
RESEARCH ARTICLE

VolPy: Automated and scalable analysis

pipelines for voltage imaging datasets

Changjia CaiID
1, Johannes FriedrichID

2, Amrita SinghID
3, M. Hossein EybposhID

1,

Eftychios A. PnevmatikakisID
2, Kaspar PodgorskiID

3*, Andrea GiovannucciID
1,4*

1 Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North

Carolina State University, Chapel Hill, North Carolina, United States of America, 2 Flatiron Institute, Simons

Foundation, New York, New York, United States of America, 3 Janelia Research Campus, Howard Hughes

Medical Institute, Ashburn, Virginia, United States of America, 4 Neuroscience Center, University of North

Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America

* podgorskik@janelia.hhmi.org (KP); agiovann@email.unc.edu (AG)

Abstract

Voltage imaging enables monitoring neural activity at sub-millisecond and sub-cellular scale,

unlocking the study of subthreshold activity, synchrony, and network dynamics with unprece-

dented spatio-temporal resolution. However, high data rates (>800MB/s) and low signal-to-

noise ratios create bottlenecks for analyzing such datasets. Here we present VolPy, an auto-

mated and scalable pipeline to pre-process voltage imaging datasets. VolPy features motion

correction, memory mapping, automated segmentation, denoising and spike extraction, all

built on a highly parallelizable, modular, and extensible framework optimized for memory and

speed. To aid automated segmentation, we introduce a corpus of 24 manually annotated

datasets from different preparations, brain areas and voltage indicators. We benchmark

VolPy against ground truth segmentation, simulations and electrophysiology recordings, and

we compare its performance with existing algorithms in detecting spikes. Our results indicate

that VolPy ’s performance in spike extraction and scalability are state-of-the-art.

Author summary

Roughly 290 million electrical action potentials occur every second in the human brain,

facilitating the propagation of signals among cells in the nervous system and driving most

of our daily operations. New methods in brain imaging are emerging that have the speed

and resolution to capture events in the brain at the pace at which neurons typically com-

municate. These methods measure voltage in neurons by using light, and therefore can

access very detailed brain signaling patterns. However, the adoption of these methods by a

larger community, and not a restricted set of experts, is limited by the lack of computa-

tional tools, thereby greatly hindering progress in this field. In this paper, we present

VolPy, a software framework that greatly facilitates the preprocessing of this new type of

imaging datasets. This pipeline incorporates efficient and optimized algorithms that can

identify neurons and extract their activity with great accuracy. The presented software will

make this new imaging modality accessible to a wide audience.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Cai C, Friedrich J, Singh A, Eybposh MH,

Pnevmatikakis EA, Podgorski K, et al. (2021)

VolPy: Automated and scalable analysis pipelines

for voltage imaging datasets. PLoS Comput Biol

17(4): e1008806. https://doi.org/10.1371/journal.

pcbi.1008806

Editor: Corey Acker, UConn Health Center: UConn

Health, UNITED STATES

Received: April 22, 2020

Accepted: February 16, 2021

Published: April 14, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1008806

Copyright: © 2021 Cai et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The code and

datasets are available at the dev branch of the

repository https://github.com/flatironinstitute/

CaImAn and at the Zenodo repository https://

https://orcid.org/0000-0002-1091-5365
https://orcid.org/0000-0002-1321-5866
https://orcid.org/0000-0002-6413-2040
https://orcid.org/0000-0002-3934-1609
https://orcid.org/0000-0003-1509-6394
https://orcid.org/0000-0002-0374-2005
https://orcid.org/0000-0002-7850-444X
https://doi.org/10.1371/journal.pcbi.1008806
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008806&domain=pdf&date_stamp=2021-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008806&domain=pdf&date_stamp=2021-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008806&domain=pdf&date_stamp=2021-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008806&domain=pdf&date_stamp=2021-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008806&domain=pdf&date_stamp=2021-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008806&domain=pdf&date_stamp=2021-04-26
https://doi.org/10.1371/journal.pcbi.1008806
https://doi.org/10.1371/journal.pcbi.1008806
https://doi.org/10.1371/journal.pcbi.1008806
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/flatironinstitute/CaImAn
https://github.com/flatironinstitute/CaImAn
https://zenodo.org/record/4515768/export/hx#.YEf4K2RKgwQ

This is a PLOS Computational Biology Methods paper.

Introduction

Recording subthreshold voltage changes and exact spike times in populations of neurons is

necessary to dissect the details of information processing in the brain. Voltage imaging is cur-

rently the only technique that promises to achieve this goal with high spatio-temporal resolu-

tion. While methods have been developed to process voltage imaging data at mesoscopic scale

and multi-unit resolution [1–3], to date there is no established pipeline for large-scale cellular-

resolution analyses.

Voltage indicators have only recently become sensitive enough to generate large-scale

recordings at cellular resolution [4–10]. Existing voltage imaging analysis pipelines have been

developed for specific datasets, feature limited scalability and are difficult to use for the novice

programmer [5, 6, 11, 12]. For instance, [5] introduces an iterative method named SpikePur-

suit, which detects lower-amplitude spikes using filters generated from easily-detected high-

amplitude spikes. However, this method requires manual selection of neurons and is not opti-

mized for parallel processing—i.e. distributing the workload among several CPUs to speed up

computing—or scalability. Other techniques [6, 11, 12] rely on penalized matrix decomposi-

tion to facilitate denoising of fluorescence activity and utilize localNMF to perform an initial

segmentation of neurons. However, these frameworks do not offer an adaptive and automated

mechanism for spike extraction and are not integrated into a scalable and multi-platform

framework. Further, while all these methods have been validated with simulated data and spe-

cific electrophysiological ground truth datasets, the lack of a unified benchmark has hindered

the validation and comparison of all these approaches. This highlights the need for a validated

and scalable pipeline for the automatic analysis of voltage imaging data, ideally embedded into

a reusable and well documented format, an important requirement for broad community use.

Common techniques for the analysis of calcium imaging [13] data, a comparable recording

modality, have not been systematically tested on voltage imaging datasets and their effective-

ness on this new imaging modality is unclear. While signals recorded from calcium imaging

are slow and present in the whole cytosol, voltage sensors are mostly expressed on the mem-

brane and produce much faster signals. Therefore, while calcium imaging benefits from aver-

aging in space and time, voltage imaging in general features lower SNR. Further, assumptions

made by these methods about underlying signals may be violated in voltage imaging record-

ings. For instance, it might not be compatible with the matrix factorization techniques for cal-

cium imaging that typically use a mean square error loss term [14–17]: (i) voltage imaging

signals contribute less variance to recorded videos; (ii) voltage signals display both positive and

negative fluctuations (excluding the methods [14, 17], which can handle this case); (iii) signifi-

cant multiplicative noise may arise from light absorption in one-photon voltage recordings,

which is not compatible with the mean square error loss term; (iv) signals are much faster,

noisier, and with different underlying dynamics, not captured by biophysical models based on

calcium imaging [18].

To address these shortcomings, we developed a new analysis pipeline for preprocessing

voltage imaging data, called VolPy. The pipeline provides algorithms and routines to correct

for motion artifacts, to automatically identify and segment neurons, to denoise voltage signals,

and to extract action potentials and subthreshold signals. In this pipeline automatic detection

and segmentation of neurons is performed by a convolutional neural network based on Mask

R-CNN [19], which we trained using a corpus of manually segmented datasets. Spike extrac-

tion and signal denoising is performed using a more scalable and efficient version of the

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 2 / 27

zenodo.org/record/4515768/export/hx#.

YEf4K2RKgwQ. Data used in figures are included in

S1 Data. Mask R-CNN is available (only required

for retraining the network), from https://github.

com/matterport/Mask_RCNN. Mask R-CNN was

trained with the following tools: python 3.7.3,

tensorflow-gpu 1.14.0.

Funding: KP, AS are supported by the Howard

Hughes Medical Institute (salary and laboratory

resources), which had a role in data collection,

preliminary analysis, and preparation of the

manuscript. AG, CC are supported by the Arnold

and Mabel Beckman Foundation (summer salary of

AG and salary of CC) and the Kavli Foundation

(salary of CC to build graphical user interface that

was extended for the purpose of the current

paper). BF had a role in study design, decision to

publish, preparation of manuscript, data annotation

and analyses, data and code sharing infrastructure.

KF had a role in code sharing infrastructure.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008806
https://zenodo.org/record/4515768/export/hx#.YEf4K2RKgwQ
https://zenodo.org/record/4515768/export/hx#.YEf4K2RKgwQ
https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN

SpikePursuit [5] algorithm, which we equipped with automatic initialization and extraction of

subthreshold signals. Crucially, we integrated our pipeline within the CaImAn ecosystem [16],

a popular suite of tools for single cell resolution brain imaging analysis already adopted by the

neuroscience community.

We quantitatively evaluated the performance of VolPy on neuron segmentation and com-

pared its performance against humans. We also compared VolPy with other algorithms on

simulated and real datasets, as well as on simultaneous electrophysiology and voltage imaging

data. Our results show that VolPy outperforms existing methods both in spike detection and

scalability.

Materials and methods

Creation of a corpus of annotated datasets

To date there are no established annotated datasets for single cell localization and/or segmen-

tation in cellular-resolution voltage imaging. Towards filling this gap, and with the goal of

developing new supervised algorithms, we generated a corpus of 24 manually segmented data-

sets (Ground truth, GT) by combining annotations from three independent human labelers.

To provide annotations, human labelers relied upon two summary images (mean and local

correlation images, see Fig 1B and 1C, S1 Fig), which were built as follows:

Mean image: We averaged the movie across time for each pixel yielding a 2D image. We

normalized the 2D image by subtracting the mean of its pixels and dividing by the standard

deviation of its pixels. The normalization step enables different datasets to share the same scale

as the input to the segmentation step.

Correlation image: The correlation image is a variation of that implemented in [20]. After

removing the baseline of the movie by high-pass filtering, we averaged the temporal correla-

tion of each pixel with its eight neighbor pixels yielding another 2D image. The resulting

image was then mean-subtracted and divided by its standard deviation.

Guided by these visual cues, three annotators marked the contours of neurons using the

FIJI ImageJ Cell Magic Wand tool plugin [21] (S1 Fig). Labelers were trained using a test data-

set and instructed to look for ring or circle-shaped structures which were clear on either the

mean or the correlation image. An exception to this rule were blood vessels perpendicular to

the imaging plane, which looked like dark circles in the mean image and bright circles in the

correlation image. We then generated a consensus ground truth by combining the three anno-

tations. For a neuron to be included in the consensus ground truth, it either had to be selected

by two or more annotators, or all annotators had to agree on accepting it in a separate follow-

up session. The finally selected pixels associated to a consensus mask was selected based on

masks provided by the most experienced annotators of the three. Summary information about

the annotated datasets is reported in Table 1.

A novel analysis pipeline for voltage imaging

We propose a novel scalable pipeline for automated analysis that performs the preprocessing

steps required to extract spikes and subthreshold activity from voltage imaging movies (Fig 1).

First, input data are processed to remove motion artifacts with parallelized algorithms, and

saved into a memory mapping file format that enables efficient concurrent access. In a second

stage, VolPy segments candidate neurons using supervised algorithms (Fig 1A and 1C) com-

bined with a manual annotation tool (see S2 Fig and S1 Vid). Finally, VolPy denoises fluores-

cence traces, infers spatial footprints, detects spikes, and extracts subthreshold activity of

neurons with parallel processing (Fig 1A and 1D). In Fig 1E and 1F we report the result of run-

ning the full pipeline on an example of mouse L1 neocortex voltage imaging dataset. S2 Vid

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 3 / 27

https://doi.org/10.1371/journal.pcbi.1008806

shows the reconstructed movie based on the result of VolPy on the same mouse L1 neocortex

dataset. S3 Vid provides a demonstration of running the whole pipeline. In what follows we

present each stage of the VolPy pipeline.

Motion correction and memory mapping. First, movies are corrected for sample move-

ment and stored in an efficient format by relying on the infrastructure provided by CaImAn
[16, 22]. CaImAn provides routines to simultaneously register frames to a template and creates

Fig 1. Analysis pipeline for voltage imaging data. (A) Four pre-processing steps for segmenting neurons and

extracting spikes from voltage imaging movies. (B) The correlation image (back) and the mean image (front) are the

inputs to the segmentation step. (C) The segmentation step outputs probabilities of being neurons, bounding boxes

and contours. The results are overlaid to the correlation image in (B). (D) Results of trace denoising and spike

extraction. Left. The input traces for two neurons in (C). Right. Corresponding denoised traces with better SNR. The

dashed horizontal line represents the inferred spike threshold. (E) The correlation image (left) and the mean image

(right) of one mouse Layer 1 neocortex dataset with contours detected by VolPy. (F) Temporal traces with detected

spikes corresponding to neurons in panel (E) extracted by VolPy (left). The dashed gray portion of the traces is

magnified on the right.

https://doi.org/10.1371/journal.pcbi.1008806.g001

Table 1. Properties of three heterogeneous types of datasets. For each type of dataset the name, organism, brain region, source, imaging rate, voltage indicator, and total

number of neurons selected by the manual annotators in GT (consensus, (labeler 1, labeler 2, labeler 3)) are given.

Name Organism Brain region Source Rate(Hz) Indicator # neurons found

L1 Mouse L1 cortex [5] 400 Voltron 494 (523, 484, 490)

TEG Zebrafish Tegmental [5] 300 Voltron 100 (107, 104, 96)

HPC Mouse Hippocampus [6] 1000 paQuasAr3-s 66 (72, 86, 73)

https://doi.org/10.1371/journal.pcbi.1008806.t001

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 4 / 27

https://doi.org/10.1371/journal.pcbi.1008806.g001
https://doi.org/10.1371/journal.pcbi.1008806.t001
https://doi.org/10.1371/journal.pcbi.1008806

memory-mapped files. Memory mapping provides the ability to quickly read arbitrary por-

tions of the movie in any direction without loading the full movie into memory. In turn, this

allows parallelization of all the operations which are required to generate summary images and

denoise the signal.

The motion correction algorithm in CaImAn is an efficient implementation of NoRMCorre

[22]. NoRMCorre is an online algorithm that uses normalized cross-correlation of each frame

with a denoised template to infer shifts. Such shifts can be computed either on the overall

frame (rigid motion correction) or on patches of the movie (piece-wise rigid motion correc-

tion). The latter case is required when movement is non rigid and a simple translation is not

sufficient to compensate for the movement. Such algorithm can in many cases be directly

applied to the voltage imaging datasets we have considered, because the frames and templates

(see for instance Fig 1E) generally contain high-frequency features. Such features are crucial to

precisely identify shifts. Importantly, when this fails we allow the option to apply a high-pass

spatial filter to help sharpen such features [16]. In VolPy the gSig_filt parameter controls the

size of the kernel for high-pass spatial filtering. We usually inspect visually the results of

motion correction, and in all considered cases rigid motion correction was sufficient to cap-

ture motion. This might be due to the small size of the field of view (see [22] for a discussion

about size of the FOV and its impact on motion correction).

Segmentation. SpikePursuit requires as input a set of masks that specify the spatial extent

of each neuron, which were provided manually in its initial implementation. With the goal of

automating the process and improving consistency across experimenters, we propose to seg-

ment neurons with supervised learning approaches. Past attempts at supervised cell localiza-

tion and segmentation in calcium imaging data have extended U-Net fully convolutional

network architectures [23]. In our hands U-Net failed when facing datasets in which ring-

shaped neurons overlap (TEG datasets). Other neural network based methods [24–26] have

employed 3D representations (width, height and time). However, a popular online calcium

imaging segmentation benchmark, Neurofinder (http://neurofinder.codeneuro.org/), reports

that these methods are inferior to a well-established neural network architecture for object

localization and segmentation, Mask R-CNN [19]. Besides, methods based on 3D representa-

tions require spatio-temporal snapshots, whereas Mask R-CNN only requires summary

images. Moreover, Mask R-CNN enables separation of overlapping objects in a specific area

by providing each object with a unique bounding box.

Mask R-CNN (Fig 2A) provides simultaneous object localization and instance segmenta-

tion via a combination of two network portions: backbone and head. The backbone features a

pre-trained convolutional network (such as VGG [27], ResNet [28], Inception [29]) for feature

extraction. Mask R-CNN also exploits another effective backbone: feature pyramid networks

[30], a top-down architecture with lateral connections that enables the network to extract fea-

tures on multiple scales from the feature maps. In the head, based on the extracted features, a

Region Proposal Network proposes initial bounding boxes for each candidate object, which

are fed to two downstream branches. One branch is trained to predict a class label with its

probability and a bounding box offset which refines the initial bounding box, while the other

branch outputs a binary mask for each candidate object. An example of the network inference

on a validation dataset by VolPy is shown in Fig 1E and 1F.

We adapted Mask R-CNN to our purpose as follows. We chose a combination of ResNet-50

pre-trained on the COCO dataset [31] and feature pyramid networks as the backbone. The

input of the network is a three channel image: two for the mean image and one for the correla-

tion image. Three channels are required to match the input to the first few layers pre-trained

on the COCO dataset. The network was trained to predict the probability of being a neuron

instead of a multi-label output.

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 5 / 27

http://neurofinder.codeneuro.org/
https://doi.org/10.1371/journal.pcbi.1008806

During training, we randomly cropped the input image into 128x128 patches and applied

the following data augmentation techniques using the imgaug [32] package: flip, rotation, mul-

tiply (adjust brightness), Gaussian noise, shear, scale and translation. Each mini-batch con-

tained six patches. We trained on one GPU the head (the whole network except the ResNet) of

Fig 2. Segmentation, trace denoising and spike extraction framework. (A) Mask R-CNN framework for neuron

segmentation. The network predicts a probability of being a neuron, a bounding box and a binary mask for each

candidate neuron taking summary images as inputs (mean and correlation). (B) Algorithm for fluorescence trace

denoising and spike extraction.①-② Load and high-pass filter the signal in one context region of the movie. The

initial temporal trace is computed either by averaging ROI pixels or by applying the spatial filter (if available) to the

context region. Two steps are executed in a loop for three iterations. The former (③-⑥) estimates spike times, and the

latter (⑦) refines the spatial filter.③ Extract the first 8 principal components of the background pixels using SVD and

then remove the background contamination via Ridge regression.④ The background-removed trace (t) is high-pass

filtered to obtain a zero baseline trace for further processing. Spikes are selected from local maxima higher than the

threshold (gray dotted line) using the adaptive threshold method.⑤Waveforms of these spikes (gray) are averaged to

obtain a spike template (black line).⑥ A whitened matched filter [34] is used to denoise traces and enhance spikes. A

second time adaptive threshold is applied on the whitened matched filtered trace ts to detect spikes. The reconstructed

signal (trec) is obtained by convolving the spike template computed in⑤ and the inferred spike train.⑦ Refine the

spatial filter through Ridge regression. The product of the context region across time with the refined spatial filter

generates the temporal trace for the following iteration.⑧ After three iterations, the subthreshold activity(tsub) is

extracted by applying a low-pass filter on the residual trace (t − trec). (C) Examples of t, trec, ts, and tsub traces, along

with detected spikes.

https://doi.org/10.1371/journal.pcbi.1008806.g002

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 6 / 27

https://doi.org/10.1371/journal.pcbi.1008806.g002
https://doi.org/10.1371/journal.pcbi.1008806

the network for 20 epochs (2000 iterations) with learning rate 0.01 and then trained the head

together with the last 28 layers of the ResNet for another 20 epochs with learning rate 0.001.

We used stochastic gradient descent as our optimizer with a constant learning momentum 0.9.

The weight decay was 0.0001. It is possible that correlations among RGB channels existing in

the original COCO datasets are not present in our datasets, however retraining some of the

ResNet layers is likely compensating for this potential issue.

It roughly took 40 minutes to train 40 epochs on a GeForce RTX 2080 Ti GPU with 11 GB

of RAM memory. During validation, images were padded with zeroes to make width and

height multiples of 64 so that feature maps could be smoothly scaled for the Feature Pyramid

Network. We only selected neurons with confidence level greater or equal to 0.7. The output

components of the network were further filtered based on the number of pixels in each mask.

For TEG datasets, masks containing less than 100 pixels were removed. For HPC datasets,

masks containing pixels less than 400 were removed. For L1 datasets, there was no constraint

on the number of pixels for each mask. VolPy segmentation performance is shown in Fig 3.

While VolPy segmentation method achieved good performance on similarly collected data-

sets, we do not expect it to generalize to completely new datasets out of the box. To overcome

this issue, we developed a manual annotation graphical user interface (GUI) tool within VolPy
to refine the segmentation results. The GUI loads summary images and segmentation results.

Fig 3. Evaluation of VolPy performance. (A) Example of VolPy segmentation results against three manually

annotated datasets (mouse sensory cortex left, larval zebrafish tegmental area center, and mouse hippocampus right).

Ground truth was built from three different annotations. Matched and mismatched neurons between VolPy (blue) and

ground truth (red) were shown in upper and bottom panels respectively. (B) F1 score of VolPy for all evaluated datasets

in validation. (C) Average F1 score on training and validation sets grouped by dataset type. Results were provided for

training, validation and human annotators (against consensus ground truth) (D) Performance of the network in

function of training set size for each dataset type.

https://doi.org/10.1371/journal.pcbi.1008806.g003

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 7 / 27

https://doi.org/10.1371/journal.pcbi.1008806.g003
https://doi.org/10.1371/journal.pcbi.1008806

It enables users to add/delete neurons and save the results for subsequent steps in the VolPy
pipeline. We equipped the GUI with one-click semi-automatic neuron segmentation based on

the Python Cell Magic Wand Tool [26]. See S1 Vid and S2 Fig for more details. Segmenting

neurons on datasets significantly different from the ones we employed to train Mask R-CNN

might lead to poor performance. In this case, users may retrain Mask R-CNN based on a step-

by-step guide we provide (https://github.com/flatironinstitute/CaImAn/wiki/Training-Mask-

R-CNN). Moreover, we also allow users to bypass the Mask R-CNN step and provide their

own manual annotations or annotate the data through VolPy GUI. This is especially helpful

when only few neurons appear in the FOV. We summarize the whole process of segmentation

through a flow chart in S3 Fig.

Trace denoising and spike extraction. Classical algorithms for denoising calcium imag-

ing movies and extracting spikes from the corresponding fluorescence traces might underper-

form when applied to voltage imaging movies. On the one hand, the low signal-to-noise ratio

and the complex background fluorescence require new methods for refining spatial footprints,

and on the other hand, substantially different biophysical models underlie the temporal

dynamics of the fluorescence associated to spikes. To solve both problems, we built upon and

extended the SpikePursuit algorithm [5]. We improved SpikePursuit in the following direc-

tions: (i) We introduced automatic segmentation of neurons with Mask R-CNN; (ii) We scaled

up memory performance thanks to the memory mapping infrastructure; (iii) We scaled up the

timing performance by parallel processing and optimizing algorithms; (iv) We introduced a

more robust estimate of the background and a simpler option for extracting spikes; (v) We

added a method to extract subthreshold signals. In what follows, we introduce SpikePursuit

(see Fig 2B), along with our modifications to improve the algorithm. The pseudo-code for the

trace denoising and spike extraction routines is shown in Algorithms 1 and 2.

Loading and preprocessing:(①② in Fig 2B): As a result of segmentation, each candidate

neuron has an associated binary mask which represents its region of interest (ROI). The ROI

is dilated to get a larger region centered on the neuron (the context region C,① in Fig 2B). As

a first step, all pixels in the context region are efficiently retrieved from the memory mapped

file into a 2D matrix Y 2 RT�N , where T is the number of frames and N = n(C) is the number

of pixels in the context region C. For recordings with indicators featuring signals with reversed

polarity (i.e. brighter for lower voltages, such as Voltron), Y is sign-inverted to make spikes

positive. Y is high-pass filtered across time with fc = 1/3Hz using a 3rd order Butterworth filter

to compensate for photo-bleaching (② in Fig 2B). The high-passed movie is denoted as

Yh 2 R
T�N

. The initial temporal trace t 2 RT
of the neuron is computed either as the mean of

Yh over the pixels in the ROI, or -- if a spatial filter w 2 RN previously calculated is available

-- as the weighted average across all pixels in the context region:

t ¼

1

nðSÞ

X

x2S

YhðxÞ if w is not given

Yhw if w is given;

8
><

>:
ð1Þ

where S denotes set of pixels in the ROI, n(S) denotes the number of pixels in the ROI, YhðxÞ 2
RT denotes the signal of Yh at the pixel x. A spatial filter is a matrix of pixel weights which max-

imizes the amplitude of extracted spikes calculated as a time-varying weighted sum of pixels in

the context region. A good spatial filter may be available from processing another chunk of the

movie. Compared to simply averaging pixels across the ROI, the initial trace computed with a

spatial filter is expected to have better SNR hence enhance the performance of spike detection.

Afterwards, two steps are iteratively executed for three rounds. The former estimates spike

times, and the latter refines the spatial filters.

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 8 / 27

https://github.com/flatironinstitute/CaImAn/wiki/Training-Mask-R-CNN
https://github.com/flatironinstitute/CaImAn/wiki/Training-Mask-R-CNN
https://doi.org/10.1371/journal.pcbi.1008806

Spike time estimation (③④⑤⑥ in Fig 2B): In order to estimate spike times from the

fluorescence traces, we first subtract the high-pass filtered movie Yh from the local back-

ground. This step is intended to reduce the chance of the optical cross-talk producing a false

spike detection due to an adjacent neuron or process overlapping with the ROI. The local

background B is defined as pixels in the context region at least nb pixels (nb = 12 by default)

away from the ROI. To estimate the influence of the background, we compute the singular

value decomposition of the background pixels Yb 2 R
T�M

, where M = n(B) denotes the num-

ber of pixels in the local background B:

Yb ¼ USV; ð2Þ

where U 2 RT�T
;V 2 RM�M

are two real unitary matrices and S 2 RT�M
is a rectangular diag-

onal matrix with non-negative real numbers on the diagonal. We then regress the initial trace t

on Ub through Ridge regression:

β ¼ ðUT
b Ub þ lbkUbk

2

FIÞ
� 1UT

b t; ð3Þ

where Ub is the first npc (default is 8) components of U, λb (default is 0.01) is the regularization

strength and β is the estimated ridge regression coefficients. In our experience, many of the

largest principal components describe structured global noise in voltage recordings. We

choose to subtract the largest 8 components because on real datasets subtracting fewer compo-

nents would remove less spurious variants, while subtracting many more components would

risk subtracting neuronal signals. Compared to SpikePursuit, we add an L2 regularizer to

penalize large regression coefficients caused by small components of background pixels with

signals bleeding through from the neuron of interest. This provides more reliable results com-

pared to the original linear regression method (see Results section). We choose λb to be 0.01

because we find that strong regularization strength (greater or equal to 0.1) will not help sub-

tract the background from the signal while small regularization strength will not be able to

penalize large regression coefficients enough. We next subtract the background signal from

the trace t (③ in Fig 2B):

t ¼ t � Ubβ ð4Þ

The background-removed trace t is then filtered with a high-pass fifth order Butterworth

filter with fc = 1Hz, yielding ts 2 R
T
. This operation has the goal of focusing on the frequencies

typical of oscillations and spikes. ts is then processed for spike extraction (④ in Fig 2B).

Our spike extraction model is based on the idea of matched filters [33, 34]. A matched filter

is an optimal linear filter for the detection of a given template from the signal under the

hypothesis of additive white Gaussian noise. It has the goal of estimating the location of a

given known waveform within a noisy signal while maximizing the SNR. Template matching

is performed by correlating a template waveform with the noisy signal. As a consequence, we

need two rounds of spike detection. The former is required to prewhiten the signal and form

the template waveform. This is used to perform matched filtering by cross-correlating it and

the prewhitened trace. The latter consists in identifying and extracting the peaks from the

whitened matched filter trace.

To threshold and extract spikes from the filtered signal ts we provide two methods, adaptive
and simple threshold. The adaptive threshold method selects a threshold (h) based on the distri-

bution of local maxima, Pmax(x), approximated by kernel density estimation. The symmetriza-

tion of Pmax(x) around the median μ is used to approximate the noise distribution of peaks.

P̂noiseðmþ xÞ ¼ Pmaxðm � jxjÞ ð5Þ

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 9 / 27

https://doi.org/10.1371/journal.pcbi.1008806

The two distributions are then combined to estimate the threshold by minimizing the func-

tion:

h ¼ arg max
h2R

��Z 1

h
PmaxðxÞ dx

�p

�

��Z 1

h

dPnoise dxÞ
p
�

; ð6Þ

where p sets the stringency of the discrimination, reflecting a trade off between the benefit of

including more (lower-amplitude) spikes in defining the template, and the cost of including

additional noise spikes. Smaller values of p result in a more stringent threshold. Although the

assumption that the noise distribution of peaks is symmetric around the median μ is not

always fulfilled, experiments with ground truth and simulated data demonstrate that this

approach is effective. We set p = 0.25 for the first round of spike detection. In our experiments,

manual tuning of p was not needed for later stages of the algorithm to identify improved spa-

tial and temporal filters.

In VolPy, we provide a second thresholding method, simple threshold, which solely relies on

the noise level estimation. simple threshold only considers values below the median of the fil-

tered trace to estimate the noise level σ. Only peaks larger than l (default as 3.5) times the noise

level σ are selected. This method too assumes that the distribution of noise is symmetric

around the median. In rigorous terms, the assumption of symmetric distribution is more real-

istic on the filtered signal than on peak heights. Our rationale to introduce a second threshold-

ing method is to help users with a more intuitive parameter to explore in the cases of adaptive
threshold failure.

After the first round of spike detection, a spike template z 2 R2tþ1
is computed by averaging

the waveforms of the extracted peaks:

zðt0Þ ¼
1

nðsÞ

X

t2s

tsðt þ t0Þ : t0 2 ½� t; t�; t0 2 Z ð7Þ

where s is the set of spikes, n(s) is the total number of spikes (⑤ in Fig 2B) and τ the waveform

half size with default time bin of 20 ms (that is 8 frames if the movie was recorded at 400 Hz).

Subsequently, a whitened matched filter [34] is used to enhance spikes with shape similar to

the template (⑥ in Fig 2B). This operation is composed of two steps: (i) the signal is prewhi-

tened in the frequency domain based on the noise spectrum estimated by the Welch method.

The prewhitened signal has noise distribution similar to the white noise which is important as

the matched filter is an optimal linear filter when the signal has additive white Gaussian noise.

(ii) a new template z0 2 R2tþ1 is computed from the prewhitened signal (Eq 7) and template

matching is performed by computing the cross-correlation between the prewhitened signal

and the new template z
0

. This final signal has peaks associated to spikes enhanced with respect

to the original trace.

After the whitened matched filtering operation, a second round of spike detection using

adaptive/simple threshold is carried out. While in the first round of spike detection p is set to

0.25 in order to avoid False Positives and gather spikes with high confidence to build a repre-

sentative template, during the second round we aim to maximize F1 score, and therefore set

p = 0.5. When using the simple threshold, a threshold of 3.0 is used by default for a second

round of spike detection. The newly detected spikes are transformed into a spike train q 2 RT
.

This new spike train is used to reconstruct a denoised version of the original signal, by

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 10 / 27

https://doi.org/10.1371/journal.pcbi.1008806

convolving q with the template z:

trec ¼ q � z where qðtÞ ¼

(
1 if there is a spike at time t

0 otherwise
ð8Þ

Spatial filter refinement (⑦ in Fig 2B): The second step is to refine the spatial filter. The

updated spatial filter is computed by regressing the reconstructed trace trec on the high-passed

movie Yh through Ridge regression:

w ¼ ðYT
h Yh þ lwkYhk

2

FIÞ
� 1YT

h trec; ð9Þ

where λw (default is 0.01) is the regularization strength. Instead of solving the ridge regression

problem in its analytical form as SpikePursuit, we apply an iterative and efficient algorithm

[35] implemented in the Scikit-Learn package (’lsqr’) for better time performance. Subse-

quently, the weighted average of the movie with the refined spatial filter is used as the updated

temporal trace for the following iteration:

t ¼ Yhw ð10Þ

For the final round, the spatial filter and the temporal trace are not updated.

Subthreshold activity extraction (⑧ in Fig 2B): After three iterations of spike time estima-

tion (in our experience this was generally sufficient to converge to a stable solution) and spatial

filter refinement, the subthreshold activity is extracted. First, a residual signal is computed by

subtracting the reconstructed trace from the temporal trace tres = t − trec. Second, a 5th order

Butterworth low-pass filter (fc = 20Hz by default) is applied on the residual trace tres.

Locality test: A locality test is performed finally to evaluate whether the reconstructed sig-

nal represents the original ROI or is contaminated by neighboring structures. First, we com-

pute the correlation between the reconstructed signal trec and each pixel in the movie context

region Yh. Second, we check whether the pixel with maximal correlation is inside the original

region of interest S or not. In case this did not happen, it would mean that the extracted signal

represents other surrounding structures, and therefore it is discarded.

Importantly, inactive neurons are generally identified by the segmentation algorithm, but

given the absence of spikes the spatial filters might not match structures internal to the pro-

vided masks, thereby failing the locality test. Therefore, inactive neurons with signals not rep-

resenting the ROI can be removed since they fail locality tests.
Algorithm 1 Trace Denoising and Spike Extraction
Require: Movie in the context region Y 2 RT�N, where T is number of
frames and N is number of pixels in the context region, the set of pix-
els in the region of interest S, the set of pixels in the local back-
ground B, the number of selected background principal components npc,
the Ridge regression regularization coefficients λb, λw, the number of
iterations K, and remaining parameters params
1: if REVERSEPOLARITYINDICATOR = 1 then
2: Y Y � (−1)
3: end if
4: Yh HIGHPASSFILTER(Y, params) ⊳ Correct for photobleaching
5: if w is None then
6: t 1

nðSÞ

X

x2S

Yhð:; xÞ ⊳ Averaging the signal across pixels in ROI

7: else
8: t Yh w ⊳ Compute weighted average across all pixels
inside the context region
9: end if

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 11 / 27

https://doi.org/10.1371/journal.pcbi.1008806

10: Yb Yh(:, B) ⊳ Extract the background movie
11: U, Σ, V SVD(Yb) ⊳ Compute the singular value
decompostion of Yb
12: Ub = U(:, 1: npc)
13: for k 1: K do
14: β ðUT

b Ub þ lbkUbk
2

FIÞ
� 1UT

b t ⊳ Ridge regression to remove
background
15: t t−Ubβ
16: ts, s, trex, z DENOISESPIKES(t, params) ⊳ See Algorithm 2.
Compute trace after whitened matched filter ts, spike time s, recon-
structed trace trec and spike template z
17: if k < K then
18: w ðYT

h Yh þ lwkYhk
2

FIÞ
� 1YT

h trec ⊳ Refine spatial filter
19: t Yhw
20: end if
21: end for
22: tsub LOWPASSFILTER((t − trec), params) ⊳ Extract subthreshold
activity
23: m ArgMaxðYT

h trecÞ ⊳ Locality test
24: if m 2 S then
25: loc 1
26: else
27: loc 0
28: end if
29: return ts, t, tsub, s, trec, z, loc
Algorithm 2 DenoiseSpikes
Require: Trace t 2 RT, waveform half size τ, stringency parameter for
adaptive threshold p1 and p2, threshold parameter for simple threshold
l1 and l2, and remaining parameters params
1: ts HIGHPASSFILTER(t, params) ⊳ Remove low frequency
baseline
2: ts ts − MEDIAN(ts)
3: if USEADAPTIVETHRESHOLD = 1 then
4: s1 ADAPTIVETHRESHOLD(ts, p1) ⊳ See Algorithm 3
5: else
6: s1 SIMPLETHRESHOLD(ts, l1) ⊳ See Algorithm 4
7: end if
8: q1 ZEROS(T) ⊳ Create a zero vector with dimension T
9: q1(s1) 1 ⊳ q is the spike train

10: z 1

nðs1Þ

Xnðs1Þ

i¼1

tsðs1ðiÞ � t : s1ðiÞ þ tÞ ⊳ Compute the spike template

11: ts WHITENEDMATCHEDFILTER(ts, q1, s1, τ) ⊳ See Algorithm 5
12: if USEADAPTIVETHRESHOLD = 1 then
13: s2 ADAPTIVETHRESHOLD(ts, p2)
14: else
15: s2 SIMPLETHRESHOLD(ts, l2)
16: end if
17: q2 ZEROS(T)
18: q2(s2) 1
19: trec q2 � z ⊳ Convolve the spike train with temporal
template to get the reconstructed signal
20: return ts, s, trec, z
Algorithm 3 AdaptiveThreshold
Require: Trace ts 2 R

T, stringency parameter p, and remaining parameters
params
1: p LOCALMAXIMA(ts) ⊳ Find peak heights of all local maxima

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 12 / 27

https://doi.org/10.1371/journal.pcbi.1008806

2: x LINSPACE(MIN(p), MAX(p), params) ⊳ Evenly spaced samples
between min and max of peak heights
3: pmax KDE(p, x) ⊳ Estimated distribution of local maxima
at points x
4: μ MEDIAN(p)
5: j FIND(x(i) < μ, x(i + 1) > μ)
6: pnoise ZEROS(LEN(pmax)) ⊳ Create a zero vector same size as
Pmax
7: Pnoise(1: j) Pmax(1: j) ⊳ Estimate noise distribution by
symmetrization
8: if 2j � LEN(Pmax) then
9: Pnoise(j + 1: end) Pnoise(j: 2j − LEN(Pmax) + 1)
10: else
11: Pnoise(j + 1: 2j) Pnoise(j: 1)
12: end if
13: Fmax CUMSUM(Pmax) ⊳ Cumulative distribution function
14: Fnoise CUMSUM(Pnoise)
15: Fmax Fmax(end) − Fmax
16: Fnoise Fnoise(end) − Fnoise
17:g (Fmax)

p − (Fnoise)
p

18: h x(ARGMAX(g))
19: s LOCALMAXIMA(g)) ⊳ All local maxima with height greater
or equal to h
20: return s
Algorithm 4 SimpleThreshold
Require: Temporal trace ts 2 R

T, threshold parameter l
1: t0 −ts(ts < 0)

2: s

ffi

1

nðt0Þ

Xnðt
0 Þ

i¼1

t0ðiÞ2
v
u
u
t ⊳ Estimated std based on negative part of

the signal ts
3: s LOCALMAXIMA(ts, l � σ) ⊳ Find peaks higher than l times
the noise level
4: return s
Algorithm 5 WhitenedMatchedFilter
Require: Temporal trace ts 2 R

T, spike train q 2 RT, spike times s 2 RnðsÞ,
waveform half size τ
1: q0 CONVOLVE(q, ONES(2τ + 1))
2: tnoise ts(q0 < 0.5) ⊳ The noise signal
3: sn SQRT(WELCH(tnoise)) ⊳ sn is the scaling factor in the
frequency domain
4: ts IFFT(FFT(ts)/sn) ⊳ Scale trace in the frequency domain

5: z0 1

nðsÞ

XnðsÞ

i¼1

tsðsðiÞ � t : sðiÞ þ tÞ ⊳ Compute a spike template based on

the prewhitened trace
6: ts CROSSCORRELATION(ts, z0) ⊳ Template matching
7: return ts

Voltage imaging datasets

In-vivo datasets. The datasets we employed were all previously published: Recordings

from the tegmental area of larval zebrafish (TEG) and mouse L1 cortex (L1) are described in

[5]; Recordings from mouse hippocampus (HPC) are described in [6]. For details about animal

protocols and data acquisition refer to the original papers. The name, size and number of

labeled neurons for each dataset is reported in Table 2.

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 13 / 27

https://doi.org/10.1371/journal.pcbi.1008806

Voltage imaging with simultaneous electrophysiology datasets. The simultaneous

imaging and electrophysiological data presented in this paper were previously published in [5].

Two of them were extracellular recordings from the TEG area of larval zebrafish, and one

intracellular recording from mouse L1 cortex. For details about animal protocol and acquisi-

tion refer to the original paper.

Simulated datasets. We generated simulated voltage imaging movies modelled upon the

L1 dataset examples (Fig 4A). Fluorescence traces were obtained by combining the following

components: (i) Spikes times were simulated with an inter spike interval uniformly distributed

between 0.1 and 0.2 seconds; (ii) Fluorescence signals associated to spikes were obtained by

convolving with a kernel matching the dynamics of Voltron signal in L1 neurons; (iii) Sub-

threshold activity was simulated by applying a Gaussian filter to white noise; (iv) Fluorescence

signals of spikes and subthreshold activity were flipped to match the reverse polarity of the

Voltron indicator; (v) To simulate photo-bleaching, the resulting fluorescence signal was mod-

ulated with an exponential decaying with a 2500s time constant.

Spatial footprints were simulated as ring shaped and real-valued masks with a small pro-

cess protruding at different angles (Fig 4A). The shape and size was matched to L1 neurons in

real data. The signal associated to each neuron within the movie was obtained by multiplying

the simulated fluorescence signal times the spatial footprint. The sum of all neurons repre-

sented the imaging movie without background. In order to generate a realistic background

signal, we summed the movie without background with a 50x50 pixels patch with no visible

neurons from a motion corrected L1 dataset movie. When summing neurons and back-

ground, the baseline fluorescence of neurons (brightness) was selected to approximately cor-

respond to in-vivo recordings. The spike amplitude was adjusted by changing the amplitude

of fluorescence signals with the baseline fluorescence fixed (i.e. changing DF with F fixed).

We added out of focus signals for different neurons on our simulated data. The out of focus

signal was generated by multiplying the signal of each neuron times a spatial weight computed

by applying a Gaussian filter on a randomly selected pixel in the FOV. Finally, white noise

was added to every voxel in the simulated data.

For experiments with non-overlapping neurons, we tested neurons with spike amplitudes

0.05, 0.075, 0.1, 0.125, 0.15, 0.175. 0.2. For overlapping cases, we tested neurons with overlap-

ping areas 0%, 6%, 19%, 26% and 35%, and spike amplitudes 0.075, 0.125 and 0.175.

Table 2. All annotated datasets for segmentation of VolPy. For each dataset the name, size of datasets and number of labeled neurons are given.

Name Size # Name Size #

L1.00.00 20000�512�128 79 HPC.29.04 20000�164�96 3

L1.01.00 20000�512�128 50 HPC.29.06 20000�228�96 2

L1.01.35 20000�512�128 65 HPC.32.01 20000�256�96 7

L1.02.00 20000�512�128 63 HPC.38.05 20000�176�92 4

L1.02.80 20000�512�128 39 HPC.38.03 20000�128�88 5

L1.03.00 20000�512�128 77 HPC.39.07 20000�264�96 6

L1.03.35 20000�512�128 49 HPC.39.03 20000�276�96 7

L1.04.00 20000�512�128 39 HPC.39.04 20000�336�96 5

L1.04.50 20000�512�128 33 HPC.48.01 20000�224�96 8

TEG.01.02 10000�364�320 31 HPC.48.05 20000�212�96 7

TEG.02.01 10000�360�256 28 HPC.48.07 20000�280�96 8

TEG.03.01 10000�508�288 41 HPC.48.08 20000�284�96 4

https://doi.org/10.1371/journal.pcbi.1008806.t002

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 14 / 27

https://doi.org/10.1371/journal.pcbi.1008806.t002
https://doi.org/10.1371/journal.pcbi.1008806

Evaluation of VolPy
Cross-Validation to evaluate the segmentation performance on limited datasets. In

order to decrease the selection bias originated from the separation in training and validation

datasets and better evaluate Mask R-CNN model on our limited datasets (24 in total), we per-

formed a stratified three-fold cross-validation. The reason we used a stratified three-fold cross-

validation rather than a normal three-fold cross-validation is that we wanted to maintain an

equivalent portion of training and evaluation samples for each dataset type. In more detail, we

partitioned our datasets into three folds so that L1, TEG, and HPC would all maintain the

same number of samples without repetition (Table 3 train/val column shows one group of the

partition). During cross-validation two groups were used as training sets while the remaining

one as validation set. The cross-validation process was repeated three times with each group

used exactly once as validation set.

Fig 4. Evaluation of VolPy on simulated data. (A) Example of simulated data. Left. Average of movie across time.

Right. Three example traces with different average spike amplitude. Higher spike amplitude are associated with higher

signal to noise ratio. (B) The result of Mask R-CNN in segmenting the simulated movie (0.1 spike amplitude) laying

over the correlation image. (C) Performance of VolPy, CaImAn, SGPMD-NMF, Suite2P, SpikePursuit, PCA-ICA and

MeanROI on simulated data. Average F1 score against ground truth in function of spike amplitude. (Left) All

algorithms (including VolPy) were evaluated with the optimal threshold. (Right) Comparison with SpikePursuit,

adaptive threshold in both cases. (D) Spike-to-noise ratio (SpNR) in function of spike amplitude. (E) Evaluation of

VolPy on overlapping neurons. Average F1 score detecting spikes in function of spike amplitude and overlap between

two neurons.

https://doi.org/10.1371/journal.pcbi.1008806.g004

Table 3. VolPy performance on segmentation. For each type of datasets, number of datasets, number of neurons, recall, precision, F1 score for training and validation

computed by stratified cross-validation are provided.

Name #datasets

train/val

#neurons

train/val

recall(%)

train/val

precision(%)

train/val

F1(%)

train/val

L1 6/3 329 ± 32/174 ± 32 90 ± 2/88 ± 3 92 ± 2/92 ± 3 91 ± 1/90 ± 1

TEG 2/1 67 ± 6/33 ± 6 78 ± 3/74 ± 4 81 ± 1/78 ± 6 80 ± 1/76 ± 1

HPC 8/4 44 ± 2/22 ± 2 88 ± 2/77 ± 16 67 ± 5/61 ± 3 74 ± 2/66 ± 7

https://doi.org/10.1371/journal.pcbi.1008806.t003

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 15 / 27

https://doi.org/10.1371/journal.pcbi.1008806.g004
https://doi.org/10.1371/journal.pcbi.1008806.t003
https://doi.org/10.1371/journal.pcbi.1008806

Precision/Recall framework to measure segmentation performance. In order to mea-

sure the performance of VolPy segmentation, we compared the spatial footprints extracted by

VolPy with our manual annotations (see [16] component registration for a detailed explana-

tion). In summary, we computed the Jaccard distance (the inverse of intersection over union)

to quantify similarity among ROIs, and then solved a linear assignment problem with the

Hungarian algorithm [36] to determine matches and mismatches. Once those were identified,

we adopted a precision/recall framework and defined True Positive (TP), False Positive (FP),

False Negative (FN), and True Negative (TN) as follows:

TP ¼ number of matched spatial footprints

FP ¼ number of spatial footprints in VolPy but not in GT

FN ¼ number of spatial footprints in GT but not in VolPy

TN ¼ 0

ð11Þ

Next we computed precision, recall and F1 score of the performance in matching as the fol-

lowing:

Precision ¼ TP=ðTPþ FPÞ

Recall ¼ TP=ðTPþ FNÞ

F1 ¼ 2� Precision� Recall=ðPrecisionþ RecallÞ

ð12Þ

The F1 score is a number between zero and one. Better performance results in higher F1 score.

For each run of the cross-validation process, we trained a single network and tested it on

both training and validation sets. We then computed the mean and standard deviation of the

F1 score for different types of datasets with training and validation sets treated separately.

Precision/Recall framework to measure spike extraction performance with ground

truth spikes. In order to match spikes extracted from simultaneous voltage imaging and

electrophysiology datasets, we employed a greedy matching algorithm. Let v and e be two

sequences of spike times extracted from voltage imaging and electrophysiology datasets

respectively. We started by matching the leftmost spike of v and e. Without loss of generality,

we assumed the leftmost spike is v(1). If the distance between spike v(1) and its closest spike e

(1) in the other sequence was within 10ms, then two spikes were matched and removed from

the sequences; otherwise, spike v(1) was considered a mismatch and removed from the

sequence v. We then started to match the following leftmost spike. This process was repeated

until there is no spike in any of these two sequences left. We chose to match spikes within 10

ms based on the fact that neighboring spikes in the electrophysiology had a minimum inter-

spike interval of 30 ms.

After identifying matches and mismatches, we proceeded similarly to what explained

above. We defined TP, FP, FN, TN similar to Eq 11:

TP ¼ number of matched spikes

FP ¼ number of spikes in VolPy but not in GT

FN ¼ number of spikes in GT but not in VolPy

TN ¼ 0

ð13Þ

Then we calculated the F1 score same as Eq 12.

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 16 / 27

https://doi.org/10.1371/journal.pcbi.1008806

Spike-to-noise-ratio. In order to compare the performance of different algorithms when

no ground truth data is available, we have defined a metric to quantify how well an algorithm

was able to increase the detectability of spikes in voltage imaging traces. When comparing two

algorithms, the Spike-to-noise-ratio (SpNR) is computed by identifying the set of spikes which

were detected by both algorithms, and then calculate, for each denoised trace independently,

the ratio between the average spike amplitude and the noise estimated as the standard devia-

tion of the negative portions of the 15Hz high-pass filtered signal. We believe this metric is

independent on thresholding methods and should provide an unbiased estimate of an algo-

rithm denoising capability.

Implementation of benchmarked algorithms

We compared VolPy against a set of other algorithms. Some of them could not directly be

applied to voltage imaging, and therefore we had to introduce some modifications to adapt

them. In what follows we describe how we deployed each of them.

CaImAn. CaImAn is a software package for the analysis of calcium imaging data [16] and

can be found at the github repository https://github.com/flatironinstitute/CaImAn. For voltage

imaging movie using indicator with reversed polarity (i.e. brighter for lower voltages, such as

Voltron), vanilla CaImAn failed to retrieve reasonable spatial or temporal components because

the NMF framework was unable to extract negative spikes of voltage signals. Just flipping the

signal and removing the minimum of the whole movie also leads to poor performance. The

best results were obtained by flipping the signal and removing the minimum value of each

pixel. This helps CaImAn focus on the variance related to the voltage signal and not on baseline

fluctuations. This modified movie can be processed via the standard CaImAn pipeline. We

used the greedy roi method for spatial footprint initialization. We turned off the deconvolution

step used for calcium signals, and instead we high-passed the temporal components with a

15Hz filter and applied a manual threshold to extract spikes.

For simulations, as movies were simulated with negative spikes, we processed them in the

same way as we did for movies using Voltron indicator.

For voltage imaging movies using the paQuasar indicator, as they had positive spikes, we

passed the original movie directly into the CaImAn pipeline without preprocessing and per-

formed the same spike extraction step as mentioned before.

MeanROI. Region of interests were provided from ground truth masks beforehand. The

MeanROI method extracts the voltage signal for each neuron by averaging the pixels within

the provided masks. Depending on the signal polarity the trace can be flipped. Analogously to

CaImAn, spikes are extracted by high-passing the signals with a 15Hz filter and manual

thresholding.

Suite2P. Suite2p is a software package for the analysis of calcium imaging data [17]. We

tested Suite2P on simulated datasets using the software available on github https://github.com/

MouseLand/suite2p. To obtain good spatial footprints, we set the overlapping parameter to be

True across simulations. When the spike amplitude was lower or equal to 0.01, we turned off

the sparse_mode and when the spike amplitude was 0.005, we turned off the connected parame-

ter. We flipped and high-passed the signals with a 15Hz filter and applied a manual threshold

to extract spikes.

SGPMD-NMF. SGPMD-NMF is a set of software packages that can be deployed for the

analysis of voltage imaging datasets [11, 12]. We obtained SGPMD-NMF from the Github

repositories https://github.com/adamcohenlab/invivo-imaging and https://github.com/m-xie/

trefide.git. We fed the original movie into the denoising step [11]. We flipped the output signal

if it had reverse polarity and passed it to the demixing step, which output spatial footprints and

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 17 / 27

https://github.com/flatironinstitute/CaImAn
https://github.com/MouseLand/suite2p
https://github.com/MouseLand/suite2p
https://github.com/adamcohenlab/invivo-imaging
https://github.com/m-xie/trefide.git
https://github.com/m-xie/trefide.git
https://doi.org/10.1371/journal.pcbi.1008806

temporal traces, along with subthreshold activities [12]. We high-passed the signals with a

15Hz filter and applied a manual threshold to extract spikes.

PCA-ICA. We implemented the PCA-ICA algorithm based on previous work on calcium

imaging [14]. We chose the top 50 principal components in PCA and 15 components in spa-

tial-temporal ICA. The parameter which controls the relative contribution of spatial and tem-

poral information was set to 0.05. The output spatial components were updated after Gaussian

smoothing and thresholding. Temporal signals were extracted as the weighted average of the

updated spatial components. We flipped and high-passed the signals with a 15Hz filter and

applied a manual threshold to extract spikes.

SpikePursuit. We recovered the original SpikePursuit implementation in Matlab from

the github repository https://github.com/KasparP/SpikePursuitMatlab and ran it on simulated

data and scalability tests. Ground truth masks were provided as the input and the algorithm

used the adaptive threshold method to automatically select the optimal threshold and spikes

times. For the scalability tests, parameters were set similarly to VolPy.

Spike extraction. In this paper we tested the algorithms above and compared their perfor-

mances against VolPy. Since only VolPy and SpikePursuit were able to extract spikes automati-

cally, we modified the other algorithms to automate the spike detection process, and thus

provide a direct comparison with VolPy. The general process to extract spikes was to high-pass

the temporal components extracted by each algorithm with a 15Hz filter, and then to apply a

manual threshold to extract spikes. The manual threshold was an estimated level of standard

deviation of the signal based on the negative portion of the signal (similarly to SNR measure

for calcium traces in [16]). In simulations, instead of picking a single manual threshold (for

example 3.0), for each spike amplitude value we performed a grid search (range 2.0-4.0 with

interval 0.1), and selected the threshold outputting the best average F1 score across all neurons.

In simultaneous electrophysiology and voltage imaging datasets and in-vivo datasets, the

thresholds for CaImAn, MeanROI and SGPMD-NMF were chosen manually. In in-vivo data-

sets, the SpNR was computed only on the intersection of detected spikes among different

algorithms.

Spatial footprint matching. Using the same way to match the segmentation results with

manual annotations as mentioned above, spatial footprints of benchmarked algorithms (except

SpikePursuit and MeanROI which needed masks beforehand) were matched with manual

annotations in simulations. F1 score and SpNR were computed only on the intersection of

matched neurons among different algorithms.

Results

In what follows we report a systematic evaluation of VolPy against ground truth segmentation

and against other algorithms in terms of performance in spike extraction and scalability.

VolPy performance in localizing neurons

We trained the Mask R-CNN neural networks in VolPy on all three types of datasets at the

same time (Table 1). We evaluated the networks with a 3-fold cross-validation (see Materials

and methods for details). In Fig 3A, we compared the contours predicted by VolPy (blue) with

manual annotations (red) on three example datasets: VolPy was able to identify candidate neu-

rons in conditions of low signal-to-noise and spatial overlap. In Fig 3B and 3C, we quantified

VolPy’s performance in segmentation using a precision/recall framework and in Table 3 we

summarized the average F1 score separately for those three types of datasets. For validation,

VolPy obtained F1 score of 0.90 ± 0.01 on the L1 datasets (trained with 329 neurons on aver-

age), 0.76 ± 0.01 on the TEG datasets (trained with 67 neurons on average), and 0.66 ± 0.07 on

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 18 / 27

https://github.com/KasparP/SpikePursuitMatlab
https://doi.org/10.1371/journal.pcbi.1008806

the HPC datasets (trained with 44 neurons on average). To benchmark VolPy’s segmentation

performance, in Fig 3C, we also reported the average F1 score of all labelers (green bars) when

comparing their original annotations against the consensus ground truth: 0.92 ± 0.01 on the

L1 datasets, 0.89 ± 0.02 on the TEG datasets and 0.82 ± 0.09 on the HPC datasets.

There were substantial differences in the performance among the three types of datasets for

VolPy, with L1 obtaining excellent results (close to human annotators) and TEG and HPC pro-

gressively worse results (Fig 3C). We hypothesized that two possible sources of variability

could account for these differences: the objective difficulty in segmenting the datasets and the

number of neurons for training. With regard to segmenting difficulty, the differences among

these three types of datasets could be seen clearly through the performance of manual annota-

tors, in which L1 yielded the highest F1 score and HPC yielded the lowest one, and with the

largest variance. With regard to the number of neurons for training, in average 329 neurons in

L1 datasets were used for training compared to only 67 and 44 neurons in TEG and HPC data-

sets respectively (see Table 3). To test whether differences in the number of neurons for train-

ing mainly account for the variability, we separately trained a network for each type of dataset

and varied the training set size (i.e. number of neurons for training, see Fig 3D). Although

most likely overfitting was present with less than�100 neurons (See S4 Fig), VolPy still

achieved 0.88 F1 score on the validation sets of L1 when trained with only 29 neurons. We

observed that increasing training set size moderately helped improve VolPy’s performance on

all three types of datasets. Our results suggest that the objective difficulty accounts for most of

the difference in performance within the tested range. However, considering that very small

training set size of TEG and HPC were used for training, it is likely that VolPy’s performance

on these two types of datasets may further increase when trained with more neurons.

VolPy performance in spike detection

We validated the spike extraction performance of VolPy and other algorithms on the following

simulated datasets and real datasets: 1. simulations based on mouse cortex datasets (L1); 2.

simultaneous voltage imaging and electrophysiology datasets from mouse neocortex (L1) and

zebrafish tegmental area (TEG); 3. Real datasets from mouse neocortex(L1), zebrafish tegmen-

tal area (TEG) and mouse hippocampus (HPC). We quantified the performance of the bench-

marked algorithms based on precision/recall and spike-to-noise-ratio (SpNR, a metric

quantifying spike detectability, see Materials and methods for details). Below we detail the

comparisons we have performed.

VolPy performance on simulated data. As explained in the Materials and methods sec-

tion, we simulated voltage imaging movies based on the L1 datasets. The amplitude of spikes

in such simulated neurons were varied to model different signal-to-noise ratio cases (Fig 4A).

We compared VolPy against other algorithms including CaImAn [16], SGPMD-NMF [12],

Suite2P [17], PCA-ICA [14], MeanROI and SpikePursuit [5] (See Materials and methods for a

detailed implementation of each algorithm).

An example of VolPy segmentation result is reported in Fig 4B. We did not compare the

performance of VolPy in segmenting neurons with other considered algorithms for two rea-

sons. First, CaImAn, PCA-ICA, Suite2P and SGPMD-NMF only segment active neurons and

need manual post processing. Indeed, depending on the input parameters, these algorithms

may generate spurious components that cause false positives, making a fair comparison diffi-

cult. Second, segmentation on our simulated data is a relatively easy task: all algorithms man-

aged to find all 10 neurons (recall) when spike amplitude was greater or equal to 0.075.

To benchmark VolPy’s spike extraction performance against other algorithms that do

not have automatic spike thresholding, we selected an optimal threshold by grid search after

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 19 / 27

https://doi.org/10.1371/journal.pcbi.1008806

customized signal filtering for each of these algorithms (including VolPy, see Materials and

methods). The idea in this case is to assess how algorithms work independently of thresholding

parameters. We therefore assessed the F1 score and SpNR of different algorithms under vari-

ous SNR scenarios on a FOV containing 10 non-overlapping neurons (Fig 4C and 4D). The

results showed that VolPy achieved a better F1 score and SpNR in most cases, especially in low-

SNR settings. This was expected because VolPy optimized spatial footprints and enhanced

spike amplitudes through the whitened matched filter. As a control, VolPy showed a signifi-

cantly better result than MeanROI, that is simply averaging the pixels within the ROI. Spike-

Pursuit adopts an adaptive threshold method which does not need manual thresholding and

was therefore directly compared to VolPy with adaptive threshold. VolPy performed slightly

better than SpikePursuit (Fig 4C), mainly due to the modifications of using ridge instead of lin-

ear regression for background subtraction.

On separate simulations, we evaluated the performance of VolPy in the case of overlapping

neurons. We simulated movies with two overlapping neurons and assessed the F1 score for

VolPy when varying the degree of overlap (Fig 4E). In terms of spatial footprint extraction,

VolPy started failing to segment neurons in the large overlapping case (35%). The result could

potentially be improved if Mask R-CNN was trained on the simulated datasets as well, espe-

cially on neurons featuring similar overlap. Given this, we provided manual masks for testing

VolPy in such simulated overlapping scenarios. In terms of spike detection, VolPy maintained

good results when the total overlap was less than 20%. However, the F1 score dropped as the

overlapping area further increased.

VolPy performance on simultaneous voltage imaging and electrophysiology data. We

tested VolPy, CaImAn, MeanROI and SGPMD-NMF on datasets with simultaneous voltage

imaging and electrophysiology. We used three recordings from mouse L1 neocortex and Zeb-

rafish Tegmental area [5]. Spikes for electrophysiology recordings were obtained by manual

thresholding. We automatically analyzed voltage imaging data with the different algorithms.

For the VolPy pipeline, we used the adaptive threshold method and the outputs were the spatial

footprints, the voltage traces, and the corresponding spike times (Fig 5A). For the other algo-

rithms, we used manual thresholding for spike extraction. VolPy was able to extract good spa-

tial footprints in all cases while CaImAn and SGPMD-NMF failed to output good spatial

footprints in two (fish datasets) of these three datasets (See S5 Fig). As a consequence, VolPy
achieved the best results in terms of F1 score (Fig 5B), whereas CaImAn and SGPMD-NMF

produced worse results than MeanROI in all datasets. We believe that CaImAn and

SGPMD-NMF underperformed because neurons in voltage imaging movies were not firing

with homogeneous spatial footprints, as could be observed from S4 Vid. This problem was

exacerbated in the high spatial resolution recordings, where neurons are represented by a

larger number of pixels. Moreover, we observed that the denoising step in SGPMD sometimes

reduced the SNR on noisy datasets.

Comparison of VolPy and other methods on real datasets. Finally, we compared the

performance of VolPy with other algorithms on the L1 (8 neurons), HPC (2 neurons) and

TEG (1 neuron) datasets. Since the ground truth was missing in these cases we quantified how

each algorithm was able to enhance spike detection. We computed the SpNR metric only on

spikes detected by all algorithms. In Fig 5C we presented some example neurons and the corre-

sponding traces extracted by VolPy, CaImAn, MeanROI and SGPMD-NMF. In Fig 5D, SpNR

was computed for each algorithm across different datasets.

Taken together, the results above confirm that VolPy outperforms existing algorithms in

terms of spike extraction.

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 20 / 27

https://doi.org/10.1371/journal.pcbi.1008806

VolPy scalability

We examined the performance of VolPy, SGPMD-NMF and SpikePursuit in terms of process-

ing time and peak memory for the L1 datasets presented above. We ran our tests on a linux-

based desktop (Ubuntu 18.04) with 16 CPUs (Intel Core i9-9900K CPU 3.60GHz) and 64 GB

of RAM. For segmentation, we used a GeForce RTX 2080 Ti GPU with 11 GB of RAM mem-

ory. An L1 movie (FOV 512 × 128, pixels × pixels) with 75 annotated neurons was used for all

our scalability test.

Fig 6A reports VolPy processing time in function of the number of frames using 8 proces-

sors. The results showed that the processing time scales linearly in the number of frames. Pro-

cessing 75 candidate neurons in the 1.6 minutes long movie (40000 frames) took about 8

minutes. Spike extraction (red bar) was the most time consuming step. In order to probe the

benefits of parallelization, we ran VolPy 4 times while limiting the available CPUs to 1, 2, 4 and

8 on 40000 frames of the movie (Fig 6B). We observed significant performance gains due to

parallelization, especially in the motion correction and spike extraction phase, with a maxi-

mum speed-up of 3X.

Fig 5. VolPy performance on real data. (A) Evaluation of VolPy spike extraction performance against simultaneous

electrophysiology. Three neurons, two from larval zebrafish TEG area (TEG1 and TEG2) and one from mouse L1 (L11),

for which we had available both electrophysiology and imaging. Top. Spatial footprint extracted by VolPy. Middle.

Ground truth spikes from electrophysiology (blue) and spikes extracted by VolPy (orange), gray vertical lines indicate

matched spikes. Bottom. Electrophysiology (blue, top) and fluorescence signal denoised by VolPy (bottom, orange).

(B) We compared the performance of VolPy, CaImAn, MeanROI, and SGPMD-NMF in retrieving spikes on the three

neurons in (A). (C) Examples of trace extraction results for VolPy, CaImAn, MeanROI, and SGPMD-NMF. On the left

mean image overlaid to example neurons (top L1, middle TEG, bottom HPC). On the right traces and inferred spikes

for datasets L1 (top three traces), TEG (traces 4-5 from top) and HPC (bottom trace). (D) Spike to noise ratio (SpNR)

for each considered algorithm and dataset type.

https://doi.org/10.1371/journal.pcbi.1008806.g005

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 21 / 27

https://doi.org/10.1371/journal.pcbi.1008806.g005
https://doi.org/10.1371/journal.pcbi.1008806

In order to assess whether VolPy improves over other algorithms in terms of memory and

speed, we benchmarked its performance against SpikePursuit and SGPMD-NMF in function

of the number of frames(Fig 6): SpikePursuit was about 3.5X slower and SGPMD-NMF was

about an order of magnitude less performing. The speed gains of VolPy against SpikePursuit is

mainly due to parallel processing and optimizing the SpikePursuit algorithm. In terms of

memory usage (Fig 6D), SGPMD-NMF produced an out of memory error when processing

20000 frames on our machine, whereas SpikePursuit consumed about 3 times the amount of

memory compared to VolPy (both using a single CPU on a 40000 frames movie).

In conclusion, VolPy significantly improves scalability over existing approaches for voltage

imaging data analysis.

Fig 6. Evaluation of VolPy scalability. VolPy scalability was evaluated based on a 512x128 pixels movie with 75

annotated neurons. (A) Processing time allocation of VolPy with 10000, 20000 and 40000 frames using 8 processors. (B)

Processing time of VolPy on 40000 frames with 1, 2, 4 and 8 processors. (C) Comparison of performance among VolPy (8

processors), SpikePursuit and SGPMD-NMF with 10000, 20000 and 40000 frames. (D) Peak memory usage of VolPy and

SpikePursuit on 40000 frames. Since VolPy supports parallelization we reported memory usage with 1, 2, 4 and 8

processors.

https://doi.org/10.1371/journal.pcbi.1008806.g006

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 22 / 27

https://doi.org/10.1371/journal.pcbi.1008806.g006
https://doi.org/10.1371/journal.pcbi.1008806

Discussion

Here we introduced VolPy, the first end-to-end, automatic, scalable, and open source analysis

pipeline for large scale voltage imaging datasets. VolPy corrects movies for motion artifacts,

automatically detects neurons, and it provides trace denoising and adaptive spike time estima-

tion based on robust and scalable peak detection algorithms. Finally, VolPy is embedded into

the popular open-source software CaImAn, and therefore directly available to the existing

community.

VolPy evaluation

We evaluated VolPy segmentation performance against a corpus of manually annotated data-

sets obtained from three human labelers. Humans generally agreed well with a consensus

ground truth, with more consistent labeling for easy and high SNR datasets. More difficult

datasets, such as HPC, produced controversial annotations and less agreement. On the tested

datasets, Mask R-CNN quickly reached asymptotic performance even using small training sets

(�30 neurons), and that performance did not seem to dramatically improve with larger train-

ing sets. Our tests suggest that the objective difficulty is the main responsible for performance

degradation, with training set size modestly affecting the performance in the tested range. We

cannot exclude that a very large corpus of annotated datasets might increase the segmentation

performance on difficult datasets, such as HPC. As more dataset become available we plan to

further test this possibility.

We benchmarked the accuracy of VolPy in detecting spikes against other algorithms and

demonstrated that VolPy in most cases outperforms these methods, especially in low SNR sce-

nario, typical for voltage imaging. Finally, VolPy is faster and consumes less memory than all

the tested voltage imaging analysis algorithms. Taken together, our experiments indicate that

VolPy is a competitive package for the analysis of voltage imaging data, and we expect it to

become a useful tool to researchers, as the advances in voltage indicators spread within the

neuroscience community.

Practical improvements

Since the segmentation results from VolPy might be imperfect on some dataset types, we pro-

vide a graphical interface within VolPy to refine the output of Mask R-CNN manually (S1 Vid)

or annotate new datasets. In conjunction, we provide a step-by-step guide to train Mask

R-CNN neural networks with newly labelled datasets (https://github.com/flatironinstitute/

CaImAn/wiki/Training-Mask-R-CNN).

Future extensions

As more data will become available and more users will adopt VolPy, we plan to develop a

web-based graphical user interface for experimentalists to manually segment datasets and

transfer the resulting annotations to a distributed computing server, which will periodically

retrain the network and improve the performance of our system. Currently, only a small num-

ber of labs have publicly shared cellular-resolution large-scale voltage recordings. However, we

anticipate that these methods will rapidly become more widely adopted, resulting in a much

wider variety of dataset types.

In the future, we plan to extend this framework in two algorithmic directions. First, similar

to calcium imaging [37], we plan to develop methods appropriate to real-time scenarios,

where activity of neurons needs to be inferred on-the-fly and frame-by-frame; Second, we plan

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 23 / 27

https://github.com/flatironinstitute/CaImAn/wiki/Training-Mask-R-CNN
https://github.com/flatironinstitute/CaImAn/wiki/Training-Mask-R-CNN
https://doi.org/10.1371/journal.pcbi.1008806

to include algorithms appropriate to quantify supra- and subthreshold signals in neuronal

sub-compartments.

Availability

The code and datasets are available at the master branch of the repository https://github.com/

flatironinstitute/CaImAn and at the Zenodo repository [38]. Data used in figures are included

in S1 Data. Mask R-CNN is available (only required for retraining the network), from https://

github.com/matterport/Mask_RCNN. Mask R-CNN was trained with the following tools:

python 3.7.3, tensorflow-gpu 1.14.0.

Supporting information

S1 Data. Data for generating figures. An excel file contains data for generating Figs 3B, 3C,

3D, 4C, 4D, 4E, 5B, 5D, 6A, 6B, 6C and 6D.

(XLSX)

S1 Fig. Manual annotations of voltage imaging datasets with ImageJ. We selected neurons

based on mean image (left), correlation image (mid). Three annotators marked the contours

of neurons independently using ImageJ Cell Magic Wand tool plugin and showed selections in

ROI manager (right).

(TIF)

S2 Fig. Manual annotation VolPy GUI. The interface helps user to select neurons either using

polygons (point by point) or a Python implementation of the ImageJ Cell Magic Wand [26].

Users can then remove or add masks, and finally save in hdf5 format the output.

(TIF)

S3 Fig. Flow chart for segmentation. Summary images are computed from input voltage

imaging movies. Subsequently masks of neurons can be provided in two ways. 1. Neurons can

be segmented via a Mask R-CNN neural network trained on the three types of datasets pre-

sented in this paper (L1, TEG and HPC). The output labels can be further corrected by the

VolPy GUI (See S1 Vid). If users are not satisfied with results of Mask R-CNN, they can manu-

ally annotate voltage imaging datasets using ImageJ. Such new annotations can then be used to

retrain Mask R-CNN. Details for retraining Mask R-CNN are explained at the page https://

github.com/flatironinstitute/CaImAn/wiki/Training-Mask-R-CNN 2. Users can also bypasss

the Mask R-CNN step and choose to provide their own manual masks labelled either through

other softwares or VolPy GUI.

(TIF)

S4 Fig. Learning curves in function of dataset size. Learning curves corresponding to data in

Fig 3D. Training (blue) and validation (orange) loss in function of training set size for L1 (A),

TEG (B) and HPC (C) datasets. (D) For comparison, learning curves for training and valida-

tion set when training on all the datasets.

(TIF)

S5 Fig. Spatial footprint for simultaneous imaging and electrophysiological data. Spatial

footprints extracted by CaImAn and SGPMD-NMF on the data reported in Fig 5A.

(TIF)

S1 Vid. Example of manual annotation interface in VolPy. This is used to annotate datasets

quickly when there are few neurons in FOV.

(MP4)

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 24 / 27

https://github.com/flatironinstitute/CaImAn
https://github.com/flatironinstitute/CaImAn
https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008806.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008806.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008806.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008806.s004
https://github.com/flatironinstitute/CaImAn/wiki/Training-Mask-R-CNN
https://github.com/flatironinstitute/CaImAn/wiki/Training-Mask-R-CNN
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008806.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008806.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008806.s007
https://doi.org/10.1371/journal.pcbi.1008806

S2 Vid. Example of reconstructed movie in VolPy. Left: movie after motion correction. Mid-

dle: movie with baseline removed. Right: reconstructed movie.

(MP4)

S3 Vid. The whole VolPy pipeline. Demonstration of what it looks like running the complete

pipeline.

(MP4)

S4 Vid. Neurons feature non-stationary spatial components. The movie provides an exam-

ple of how a neuron might not be easily represented by a single spatial component, since it is

not always the same portion of the neuron that becomes brighter during voltage changes.

(MOV)

Acknowledgments

We thank K Svoboda, M Ahrens, T Kawashima, Y Shuai, A Cohen, M Xie for providing volt-

age imaging datasets. We thank Jimmy Tabet and Maddison Khire for annotating the datasets.

Author Contributions

Conceptualization: Changjia Cai, M. Hossein Eybposh, Eftychios A. Pnevmatikakis, Kaspar

Podgorski, Andrea Giovannucci.

Data curation: Changjia Cai, Johannes Friedrich, Amrita Singh, Kaspar Podgorski, Andrea

Giovannucci.

Formal analysis: Changjia Cai, Kaspar Podgorski, Andrea Giovannucci.

Funding acquisition: Kaspar Podgorski.

Investigation: Changjia Cai, Kaspar Podgorski, Andrea Giovannucci.

Methodology: Changjia Cai, Johannes Friedrich, Amrita Singh, Eftychios A. Pnevmatikakis,

Kaspar Podgorski, Andrea Giovannucci.

Project administration: Andrea Giovannucci.

Resources: Amrita Singh.

Software: Changjia Cai, Johannes Friedrich, Amrita Singh, M. Hossein Eybposh, Eftychios A.

Pnevmatikakis, Andrea Giovannucci.

Supervision: Kaspar Podgorski, Andrea Giovannucci.

Validation: Changjia Cai, Johannes Friedrich, Kaspar Podgorski, Andrea Giovannucci.

Visualization: Changjia Cai.

Writing – original draft: Changjia Cai, Andrea Giovannucci.

Writing – review & editing: Changjia Cai, Johannes Friedrich, Amrita Singh, M. Hossein

Eybposh, Eftychios A. Pnevmatikakis, Kaspar Podgorski, Andrea Giovannucci.

References
1. Marshall JD, Li JZ, Zhang Y, Gong Y, St-Pierre F, Lin MZ, et al. Cell-type specific optical recording of

membrane voltage dynamics in freely moving mice. Cell. 2016; 167(6):1650–1662.e15. https://doi.org/

10.1016/j.cell.2016.11.021 PMID: 27912066

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 25 / 27

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008806.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008806.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008806.s010
https://doi.org/10.1016/j.cell.2016.11.021
https://doi.org/10.1016/j.cell.2016.11.021
http://www.ncbi.nlm.nih.gov/pubmed/27912066
https://doi.org/10.1371/journal.pcbi.1008806

2. Carandini M, Shimaoka D, Rossi LF, Sato TK, Benucci A, Knöpfel T. Imaging the Awake Visual Cortex

with a Genetically Encoded Voltage Indicator. Journal of Neuroscience. 2015; 35(1):53–63. https://doi.

org/10.1523/JNEUROSCI.0594-14.2015 PMID: 25568102

3. Akemann W, Mutoh H, Perron A, Park YK, Iwamoto Y, Knöpfel T. Imaging neural circuit dynamics with

a voltage-sensitive fluorescent protein. Journal of Neurophysiology. 2012; 108(8):2323–2337. https://

doi.org/10.1152/jn.00452.2012 PMID: 22815406

4. Knöpfel T, Song C. Optical voltage imaging in neurons: moving from technology development to practi-

cal tool. Nature Reviews Neuroscience. 2019; p. 1–9. PMID: 31705060

5. Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, Shuai Y, et al. Bright and photostable chemige-

netic indicators for extended in vivo voltage imaging. Science. 2019; 365(6454):699–704. https://doi.

org/10.1126/science.aav6416 PMID: 31371562

6. Adam Y, Kim JJ, Lou S, Zhao Y, Xie ME, Brinks D, et al. Voltage imaging and optogenetics reveal

behaviour-dependent changes in hippocampal dynamics. Nature. 2019; 569(7756):413. https://doi.org/

10.1038/s41586-019-1166-7 PMID: 31043747

7. Kannan M, Vasan G, Huang C, Haziza S, Li JZ, Inan H, et al. Fast, in vivo voltage imaging using a red

fluorescent indicator. Nature methods. 2018; 15(12):1108. https://doi.org/10.1038/s41592-018-0188-7

PMID: 30420685

8. Piatkevich KD, Bensussen S, Tseng Ha, Shroff SN, Lopez-Huerta VG, Park D, et al. Population imaging

of neural activity in awake behaving mice in multiple brain regions. bioRxiv. 2019; p. 616094.

9. Piatkevich KD, Jung EE, Straub C, Linghu C, Park D, Suk HJ, et al. A robotic multidimensional directed

evolution approach applied to fluorescent voltage reporters. Nature chemical biology. 2018; 14(4):352.

https://doi.org/10.1038/s41589-018-0004-9 PMID: 29483642

10. Roome CJ, Kuhn B. Simultaneous dendritic voltage and calcium imaging and somatic recording from

Purkinje neurons in awake mice. Nature communications. 2018; 9(1):3388. https://doi.org/10.1038/

s41467-018-05900-3 PMID: 30139936

11. Buchanan EK, Kinsella I, Zhou D, Zhu R, Zhou P, Gerhard F, et al. Penalized matrix decomposition for

denoising, compression, and improved demixing of functional imaging data. arXiv:180706203 [q-bio,

stat]. 2018.

12. Xie M, Adam Y, Fan L, Boehm UL, Kinsella IA, Zhou D, et al. High fidelity estimates of spikes and sub-

threshold waveforms from 1-photon voltage imaging in vivo. bioRxiv. 2020.

13. Grienberger C, Konnerth A. Imaging calcium in neurons. Neuron. 2012; 73(5):862–885. https://doi.org/

10.1016/j.neuron.2012.02.011 PMID: 22405199

14. Mukamel EA, Nimmerjahn A, Schnitzer MJ. Automated analysis of cellular signals from large-scale cal-

cium imaging data. Neuron. 2009; 63(6):747–760. https://doi.org/10.1016/j.neuron.2009.08.009 PMID:

19778505

15. Pnevmatikakis E, Soudry D, Gao Y, Machado TA, Merel J, Pfau D, et al. Simultaneous Denoising,

Deconvolution, and Demixing of Calcium Imaging Data. Neuron. 2016; 89(2):285–299. https://doi.org/

10.1016/j.neuron.2015.11.037 PMID: 26774160

16. Giovannucci A, Friedrich J, Gunn P, Kalfon J, Brown BL, Koay SA, et al. CaImAn an open source tool

for scalable calcium imaging data analysis. eLife. 2019; 8:e38173. https://doi.org/10.7554/eLife.38173

PMID: 30652683

17. Pachitariu M, Stringer C, Dipoppa M, Schröder S, Rossi LF, Dalgleish H, et al. Suite2p: beyond 10,000

neurons with standard two-photon microscopy. Biorxiv. 2017.

18. Friedrich J, Soudry D, Mu Y, Freeman J, Ahrens MB, Paninski L. Fast constrained non-negative matrix

factorization for whole-brain calcium imaging data. In: NIPS workshop on statistical methods for under-

standing neural systems; 2015.

19. He K, Gkioxari G, Dollár P, Girshick R. Mask r-cnn. In: Proceedings of the IEEE international conference

on computer vision; 2017. p. 2961–2969.

20. Smith SL, Häusser M. Parallel processing of visual space by neighboring neurons in mouse visual cor-

tex. Nature Neuroscience. 2010; 13(9):1144–1149. https://doi.org/10.1038/nn.2620 PMID: 20711183

21. Walker T. Cell magic wand tool. Cell Magic Wand Tool; 2014.

22. Pnevmatikakis EA, Giovannucci A. NoRMCorre: An online algorithm for piecewise rigid motion correc-

tion of calcium imaging data. Journal of Neuroscience Methods. 2017; 291:83–94. https://doi.org/10.

1016/j.jneumeth.2017.07.031 PMID: 28782629

23. Falk T, Mai D, Bensch R, Cicek O, Abdulkadir A, Marrakchi Y, et al. U-Net: deep learning for cell count-

ing, detection, and morphometry. Nature Methods. 2019; 16(1):67–70. https://doi.org/10.1038/s41592-

018-0261-2 PMID: 30559429

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 26 / 27

https://doi.org/10.1523/JNEUROSCI.0594-14.2015
https://doi.org/10.1523/JNEUROSCI.0594-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25568102
https://doi.org/10.1152/jn.00452.2012
https://doi.org/10.1152/jn.00452.2012
http://www.ncbi.nlm.nih.gov/pubmed/22815406
http://www.ncbi.nlm.nih.gov/pubmed/31705060
https://doi.org/10.1126/science.aav6416
https://doi.org/10.1126/science.aav6416
http://www.ncbi.nlm.nih.gov/pubmed/31371562
https://doi.org/10.1038/s41586-019-1166-7
https://doi.org/10.1038/s41586-019-1166-7
http://www.ncbi.nlm.nih.gov/pubmed/31043747
https://doi.org/10.1038/s41592-018-0188-7
http://www.ncbi.nlm.nih.gov/pubmed/30420685
https://doi.org/10.1038/s41589-018-0004-9
http://www.ncbi.nlm.nih.gov/pubmed/29483642
https://doi.org/10.1038/s41467-018-05900-3
https://doi.org/10.1038/s41467-018-05900-3
http://www.ncbi.nlm.nih.gov/pubmed/30139936
https://doi.org/10.1016/j.neuron.2012.02.011
https://doi.org/10.1016/j.neuron.2012.02.011
http://www.ncbi.nlm.nih.gov/pubmed/22405199
https://doi.org/10.1016/j.neuron.2009.08.009
http://www.ncbi.nlm.nih.gov/pubmed/19778505
https://doi.org/10.1016/j.neuron.2015.11.037
https://doi.org/10.1016/j.neuron.2015.11.037
http://www.ncbi.nlm.nih.gov/pubmed/26774160
https://doi.org/10.7554/eLife.38173
http://www.ncbi.nlm.nih.gov/pubmed/30652683
https://doi.org/10.1038/nn.2620
http://www.ncbi.nlm.nih.gov/pubmed/20711183
https://doi.org/10.1016/j.jneumeth.2017.07.031
https://doi.org/10.1016/j.jneumeth.2017.07.031
http://www.ncbi.nlm.nih.gov/pubmed/28782629
https://doi.org/10.1038/s41592-018-0261-2
https://doi.org/10.1038/s41592-018-0261-2
http://www.ncbi.nlm.nih.gov/pubmed/30559429
https://doi.org/10.1371/journal.pcbi.1008806

24. Kirschbaum E, Bailoni A, Hamprecht FA. DISCo: Deep Learning, Instance Segmentation, and Correla-

tions for Cell Segmentation in Calcium Imaging. In: International Conference on Medical Image Com-

puting and Computer-Assisted Intervention. Springer; 2020. p. 151–162.

25. Soltanian-Zadeh S, Sahingur K, Blau S, Gong Y, Farsiu S. Fast and robust active neuron segmentation

in two-photon calcium imaging using spatiotemporal deep learning. Proceedings of the National Acad-

emy of Sciences. 2019; 116(17):8554–8563. https://doi.org/10.1073/pnas.1812995116 PMID:

30975747

26. Apthorpe N, Riordan A, Aguilar R, Homann J, Gu Y, Tank D, et al. Automatic neuron detection in cal-

cium imaging data using convolutional networks. In: Advances in Neural Information Processing Sys-

tems; 2016. p. 3270–3278.

27. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv

preprint arXiv:14091556. 2014.

28. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE

conference on computer vision and pattern recognition; 2016. p. 770–778.

29. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In:

Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1–9.

30. Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detec-

tion. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017.

p. 2117–2125.

31. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft coco: Common objects in

context. In: European conference on computer vision. Springer; 2014. p. 740–755.

32. Jung AB, Wada K, Crall J, Tanaka S, Graving J, Yadav S, et al. imgaug; 2019. Available from: https://

github.com/aleju/imgaug.

33. Turin G. An introduction to matched filters. IRE transactions on Information theory. 1960; 6(3):311–329.

https://doi.org/10.1109/TIT.1960.1057571

34. Franke F, Quiroga RQ, Hierlemann A, Obermayer K. Bayes optimal template matching for spike sort-

ing–combining fisher discriminant analysis with optimal filtering. Journal of computational neuroscience.

2015; 38(3):439–459. https://doi.org/10.1007/s10827-015-0547-7 PMID: 25652689

35. Paige CC, Saunders MA. LSQR: An algorithm for sparse linear equations and sparse least squares.

ACM Transactions on Mathematical Software (TOMS). 1982; 8(1):43–71. https://doi.org/10.1145/

355984.355989

36. Kuhn HW. The Hungarian method for the assignment problem. Naval research logistics quarterly.

1955; 2(1-2):83–97. https://doi.org/10.1002/nav.3800020109

37. Giovannucci A, Friedrich J, Kaufman M, Churchland A, Chklovskii D, Paninski L, et al. Onacid: Online

analysis of calcium imaging data in real time. In: Advances in Neural Information Processing Systems;

2017. p. 2381–2391.

38. Cai C, Friedrich J, Singh A, Eybposh MH, Pnevmatikakis EA, Xie ME, et al. VolPy: automated and scal-

able analysis pipelines for voltage imaging datasets; 2021. Available from: https://zenodo.org/record/

4515768/export/hx#.YEf4K2RKgwQ.

PLOS COMPUTATIONAL BIOLOGY VolPy: Automated and scalable analysis pipelines for voltage imaging datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008806 April 14, 2021 27 / 27

https://doi.org/10.1073/pnas.1812995116
http://www.ncbi.nlm.nih.gov/pubmed/30975747
https://github.com/aleju/imgaug
https://github.com/aleju/imgaug
https://doi.org/10.1109/TIT.1960.1057571
https://doi.org/10.1007/s10827-015-0547-7
http://www.ncbi.nlm.nih.gov/pubmed/25652689
https://doi.org/10.1145/355984.355989
https://doi.org/10.1145/355984.355989
https://doi.org/10.1002/nav.3800020109
https://zenodo.org/record/4515768/export/hx#.YEf4K2RKgwQ
https://zenodo.org/record/4515768/export/hx#.YEf4K2RKgwQ
https://doi.org/10.1371/journal.pcbi.1008806

