Statistical analysis
Data analysis was conducted using SPSS (v23.0) and 
GraphPad Prism (version 8.0.1). Continuous variables 
were compared using the Student’s t-test for normally 
distributed data and the Mann-Whitney U test for non-
normal data. Chi-square and Fisher’s exact tests were 
applied to categorical data comparisons. The prognostic 
value of EPHB2 levels was evaluated using univariate Cox 
regression analysis and the Kaplan-Meier method, con-
sidering a P-value below 0.05 as statistically significant.

Results
Pan-cancer analyses of EPHB2 expression
A comprehensive analysis of EPHB2 mRNA levels was 
performed using information sourced from the TCGA 
and GTEx databases, showing variable expression 
across 27 cancer types (P < 0.05, Fig.  2A, Figure S1A). 
The CCLE data provided insights into EPHB2 expres-
sion levels across various cell lines, illustrated in Figure 
S1B. Furthermore, protein-level data from the CPTAC 
database indicated an elevation of EPHB2 in LUAD, lung 
squamous cell carcinoma (LUSC), glioblastoma multi-
forme (GBM), and pancreatic adenocarcinoma (PAAD) 
(P < 0.05, Fig. 2B). A detailed evaluation of EPHB2 across 
pan-cancer, considering various clinical stages, subtypes, 
and TNM stages, is depicted in Figure S2 (P < 0.05). This 
comprehensive analysis highlights the variable expres-
sion of EPHB2 across different cancer types and cellular 
contexts, underscoring its potential relevance in diverse 
oncological pathways.
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Fig. 2 Pan-cancer analysis of EPHB2 expression and its prognostic significance. (A) Comparison of EPHB2 levels in various cancer types versus normal 
tissues using data from TCGA and GTEx. (B) Comparative analysis of EPHB2 protein levels in lung adenocarcinoma (LUAD), lung squamous cell carcinoma 
(LUSC), glioblastoma (GBM), and pancreatic adenocarcinoma (PAAD) versus their normal counterparts, using data from CPTAC and HPA. (C) Diagnostic 
ROC curves across multiple cancers. Significance levels indicated as *P < 0.05, **P < 0.01, ***P < 0.001; ns: not significant
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The Diagnostic and Prognostic Value of EPHB2 across 
multiple Cancer types
ROC analysis highlighted the diagnostic potential of 
EPHB2 in multiple cancer types (Fig. 2C). The potential 
of EPHB2 as a prognostic marker was evaluated in 33 
cancers from the TCGA database, examining its correla-
tion with overall survival (OS), disease-specific survival 
(DSS), progression-free interval (PFI), and disease-free 
interval (DFI). Results from univariate Cox regression 
showed that high EPHB2 levels correlated with worse 
OS in uterine corpus endometrial carcinoma (UCEC), 
PAAD, kidney renal clear cell carcinoma (KIRC), ovar-
ian serous cystadenocarcinoma (OV), GBM, brain lower 
grade glioma (LGG), LUAD, mesothelioma (MESO), 
uveal melanoma (UVM), and thymoma (THYM), but 
had a protective effect in skin cutaneous melanoma 
(SKCM), colon adenocarcinoma (COAD), rectum adeno-
carcinoma (READ) (Fig.  3A). In terms of DSS, EPHB2 
emerged as a risk factor in various cancers including 
UCEC, kidney renal papillary cell carcinoma (KIRP), 
KIRC, OV, kidney chromophobe (KICH), LGG, MESO, 
pheochromocytoma and paraganglioma (PCPG), UVM, 
PAAD, and THYM, but was protective in SKCM and 
COAD (Fig.  3B). Regarding DFI, EPHB2 acted as a risk 
factor in PAAD but served a protective role in esopha-
geal carcinoma (ESCA) (Fig. 3C). In terms of PFI, EPHB2 
was identified as a risk factor in several cancers including 
UCEC, KIRC, OV, KICH, LGG, LUAD, PAAD, PCPG, 
UVM, and THYM, whereas it provided a protective 
effect in READ (Fig. 3D). Kaplan-Meier curves corrobo-
rated these findings (Fig.  3E and Figure S3-5). Collec-
tively, these results suggest a general association between 
higher EPHB2 expression and poorer prognostic out-
comes in patients with LUAD, UCEC, KIRC, PAAD, OV, 
MESO, LGG, UVM, and THYM.

Analysis of genomic changes and instability in EPHB2
We explored the genomic landscape of EPHB2, focus-
ing on the prevalence of copy number variations (CNVs) 
and single nucleotide variations (SNVs). The COSMIC 
database was utilized to examine EPHB2 somatic muta-
tions in 1591 cancer samples, identifying missense sub-
stitutions as the most prevalent mutation type at 32.62% 
(Fig. 4A). The cBioPortal tool revealed significant genetic 
alterations in EPHB2, especially in SKCM and UCEC 
cohorts (Fig.  4B). Notably, deep deletions of EPHB2 
were predominantly observed in cholangiocarcinoma 
(CHOL), UVM, PCPG, THYM, KIRP and testicular 
germ cell tumors (TGCT). We also noted that the frame-
shift mutation starting at lysine (K) at 1020 positions 
of the EPHB2 protein had the most frequent mutation 
(Fig.  4C). An investigation into somatic copy number 
alteration (SCNA) frequencies indicated generally low 
frequency across most cancers (Fig.  4D). An analysis 

linking copy number alterations to EPHB2 expression 
demonstrated an increasing trend correlating with higher 
levels of genomic amplification (P < 0.001, Fig.  4E). The 
relationships between EPHB2 and TMB, MSI, and SNV.
neoantigens were also explored. A significant positive 
relationship was found between EPHB2 and TMB in 
UCEC, stomach adenocarcinoma (STAD), LUAD, liver 
hepatocellular carcinoma (LIHC), and head and neck 
squamous cell carcinoma (HNSC) (Fig. 4F), and between 
EPHB2 and MSI in sarcoma (SARC), bladder urothelial 
carcinoma (BLCA), and LUAD (Fig. 4G). Additionally, a 
notable positive relationship between EPHB2 and SNV.
neoantigens was identified in cancers including THYM, 
PCPG, LUAD, LGG, and breast invasive carcinoma 
(BRCA) (Fig.  4H). Overall, these data underscored the 
significance of EPHB2 in the context of cancer genomic 
instability and immune response.

Correlation between EPHB2 expression, DNA repair, and 
stem-like properties in Cancer cells
The DNA damage response is critical for preserv-
ing genomic stability by repairing or removing faulty 
sequences and structures in chromosomes [57]. Cancer 
cells develop mechanisms such as MMR [58] and HRR 
[59] enhancing their abilities for self-renewal and stem-
like characteristics [60]. We investigated how EPHB2 
levels relate to the expression of MMR genes and HRR 
signatures, along with cancer stemness. Strong correla-
tions were found between EPHB2 and multiple MMR 
genes across various cancers including TGCT, BLCA, 
LUAD, SARC, HNSC, UVM, cervical squamous cell 
carcinoma and endocervical adenocarcinoma (CESC), 
OV, PAAD, prostate adenocarcinoma (PRAD), SKCM, 
THYM, LIHC, PCPG, UCEC, uterine carcinosarcoma 
(UCS), and KIRP (P < 0.05, Fig.  5A). Similarly, positive 
associations between EPHB2 expression and HRR sig-
natures were observed in KIRP, UCEC, PCPG, BLCA, 
GBM, KIRC, LGG, adrenocortical carcinoma (ACC), 
LUAD, OV, MESO, UVM, PAAD, PRAD, lymphoid neo-
plasm diffuse large B-cell lymphoma (DLBC), STAD, thy-
roid carcinoma (THCA), READ, UCS, COAD, and KICH 
(P < 0.05, Figure  S6). Additionally, there was a positive 
association between EPHB2 and DNAss in THYM, and 
RNAss in READ (P < 0.05, Fig. 5B, C). These results thus 
indicate EPHB2’s involvement in DNA damage repair 
mechanisms.

Role of EPHB2 in epigenetic regulation
Epigenetic alterations play pivotal roles in cancer devel-
opment and progression, and are significant targets for 
therapeutic intervention [61]. DNMTs, which catalyze 
DNA methylation, are involved in modulating tumor 
cell proliferation, differentiation, and survival [62]. 
EPHB2 expression demonstrated a significant negative 
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Fig. 3 Predictive significance of EPHB2 expression across cancers. (A-D) Forest plots showing the relationship of EPHB2 expression with overall survival 
(OS) (A), disease-specific survival (DSS) (B), disease-free interval (DFI) (C), and progression-free interval (PFI) (D). (E) Kaplan-Meier curves demonstrating 
the relationship between EPHB2 expression and OS for specified cancers
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Fig. 4 EPHB2 mutational landscape in various cancers. (A) Types of EPHB2 mutations observed. (B) Prevalence of genetic alterations in EPHB2 across 
various cancers. (C) Mutation types and locations in EPHB2. (D) Distribution of EPHB2 somatic copy number alterations in each cancer type. (E) Analysis 
of EPHB2 expression differences across various copy number alteration types. Correlation studies between EPHB2 expression and tumor mutational 
burden (TMB) (F), microsatellite instability (MSI) (G), and SNV.neoantigens (H) using Spearman’s correlation. Significance indicated as *P < 0.05; **P < 0.01; 
***P < 0.001
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Fig. 5 Relationship between EPHB2 and mechanisms influencing cancer phenotype. (A) Heatmap showing associations of EPHB2 with five mismatch 
repair (MMR) genes across cancers. (B) Bar chart illustrating correlations between EPHB2 levels and DNA methylation-based stem score. (C) Lollipop chart 
depicting correlations between EPHB2 levels and RNA methylation-based stem score. (D) Heatmap presenting relationships between RNA modulations 
and EPHB2 expression in pan-cancer. (E) Heatmap of correlations between EPHB2 and four DNA methyltransferases (DNMTs). (F) Heatmap displaying 
relationships between EPHB2 expression and ESTIMATE, Immune, and Stromal scores. Significance levels indicated as *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001
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correlation with DNMT levels in KICH, while it was pos-
itively correlated in HNSC, BLCA, STAD, CESC, THCA, 
GBM, KIRC, LGG, LUSC, COAD, MESO, OV, LIHC, 
PCPG, LUAD, PRAD, KIRP, ESCA, READ, PAAD, SARC, 
SKCM, TGCT, UVM, BRCA, and UCS (P < 0.05, Fig. 5E). 
Additionally, a negative relationship was observed 
between EPHB2 expression and methylation levels across 
multiple cancer types (P < 0.05, Figure S7). The expres-
sion links between EPHB2 and various RNA modulating 
genes were also explored (Fig. 5D), highlighting EPHB2’s 
extensive involvement in DNA methylation and RNA 
modification processes across diverse cancers.

EPHB2’s connection to Immune responses and its role in 
Cancer pathways
Using data from the ComPPI website, the protein-protein 
interaction (PPI) network indicated that EPHB2’s inter-
actions occur in various cellular compartments includ-
ing the cytosol and mitochondria (Fig.  6A). The “cor.
test” function helped identify 200 genes that co-express 
with EPHB2, and GO enrichment analysis emphasized 
their significant roles in immune functions (Fig.  6B). 
Further, a comprehensive GSEA across multiple cancers 
provided deeper insights into the influence of EPHB2 
on tumor prognosis by comparing gene expression pro-
files of patients with high versus low levels of EPHB2 
(Fig.  6C). This analysis revealed that high expression of 
EPHB2 was strongly correlated with the activation of 
epithelial-mesenchymal transition (EMT) across several 
cancers. This relationship may account for the increased 
likelihood of lymph node, metastases, and recurrence 
in patients with elevated EPHB2 levels. The analysis 
also revealed differential enrichment in immune-related 
pathways in the heatmap clusters, including pathways 
for interferon-gamma (IFN-gamma), IFN-alpha, inflam-
matory responses, and cytokines like IL-6 and IL-12, as 
well as complement and allograft rejection pathways. 
Most notably, these pathways linked with high EPHB2 
expression were observed to be less frequent in cancers 
such as COAD, READ, and STAD. Overall, these findings 
robustly demonstrate that EPHB2 expression is closely 
linked with enhanced proliferation, EMT, and immuno-
suppression in multiple cancer types.

EPHB2 and its Association with Immune Infiltration and 
Cytokine Dynamics in Cancer
Utilizing the ESTIMATE algorithm, we explored the 
relationship between EPHB2 expression and immune 
characteristics across 33 types of tumors. A significant 
positive association was found between ESTIMATE 
scores and immune scores in several cancers, nota-
bly in LUAD (Fig.  5F). Furthermore, immune subtypes 
C2 and C3 showed differential prevalence relative to 
EPHB2 expression levels, with C2 being dominant in 

the high EPHB2 group and C3 in the low EPHB2 group 
(Figure S8). Detailed correlations between EPHB2 
and immune-related genes are illustrated in Figure S9. 
Using the TISMO tool, we analyzed the effects of cyto-
kine treatments on EPHB2 expression in vitro, revealing 
elevated EPHB2 levels in the responder groups follow-
ing cytokine treatment, particularly in lung cancer cell 
lines (Figure S10). Additionally, an independent immu-
notherapy cohort demonstrated that higher EPHB2 lev-
els were associated with complete and partial responses 
to immune checkpoint blockade (ICB), contrasting with 
stable or progressive disease states (P < 0.01, Fig. 7A). The 
TIDE score, a predictor of immunotherapy outcomes, 
was positively correlated with EPHB2 expression in 13 
cancer types, including LUAD, indicating its potential as 
a marker for ICB treatment efficacy (Fig. 7B).

EPHB2 as an Indicator of M2 macrophage infiltration in 
Cancer
Further analysis aimed to clarify the link between EPHB2 
expression and immune cell infiltration, revealing a posi-
tive correlation with M2 macrophage infiltration across 
various cancers (Figure S11 and Fig.  8E). Spatial tran-
scriptomic analysis revealed a significant co-localization 
of EPHB2 expression with macrophage markers CD68 
and CD163 in LUAD (Fig.  8F). Single-cell data from 
TISCH further confirmed EPHB2 presence in both 
macrophages and malignant cells across different can-
cers (Fig.  8A-D). These findings were supported by flu-
orescent staining, which clearly showed co-expression 
of EPHB2 with both CD68 and CD163 in LUAD tissue 
sections (Fig. 9A, B). Collectively, these data across bulk, 
spatial, single-cell transcriptional analyses, and fluores-
cence staining underscore a strong association between 
EPHB2 expression and M2 macrophage infiltration, pro-
posing EPHB2 as a potential biomarker for M2 macro-
phage infiltration in pan-cancer.

Data from CancerSEA single-cell sequencing also 
explored correlations between EPHB2 expression and 14 
functional states of cancer, revealing significant positive 
links with processes such as angiogenesis, EMT, inflam-
mation, invasion, metastasis, quiescence, differentiation, 
apoptosis, and proliferation in LUAD (Figure S12). These 
findings highlight the multifaceted roles of EPHB2 in 
promoting oncogenic progression.

EPHB2’s role in reducing LUAD Cell Proliferation and 
Migration
We investigated the impact of EPHB2 on malignant traits 
in LUAD using the PC9 cell lines. Knockdown of EPHB2 
was verified via RT-PCR (Fig.  9C). Following EPHB2 
silencing, notable reductions were observed in both cell 
proliferation and clone formation capabilities, as illus-
trated in Fig.  9D. Edu staining confirmed a substantial 
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Fig. 6 Functional analysis of EPHB2 in oncology. (A) Displays the protein-protein interaction (PPI) network for proteins that interact with EPHB2. (B) GO 
pathway enrichment analysis for the top 200 genes co-expressed with EPHB2. (C) Bubble plot illustrating GSEA results comparing hallmark gene signa-
tures between high and low EPHB2 expression groups across cancers
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Fig. 7 Investigating EPHB2’s impact on immunotherapy outcomes. (A) Box plots comparing EPHB2 expression with responses to immune checkpoint 
blockade in the PRJEB23709 cohort. (B) Spearman’s correlation analysis depicting the association between EPHB2 levels and TIDE scores, validated by 
Student’s t-test. Statistical significance indicated by *P < 0.05
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Fig. 8 EPHB2 as a marker for M2 macrophage infiltration across multiple cancers. (A) EPHB2 expression across cancer single-cell clusters from TISCH. 
Umap plots detail cell type distributions and EPHB2 intensity in non-small cell lung cancer (NSCLC) (B), esophageal carcinoma (ESCA) (C), and thyroid 
carcinoma (THCA) (D) tissues. (E) Analysis of the correlation between EPHB2 expression and macrophage infiltration in cancers using different algorithms. 
(F) Spatial transcriptomics to explore co-localization patterns of EPHB2, CD68, and CD163, with expression level-based color coding
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Fig. 9 Exploration of EPHB2’s role in regulating malignancy in LUAD tumor cells. (A) Fluorescent images of tumor tissues stained for CD68 (red) and 
EPHB2 (green), with DAPI (blue) counterstaining. (B) Fluorescent images of tumor tissues stained for CD163 (red) or EPHB2 (green), with DAPI (blue) coun-
terstaining. (C) EPHB2 mRNA levels in transfected cells. (D, E) Evaluation of EPHB2’s effects on tumor cell proliferation using colony formation and EdU 
uptake assays. (F) Assessment of tumor cell migration post-EPHB2 knockdown via a wound healing assay. Significance denoted by **P < 0.01, ***P < 0.001
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decrease in LUAD cell proliferation following EPHB2 
knockdown (Fig. 9E). Additionally, wound healing assays 
indicated that EPHB2 silencing compromised the migra-
tory abilities of PC9 cells (Fig.  9F). Collectively, these 
findings confirm that knocking down EPHB2 signifi-
cantly diminishes LUAD cell proliferation and migration, 
reinforcing the potential therapeutic relevance of target-
ing EPHB2 in cancer treatment strategies.

10 Molecular Docking and Dynamics of EPHB2-Targeting 
compounds
Identifying compounds that can effectively modulate 
EPHB2 activity is crucial for therapeutic development. 
Using the cMap tool, we identified W.13 as a com-
pound that could potentially reverse EPHB2’s dysregu-
lated molecular traits and mitigate its oncogenic effects 
(Fig. 10A). To evaluate the potential interaction between 
the EPHB2 protein and W.13, a molecular docking analy-
sis was performed. Ten EPHB2 models were developed 
using alphaFold2.0, based on the FASTA sequence pro-
vided (Supplementary Material 1). The model with the 
highest ranking demonstrated an overall quality fac-
tor of 82.69. AutoDock Vina 1.05.36 showed successful 
docking of W.13 to EPHB2 (DockScore: -6.148 kcal/mol) 
(Fig. 10B), indicating W.13’s potential to activate EPHB2.

Subsequent molecular dynamics simulations were con-
ducted to assess the stability of the W.13-EPHB2 com-
plex. The root mean square deviation (RMSD) curve 
stabilized between 20 and 100 ns, indicating strong sta-
bility with minimal structural changes, as the RMSD pla-
teaued around 1.8 nm (Fig. 10C). Analysis of root mean 
square fluctuation (RMSF) highlighted increased flexibil-
ity at certain EPHB2 residues when bound to W.13, spe-
cifically between residues SER A 102 to CYS A 107, LYS 
A 476 to TYR A 504, and SER A 898 to LEU A 905, as 
indicated by elevated RMSF values (Fig. 10D). The radius 
of gyration (Rg) remained consistent at about 5.1  nm 
during the simulation, suggesting that the complex main-
tained a stable conformation (Fig. 10E). Hydrogen bond 
dynamics within the W.13-EPHB2 complex were also 
monitored, maintaining between 2 and 3 bonds, with 
peaks of up to 5 at certain intervals (Fig.  10F). These 
insights suggest that the interaction between small mol-
ecules and protein receptors is not merely static but 
constitutes a dynamic and variable network of interac-
tions where hydrogen bonds are continuously formed 
and broken, yet overall remain within a relatively stable 
range. This reflects the complexity and sophistication of 
biomolecular interactions. Additionally, solvent-accessi-
ble surface area (SASA) measurements stabilized around 
575 square nanometers after initial fluctuations, indicat-
ing stable interactions of the complex (Fig.  10G). These 
insights underscore the dynamic interactions between 

the small molecule and protein receptor, providing valu-
able information for future therapeutic development.

Discussion
Recent studies have indicated that EPHB2 plays a role in 
the proliferation and migration of several cancer types, 
including GBM, CHOL, CESC, LUAD, and STAD, with 
its expression inversely related to prognosis [8, 10–13]. 
The use of bioinformatics and comprehensive can-
cer analyses using publicly available datasets provides 
insights into the role of molecular factors in tumorigen-
esis and progression. However, a comprehensive inves-
tigation specifically targeting EPHB2 across pan-cancer 
has not yet been conducted. Therefore, we examined 
EPHB2’s gene expression, survival rates, methylation pat-
terns, genetic variations, and immune infiltration across 
multiple cancers, complemented by in vitro cellular 
experiments to investigate its potential impact on cancer.

In several cancers, including LUAD, UCEC, KIRC, 
PAAD, OV, MESO, LGG, YVM, and THYM, EPHB2 acts 
as a prognostic risk factor, whereas in SKCM, COAD, 
and READ, it serves as a protective factor. This reflects 
the activation of distinct molecular pathways across vari-
ous cancers, highlighting the complexity and diversity 
inherent in cancer biology [63]. Moreover, our findings 
indicate that higher EPHB2 expression levels are associ-
ated with advanced TNM stages in UCEC, KIRC, MESO, 
and THYM, corroborated by GESA results. These find-
ings reinforce the utility of EPHB2 expression levels as a 
reliable biomarker for cancer prognosis.

In GO enrichment analyses, EPHB2 was associated 
with key immune functions, notably the regulation of the 
innate immune response and cytokine signaling path-
ways. Among six immunological subtypes analyzed, the 
C2 subtype, dominated by IFN-γ, was predominant in the 
high EPHB2 expression group. IFN-γ is crucial for initi-
ating immune responses, tumor immunosurveillance, 
and maintaining normal tissue homeostasis [64]. The 
GSEA results also suggest that EPHB2 may affect tumor 
progression by modulating IFN-α and IFN-γ responses, 
revealing a previously unreported mechanism that could 
guide future research directions.

Immunotherapy in clinical settings frequently employs 
immune checkpoint inhibitor (ICI) drugs, such as anti-
bodies targeting CTLA-4, PD-1, and PD-L1, which 
are highly effective. Tumor mutational burden (TMB) 
and microsatellite instability (MSI) are indicators that 
help predict the likelihood of tumor response to these 
therapies, with higher levels typically indicating better 
response to ICIs [65–67]. In this context, EPHB2 expres-
sion positively correlated with TMB, MSI, and immune 
checkpoint markers across several studied cancer types. 
Analysis of a cohort treated with anti-PD1 alone or in 
combination with anti-CTLA4 showed that individuals 



Page 17 of 20Xu et al. BMC Cancer         (2024) 24:1064 

Fig. 10 Molecular interactions and dynamics of EPHB2. (A) Identification of EPHB2-targeting compounds through cMap analysis. (B) 3D molecular 
docking illustrations of EPHB2 with compound W.13. (C-G) Stability assessments of the W.13-EPHB2 complex using metrics such as root-mean-square 
deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), hydrogen bond dynamics, and solvent-accessible surface area (SASA)
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with higher EPHB2 levels tended to have a better treat-
ment response. Furthermore, existing research suggests 
that combining EPHB2 and PD-1 blockade might be an 
effective approach for treating metastatic urothelial car-
cinoma, indicating that EPHB2 could be a vital marker 
for assessing the immune status of tumors [68].

Analysis of immunomodulatory functions revealed 
a significant link between EPHB2 expression and the 
Immune scores, suggesting EPHB2’s role in influencing 
the tumor microenvironment. Higher EPHB2 levels were 
also positively associated with M2 macrophage infiltra-
tion in bulk and single-cell transcriptomic, with immu-
nofluorescence confirming this association. Moreover, 
we focused on the identification of potential EPHB2-acti-
vating drugs. This exploration is pivotal as it might lead 
to new therapeutic strategies that could improve current 
treatments. The potential clinical applications of EPHB2 
as a biomarker are significant. By quantifying variations 
in EPHB2 expression, oncologists may be able to better 
stratify patients into more precise risk categories, thus 
refining treatment protocols. For instance, higher EPHB2 
levels, associated with poor prognosis in several cancers, 
might advocate for the adoption of more aggressive treat-
ment regimens. Conversely, in cancers such as colorec-
tal adenocarcinoma (COAD) and rectal adenocarcinoma 
(READ), where EPHB2 plays a protective role, the prog-
nosis might support less intensive treatment options. 
Furthermore, the functionality of EPHB2 as a biomarker 
could extend to improving the prediction of patient 
responses to immunotherapy, suggesting a pathway 
toward more personalized treatment approaches that 
could favorably impact patient outcomes. Despite the 
comprehensive nature of this study, it presents certain 
limitations that merit attention. The lack of a detailed 
pathway analysis constrains a deeper understanding of 
the specific mechanisms through which EPHB2 exerts its 
varied influences across different cancer contexts. Fur-
ther, while the study effectively outlines EPHB2’s roles 
within cancer pathology and its interaction with the 
tumor microenvironment and immune responses, it does 
not extensively delve into the direct mechanisms under-
lying these relationships. Future research should aim to 
elaborate on the mechanistic pathways involving EPHB2, 
potentially through longitudinal studies that could offer 
insights into the temporal dynamics of EPHB2 in can-
cer progression. Such studies would enhance the under-
standing of EPHB2’s roles and facilitate the development 
of targeted therapies that leverage its biomarker poten-
tial.5 Conclusion.

This study represents the first comprehensive pan-can-
cer analysis of EPHB2, establishing its significant role as 
a predictive biomarker for both prognosis and immuno-
therapy efficacy. Our findings illuminate EPHB2’s criti-
cal involvement in cancer immunity, particularly as a 

marker for M2 macrophage infiltration across a variety 
of cancer types. Furthermore, we identified a potential 
compound that could lead to new therapeutic strategies. 
These future research efforts are expected to broaden our 
comprehension of EPHB2’s implications in oncology and 
underscore its value as a therapeutic target.
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