
Biological
Psychiatry
GOS
8 ª
C

Biolog

:
 Archival Report
Beyond Massive Univariate Tests: Covariance
Regression Reveals Complex Patterns of
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ABSTRACT
BACKGROUND: Studies of brain functional connectivity (FC) typically involve massive univariate tests, performing
statistical analysis on each individual connection. In this study, we apply a novel whole-matrix regression approach
referred to as covariate assisted principal regression to identify resting-state FC brain networks associated with
attention-deficit/hyperactivity disorder (ADHD) and response control.
METHODS: Participants included 8- to 12-year-old children with ADHD (n = 115; 29 girls) and typically developing
control children (n = 102; 35 girls) who completed a resting-state functional magnetic resonance imaging scan and
a Go/NoGo task. We modeled three sets of covariates to identify resting-state networks associated with an ADHD
diagnosis, sex, and response inhibition (commission errors) and variability (ex-Gaussian parameter tau).
RESULTS: The first network includes FC between striatal-cognitive control (CC) network subregions and thalamic-
default mode network (DMN) subregions and is positively related to age. The second consists of FC between CC-
visual-somatomotor regions and between CC-DMN subregions and is positively associated with response
variability in boys with ADHD. The third consists of FC within the DMN and between DMN-CC-visual regions and
differs between boys with and without ADHD. The fourth consists of FC between visual-somatomotor regions and
between visual-DMN regions and differs between girls and boys with ADHD and is associated with response
inhibition and variability in boys with ADHD. Unique networks were also identified in each of the three models,
suggesting some specificity to the covariates of interest.
CONCLUSIONS: These findings demonstrate the utility of our novel covariance regression approach to studying
functional brain networks relevant for development, behavior, and psychopathology.

https://doi.org/10.1016/j.bpsgos.2021.06.003
Attention-deficit/hyperactivity disorder (ADHD) is a common
neurodevelopmental disorder that affects approximately 5% to
10% of children and adolescents (1), characterized by devel-
opmentally inappropriate symptoms of inattention, hyperac-
tivity, and impulsivity that impact academic, family, and social
functioning (2). These behavioral symptoms are thought to
arise from cognitive, motor, and motivational deficits and
associated atypical brain structure and function. In particular,
impaired response control, including poor inhibition and
increased trial-to-trial variability, is often observed in ADHD
and central to theoretical models of ADHD (3,4). Recent
studies have revealed differential impairments in response
control in girls and boys with ADHD, with boys with ADHD
showing poorer response inhibition than typically developing
(TD) boys and girls with ADHD, whereas girls and boys with
ADHD show greater response variability compared with TD
children (5). In addition, there is some evidence of ADHD-
related sex differences in brain structure and function, with
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atypical structure and functional connectivity (FC) of fronto-
subcortical regions among girls with ADHD, whereas boys with
ADHD tend to show atypical structure and function of motor
and premotor regions (6–8).

Within the ADHD literature, there is an increased focus on
elucidating the neurobiological basis for ADHD and impaired
response control to ultimately inform prevention and inter-
vention efforts. Neuroimaging methods have increasingly been
applied to characterize brain-behavior relationships in in-
dividuals with ADHD. In particular, resting-state functional
magnetic resonance imaging (rs-fMRI) is widely being used to
examine functional networks that operate differently in children
with ADHD and relate to neurocognitive deficits associated
with the disorder. The extant literature has shown that the
neurobiological basis for ADHD likely involves dysfunctional
interactions of, or FC between, brain networks rather than
atypical structure or function of isolated brain regions. Default
mode network (DMN) hyperconnectivity with other networks
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1These participants were drawn from a larger sample of 690 8- to
12-year-old children who participated in one of several
neuroimaging studies of ADHD conducted at our center
between 2008 and 2019, including 318 children with ADHD
(228 boys) and 372 TD children (258 boys). Analyses focused
on a subset of this sample after excluding participants who
did not complete the rs-fMRI scan due to noncompliance (n =
23; 16 ADHD), moved excessively during the rs-fMRI scan
(n = 154; 90 ADHD), or did not have relevant behavioral data
(n = 296; 97 ADHD).
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among individuals with ADHD is one of the most consistent
findings in the literature (9–13). Some studies have also re-
ported that DMN hyperconnectivity with other networks relates
to cognitive deficits in individuals with ADHD (10,14,15).
However, the ADHD rs-FC literature extends beyond DMN
connectivity to include findings of increased within-network
connectivity in motor (16–18) and visual regions (13,17,19,20)
and atypical FC between frontal-subcortical regions (6,21–23).
Thus, a whole-brain approach is warranted to better charac-
terize differences in functional network organization in ADHD.
Moving beyond diagnostic group comparisons, characteriza-
tion of how individual differences in functional networks are
associated with behavior has the potential to inform the het-
erogeneity of neurocognitive deficits and symptom presenta-
tion in ADHD.

This study applies a novel whole-matrix regression
approach developed by Zhao et al. (24) and applied to data
collected from healthy young adults ages 20 to 35 years in the
Human Connectome Project (24,25), referred to as covariate
assisted principal (CAP). The CAP method offers some ad-
vantages over popular network-level FC approaches, including
graph theory (26), pattern recognition (27), common reducing
subspace model (28), utilization of network-based statistics
(29), and a connectome-based analytic protocol for prediction
(30). One advantage of the CAP method is that it enables
identification of covariate-related networks rather than study-
ing predefined networks. The CAP approach offers higher
flexibility in modeling the association, where the covariate can
be continuous and the interaction between variables can be
included in the model. The CAP method also circumvents the
issue of multiplicity (i.e., performing statistical analysis on each
individual connection), such that given a set of p brain voxels/
regions, statistical inference needs to account for at least
p(p 2 1)/2 hypothesis tests, one for each element of the
connectivity matrix. The CAP method aims to identify a com-
mon linear projection of p time courses across subjects such
that variations in FC defined by the projection can be explained
by the covariates of interest. It is a mesoscale approach in the
sense that, with an appropriate threshold, the projection de-
fines a brain subnetwork. However, this approach suffers from
the curse of dimensionality, in that the dimension of the data
cannot be greater than the number of fMRI volumes. Therefore,
it cannot be applied to voxel-level fMRI data. Thus, an inte-
grative approach was proposed to analyze whole-brain voxel-
level data, revealing individual and group variations in FC (25)
by starting with a dimension reduction step, such as group
independent component analysis (ICA) (31), followed by CAP
regression on the ICs. Projecting back to the voxel space, it
yields a reconstructed brain map that is associated with the
covariates.

This study applies this novel integrated CAP analysis to
examine how a diagnosis of ADHD, relevant demographic
variables, and behavioral measures of response control predict
functional interactions between brain networks. Specifically,
we applied this novel, high-dimensional statistical method to
study interactions between sex and an ADHD diagnosis on FC
in children with and without ADHD and in relation to cognitive
deficits associated with ADHD. We hypothesized that boys
with ADHD would show greater response disinhibition whereas
girls and boys with ADHD would show greater response
Biological Psychiatry: G
variability than TD children. Given the varied findings across
the ADHD neuroimaging literature, we chose to apply an
exploratory, data-driven, whole-brain approach to identifying
resting-state networks that are related to ADHD, sex, age, and
response control.

METHODS AND MATERIALS

Participants

Participants included 217 8- to 12-year-old children who either
had a diagnosis of ADHD (n = 115; 29 girls) or were TD control
children (n = 102; 35 girls).1 Participants were recruited through
local schools, community-wide advertisement, volunteer or-
ganizations, medical institutions, and word of mouth. This
study was approved by the local institutional review board.
After providing a complete study description to the partici-
pants, oral informed consent was obtained from a parent/
guardian followed by an initial phone screening. Children with a
history of intellectual disability, learning disability, seizures,
traumatic brain injury, or other neurologic illnesses were
excluded. Participants were determined to be eligible for in-
clusion in either the ADHD group or the TD group based on
review of standardized rating scales and diagnostic interview
(see the Supplement for details of the diagnostic procedure).
Eligible participants and their parents attended two laboratory
sessions. At the initial visit, written informed consent and
assent were obtained from the parent/guardian and the child,
and intellectual ability was assessed. Children taking psycho-
tropic medications other than stimulants were excluded from
participation, and children taking stimulants were asked to
withhold medication the day before and day of testing. Basic
demographic information is provided in Table 1.

Behavioral Go/NoGo Data

Participants completed a Go/NoGo (GNG) task programmed in
Presentation (Neurobehavioral Systems), from which we have
previously published findings from a subset of this sample
(5,6,8,32–37). Participants were seated in front of a computer
monitor with a keyboard and were instructed to respond to a
single green spaceship for Go trials (80% of 240 trials) and to
withhold their response with a red spaceship for NoGo trials
(20%) presented for 300 ms, with an interstimulus interval of
2000 ms during which a fixation cross appeared. Response
inhibition was quantified as commission error rate (CR),
calculated as the proportion of NoGo trials on which partici-
pants incorrectly responded. Response variability was quan-
tified using the ex-Gaussian indicator tau, representing
infrequent, slow responses contributing to the exponential
component of the reaction time distribution (38).
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Table 1. Behavioral Go/NoGo Task Performance and Relevant Demographics for the ADHD and TD Groups Overall andWithin
Sex

Demographics

TD ADHD

Group Comparisons, p Value

ADHD vs. TD Boys vs. Girls

Girls Boys All Girls Boys All Girls Boys All ADHD

n 35 67 102 29 86 115

Age, Years 10.26 (0.97) 10.53 (1.30) 10.44 (1.20) 10.09 (1.37) 10.21 (1.45) 10.18 (1.43) .617 .141 .155 .695

GAI 114 (10.28) 117 (12.85) 116 (12.07) 110 (12.57) 111 (14.40) 111 (13.92) .215 .010 .006 .589

Tau 4.44 (0.42) 4.35 (0.46) 4.38 (0.45) 4.69 (0.39) 4.76 (0.57) 4.74 (0.53) .004 ,.001 ,.001 .471

CR 0.36 (0.18) 0.39 (0.18) 0.38 (0.18) 0.36 (0.20) 0.51 (0.20) 0.47 (0.21) .988 ,.001 .001 .001

Values are presented as n or mean (SD). Wechsler Intelligence Scale for Children GAI was used.
ADHD, attention-deficit/hyperactivity disorder; CR, commission error rate; GAI, General Ability Index; TD, typically developing.
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rs-fMRI Data

All children completed a mock scan to acclimate to the
scanning environment. The mock was completed on a sepa-
rate day in a simulated scan environment and lasted 30 to 45
minutes. Trained research assistants observed participants
during the mock scan and provided real-time feedback to
promote compliance with the scan procedures. Once the child
successfully completed the mock scan, rs-fMRI was acquired
on a 3.0T Philips scanner (see the Supplement for acquisition
and preprocessing details and prior publications from a subset
of this sample examining FC without relating this to GNG
behavioral performance) (6,39,40). We decomposed the rs-
fMRI data into temporally coherent networks using the Group
ICA of fMRI Toolbox (http://icatb.sourceforget.net) (31,41). We
chose ICA (42) rather than seed-based approaches because of
its effectiveness at separating signal from noise (43), its
increased sensitivity to detecting individual differences (44),
and its ability to identify resting-state networks (RSNs) without
defining a seed region by effectively clustering voxels with
similar time courses. An additional benefit of this data-driven
grouping of functionally related voxels is that it reduces the
size of the covariance matrix used in the CAP model and
thereby allows for whole-brain analysis. Following group ICA
with backward reconstruction (see the Supplement), we
excluded noise components (n = 27) (see Figure S1) and
identified relevant RSNs (n = 38) by comparing the spatial
distribution of each of the group-level, aggregate ICs to a
publicly available set of unthresholded IC t-statistic maps that
have been classified as RSNs by a group of experts and
organized into seven large functional groups: visual, auditory,
somatomotor, DM, cognitive control (CC), subcortical, and
cerebellar networks (45).
Motion Correction

A significant challenge in the ADHD neuroimaging literature is
accounting for artifacts introduced by motion during the scan,
which have been shown to impact FC metrics and usually differ
between groups with and without psychopathology. Among
our sample, mean framewise displacement (FD) [a measure of
head motion between consecutive fMRI volumes calculated
from the realignment estimates (46)] was greater among girls
and boys with ADHD compared with same-sex TD children
(girls: p = .006; boys: p = .005), and mean FD was positively
correlated with parent-reported ADHD symptoms among girls
10 Biological Psychiatry: Global Open Science January 2022; 2:8–16 w
(r = 0.283, p = .026) and boys (r = 0.269, p , .001) across
diagnostic groups. We chose to not match the groups on mean
FD for the primary analyses or covary FD, given that variance
associated with ADHD symptomatology and cognitive deficits
may not be independent from variance associated with motion
and that head motion and ADHD may have similar genetic
loadings (47). To address potential confounds of motion in this
sample, we applied several steps. First, 154 (90 ADHD) par-
ticipants were excluded for between-volume translational
movements .3 mm or rotational movements .3�. Second, a
growing body of literature has demonstrated the effectiveness
of ICA-based strategies for identifying and removing motion-
related variation in fMRI data (13,14). We utilized spatial ICA
to isolate spatiotemporally structured signals of noninterest,
including motion-related sources from functional network
sources. Finally, we regressed the six rigid-body realignment
motion parameters from IC time courses associated with
components identified as representing signal before estimating
between-component FC (45). In secondary analyses, we
applied the CAP regression on FD-matched samples, which
yielded similar results (Figure S2).

CAP Regression on RSN Components

Details of the CAP regression on the signal components
identified by group ICA described above are provided in the
Supplement (24). The CAP method identifies a linear pro-
jection of the covariance matrices such that between-subject
variability in FC is most strongly associated with the cova-
riates of interest. Assuming that the IC time courses are
standardized to have identical variance, the CAP regression
models the association between FC and the covariates. This
association depends on both the sign of the model coeffi-
cient and the sign of the loading products. For a positive
coefficient estimate, FC between two ICs with the same
loading sign (a positive product) is positively associated with
the corresponding covariate, while FC for two ICs with the
opposite signs (a negative product) is negatively associated
with the covariate.

ANALYSIS

We modeled three sets of covariates, and the entire sample
was included in all analyses. First, we tested for effects of an
ADHD diagnosis, sex, and their interaction, as well as age and
intellectual reasoning ability (General Ability Index [GAI]) in the
ww.sobp.org/GOS
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CAP regression model. In subsequent models, we examined
associations with behavioral measures of response control,
GNG tau (log-transformed), and CR. These models included
ADHD diagnosis, sex, the behavioral measure of interest, and
all possible interactions among these three variables.

RESULTS

The CAP method identified five brain subnetworks (groups of
RSN ICs, or mega-component) in the diagnosis-by-sex
(DxSex) model, six in the GNG tau model, and seven in the
GNG CR model. We summarize the significance of the coef-
ficient effect in each mega-component in Figure 1. Figure S3
summarizes the RSN ICs clustered within the functional
groups described above that contribute to each component as
river plots. Among all of these mega-components, four sub-
networks were identified in all three models. Figure 2 compares
the similarity between the mega-components identified by the
three models; a connection between two mega-components
suggests a high similarity. Figure 3 illustrates the loadings of
RSNs contributing to each mega-component as reconstructed
brain maps (Supplemental File S1 is an interactive tool to view
3D images of the 10 mega-components to accompany
Figure 3A–J). Finally, Figure S4 shows the percentage of
variation explained by the identified components for each
subject in each of the models.

First Common Mega-component (DxSex-C1/Tau-
C1/CR-C1)

Across the three models, the identified FC mega-component
consisted of subregions of the CC (inferior temporal gyrus
[ITG]) and subcortical (striatal) networks with positive loadings,
as well as subregions of the DM (posterior cingulate cortex
[PCC]) and subcortical (thalamus) networks with negative
loadings (Figure 3A). This mega-component was positively
related to age, regardless of diagnostic group, in each of the
models (all p values , .001), such that as age increases, FC
between regions with the same loading signs increases (ITG-
striatal FC and PCC-thalamus FC), while FC between regions
with opposite loading signs decreases (e.g., PCC-striatum).

Second Common Mega-component (DxSex-C2/Tau-
C2/CR-C2)

The second component identified across all three models
consisted of subregions of the CC (left central executive),
Biological Psychiatry: Glo
visual (lateral occipital cortex), and sensorimotor (anterior
cingulate cortex [ACC]/Brodmann area 6 [BA 6]) networks
contributing positively, as well as other subregions of the CC
(insula, ITG) and DM (PCC) networks contributing negatively
(Figure 3B). This component was negatively associated with
GAI (DxSex C2, p = .014; tau C2, p = .039; CR C2, p = .042)
and positively associated with tau in boys with ADHD (p =
.001), such that lower GAI and greater tau is associated with
greater FC between regions with the same loading sign and
lower FC between regions with opposite loading signs. Girls
with ADHD showed greater FC within this mega-component
than TD girls (DxSex C2, p = .022) and lower FC than boys
with ADHD (DxSex C2, p , .001). However, this diagnostic
difference was not observed when controlling for tau and CR
(Figure 1).

Third Common Mega-component (DxSex-C3/Tau-
C4/CR-C3)

The third component identified across all three models con-
sisted of a DMN subregion (precuneus) with positive loadings,
as well as subregions of the CC (inferior frontal gyrus, insula),
DM (PCC), and visual (lateral occipital cortex) networks with
negative loadings (Figure 3C). Again, this component was
positively associated with age across all three models (all p
values , .001). In addition, boys with ADHD showed higher FC
within this mega-component than TD boys (p = .009), con-
trolling for age and GAI. However, the diagnostic effect on FC
in boys is not significant when controlling for GNG task per-
formance (tau and CR).

Fourth Common Mega-component (DxSex-C4/Tau-
C3/CR-C4)

The fourth component identified across all three models con-
sisted of subregions of sensorimotor (right lateralized soma-
tomotor) and visual (lateral occipital cortex) networks with
positive loadings, as well as subregions of the DM (ACC, su-
perior parietal lobe, supplementary motor area [SMA]) and vi-
sual (anterior primary visual; BA 17) networks with negative
loadings (Figure 3D). This component differed among girls and
boys with ADHD (DxSex C4 p , .001; tau C3 p = .046; CR C4
p = .045), even when controlling for GNG performance, such
that boys with ADHD showed stronger FC within this network
with and without CR as a covariate. In contrast, girls with
ADHD show stronger FC within this network when tau is
Figure 1. Significant effect of the components
estimated from the covariate assisted principal
model. The red color denotes a positive effect and
blue for negative. DxSex signifies the behavior-free
model; Tau signifies the model including Go/NoGo
tau as one of the predictors; Com Rate signifies the
model including Go/NoGo commission error rate as
one of the predictors. ADHD, attention-deficit/
hyperactivity disorder; C, component; GAI, General
Ability Index; TD, typically developing.
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Figure 2. Chord diagram compares the similarity
between the components identified from the three
models. DxSex signifies the behavior-free model;
Tau signifies the model including Go/NoGo tau as
one of the predictors; CR signifies the model
including Go/NoGo commission error rate (CR) as
one of the predictors. A red connection indicates that
the two components are highly similar. C,
component.
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included in the model, suggesting network topology differ-
ences among girls and boys with ADHD with equivalent
response variability. Furthermore, this component was nega-
tively related to tau (p , .001) and CR (p = .015) in boys with
ADHD, but not among girls with ADHD.

Unique Component in the DxSex Model (DxSex-C5)

The DxSex-C5 component was only present in the DxSex
model, consisting of subregions of the CC (left central exec-
utive network, insula), DM (dorsolateral prefrontal cortex
[dlPFC]), sensorimotor (caudate, ACC/BA 6), visual (temporal
occipital fusiform cortex), and subcortical (caudate) networks
with positive loadings, and subregions of the sensorimotor
(SMA), visual (visual cortex), DM (PCC), and auditory (opercular
cortex) networks with negative loadings (Figure 3E). Results
suggest that this component is negatively related to age (p ,

.001) and positively related to sex in both ADHD and TD
groups, with higher FC in boys (p values , .001).

Unique Components in the GNG Tau Model (Tau-
C5-C6)

Two unique components were identified in the GNG tau model
(Figures 3F, G). The first component (tau C5) consists of sub-
regions of the DM (PC, SMA), visual (secondary visual area; BA
18), and auditory (opercular cortex) networks with positive
loadings and subregions of the CC (medial superior frontal
12 Biological Psychiatry: Global Open Science January 2022; 2:8–16 w
cortex), DM (dlPFC, superior parietal lobe), sensorimotor (ACC/
BA 6, primary somatosensory, dorsal somatomotor), and
subcortical (caudate) networks with negative loadings. Within
this component, FC is reduced among girls and boys with
ADHD (controlling for age, GAI, and tau) relative to TD girls and
boys (p = .023, p , .001, respectively). In addition, among
boys, FC is correlated with tau, but in the opposite direction for
those with ADHD (positive, p = .002) compared with TD
(negative, p , .001). The last component (tau C6) consists of
subregions of the DM (dlPFC, PCC), sensorimotor (SMA,
dorsal somatomotor), and visual (lateral occipital cortex,
anterior primary visual/BA 17) networks with positive loadings
and subregions of the CC (supramarginal gyrus), DM (superior
parietal lobe), and sensorimotor (right lateralized somatomotor)
networks with negative loadings, with a sex difference in TD
children (p = .021). FC between regions in the same loading
sign is significantly lower in TD boys than TD girls, while FC
between regions in the opposite loading signs is higher.

Unique Components in the GNG Commission Error
Rate Model (CR-C5-C7)

The CAP approach identified three unique components in the
GNG CR model (Figure 3H–J). The first component (C5) con-
sisted of subregions of the CC (inferior frontal gyrus, dlPFC),
DM (PCC, precuneus), and sensorimotor (ACC/BA 6) networks
with positive loadings and subregions of the visual (secondary
ww.sobp.org/GOS
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Figure 3. Reconstructed brain maps of the com-
ponents identified by the covariate assisted principal
method. DxSex signifies the behavior-free model;
Tau signifies the model including Go/NoGo tau as
one of the predictors; ComRate signifies the model
including Go/NoGo commission error rate as one of
the predictors. (A–D) Common components identi-
fied by all three models. (E) Unique component
identified by the behavior-free model. (F, G) Unique
components identified by the model with Go/NoGo
tau as one of the predictors. (H–J) Unique compo-
nents identified by the model with Go/NoGo com-
mission error rate as one of the predictors. C,
component; L, left; R, right.
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visual area; BA 18), and dorsal attention networks with nega-
tive loadings. This component was positively associated with
CR among girls with and without ADHD (p = .004). The second
component (C6) consisted of subregions of the CC (dlPFC),
DM (superior parietal lobe), and visual (posterior primary visual
area; BA 17) networks with positive loadings and subregions of
the DM (PCC, ACC), visual (secondary visual area; BA 18), and
subcortical (striatal) networks with negative loadings. This
component was positively related to GAI (p # .001) and
negatively related to CR in girls with ADHD (p = .014). In
addition, FC within this network was lower in boys with ADHD
than girls with ADHD (p = .028) and in TD boys compared with
TD girls (p = .003). The third component (C7) consisted of
subregions of the DM (SMA, PCC) and sensorimotor (right
lateralized somatomotor) networks with positive loadings and
subregions of the DM (dlPFC, ACC, superior parietal lobe),
sensorimotor (left lateralized somatomotor), and auditory
(opercular cortex) networks with negative loadings. This
component was negatively related to GAI (p = .001), age (p =
.016), and CR (p = .010) in girls with ADHD.
DISCUSSION

In this study, we present a novel statistical approach to
characterize relationships between functional brain organiza-
tion and cognitive function among a large cohort of children
with ADHD and TD children. Our approach identifies higher-
order networks through simultaneous modeling of multiple
lower-order networks, which boosts statistical power
compared with more traditional pairwise regression ap-
proaches by substantially reducing the number of tests per-
formed. Our results reveal complex, widespread FC patterns
associated with ADHD-related sex differences involving re-
gions of the DM, CC, somatomotor, subcortical, and visual
Biological Psychiatry: Glo
networks. The presence and direction of these ADHD-related
sex differences in FC changed when we included response
control measures. These novel findings are discussed in
greater detail below and placed in context of the limited
existing literature examining ADHD-related sex differences.

The first network was positively related to age such that
older children showed greater ITG-striatal FC and PCC-
thalamic FC than younger children, whereas PCC-striatal
and ITG-thalamic FC decreased with age. To our knowl-
edge, changes in frontosubcortical connectivity across the 8-
to 12-year-old age range have not been the focus of previous
reports, with prior studies spanning middle childhood through
early adulthood (ages 8–44 years). Our results suggest
increasing subcortico-cortical FC with age in middle child-
hood, which differs from previous findings in a larger age
range and different regions (48,49). Our finding of age-related
changes in thalamic-cortical FC for frontal and temporal re-
gions is consistent with a prior study of 8- to 32-year-olds
(50), providing further support for distinct age-related
changes in thalamic-cortical FC for frontal and temporal
regions.

The second network identified across models consists of
competing contributions from FC among CC-visual-
somatomotor regions with FC between CC and DMN re-
gions and was negatively associated with intellectual
reasoning ability (GAI). ADHD-related sex differences were
observed, such that girls with ADHD displayed greater FC
than did TD girls and lower FC than did boys with ADHD, and
FC within this component was positively associated with
response variability only in boys with ADHD. Collectively,
these findings are among the first to identify RSNs related to
response variability in children with ADHD and differentially
affected in girls and boys with ADHD. One previous study to
our knowledge reported that atypical frontosubcortical FC of
bal Open Science January 2022; 2:8–16 www.sobp.org/GOS 13
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ICA components was greatest among girls with ADHD (6).
These findings expand on the previous results by applying a
whole-brain analytic approach to reveal more widespread
alterations.

As mentioned, including response variability in the model
eliminated the observed diagnostic effect in girls with ADHD.
Intrasubject response variability is among the most ubiqui-
tous findings in the ADHD neuropsychological literature (51),
although the neural correlates of this behavioral characteristic
are not well defined. There is a lack of research examining
RSNs in relation to response variability, with studies instead
focusing on hemodynamic response variability during an fMRI
task (52) or associations with task-related activation (53).
Increased response variability in ADHD is not task specific
(54), suggesting that identifying RSNs related to this vari-
ability may be more informative than task-specific patterns of
brain activation. Our findings suggest that greater FC be-
tween executive/motor control and occipital regions and
between subregions of the DMN with the insula and ITG relate
to increased response variability among boys with ADHD
only. Previous studies reporting that abnormal between-
network connectivity is associated with ADHD symptom
severity suggest that different network topology phenotypes
underlie the neurobiological heterogeneity of ADHD sub-
types. A similar argument could be made when examining
functional network topology in relation to cognitive task
performance given the established heterogeneity in cognitive
deficits among individuals diagnosed with ADHD. FC among
these regions did not differ among boys with ADHD
compared with TD boys and was not associated with
response variability in TD boys, suggesting that this may be
specific to heterogeneity in this cognitive process in boys
with ADHD rather than a more general neural correlate of
intrasubject variability.

The third network we identified consists of competing
contributions from FC within DMN regions with FC among
DMN, CC, and visual regions, and boys with ADHD showed
higher FC within a DMN subregion (precuneus) with positive
loadings, as well as subregions of the CC (inferior frontal
gyrus, insula), DM (PCC) and visual (lateral occipital cortex)
networks with negative loadings, compared with TD boys.
This pattern is consistent with previous findings of hyper-
connectivity both within the DMN and between the DMN and
other networks, particularly among boys with ADHD who are
primarily, if not exclusively, examined in prior studies.
Finally, this diagnostic effect in boys is not observed when
controlling for GNG performance, suggesting that the FC
differences observed in ADHD may contribute to response
control deficits during a GNG task with minimal cognitive
demands shown to be greatest among boys with ADHD in
this age range (5).

The fourth common network identified across models con-
sists of competing contributions of visual-somatomotor FC
and visual-DMN FC, such that boys with ADHD show hyper-
connectivity between visual regions with DM and motor net-
works compared with girls with ADHD. This sex difference in
children with ADHD remains after accounting for response
inhibition, which was greatest among boys with ADHD. How-
ever, the direction of the effect changes when response vari-
ability is accounted for in the tau model such that girls with
14 Biological Psychiatry: Global Open Science January 2022; 2:8–16 w
ADHD show increased FC in this network compared with TD
boys demonstrating similar response variability. Finally, FC
within this network is negatively associated with both tau and
CR in boys with ADHD, suggesting a possible sex-specific
neural correlate, as discussed above. This pattern of findings
suggests that visual-somatomotor and visual-DMN FC is
differentially affected in girls and boys with ADHD, with boys
generally showing greater anomalies and associations with
response control.

The unique components of interest from the tau model (C5)
showed a diagnostic difference in girls and boys with ADHD
and associations with tau in boys only, while the unique
component of interest from the CR model (C5–C7) showed a
sex difference in children with ADHD (C6) and associations
with CR in girls with ADHD (C5–C7). Our behavioral findings
are consistent with prior reports of ADHD-related sex differ-
ences in response inhibition, such that girls with ADHD show
intact response inhibition compared with TD girls when
cognitive demands are minimal, whereas boys with ADHD
make significantly more response inhibition errors (5). How-
ever, within the group of girls with ADHD, individual differ-
ences in response inhibition are important to consider, with
some girls with ADHD showing impairments in this cognitive
process. The results from the three unique components of the
CR model suggest that individual variability among sub-
regions of the CC, DM, sensorimotor, visual, and dorsal
attention networks relates to response inhibition among girls
with ADHD.

In conclusion, using a novel statistical approach to identify a
common linear projection of multiple time courses across
subjects such that variations in FC defined by the projection
can be explained by the covariates of interest, we found a
complex pattern of ADHD-related sex differences that would
be difficult to capture using traditional pairwise regression
approaches. Important next steps include replicating these
findings among a larger sample of girls with and without
ADHD, as the smaller sample size of girls is a limitation of this
study. Additional limitations include the short scan duration,
which also impacted our ability to examine changes in FC over
the course of the scan, an important direction for future
research. These findings add to the growing literature sug-
gesting that the neurobiological basis for ADHD may differ
among girls and boys (6–8,55). This is also important in
advancing our understanding of ADHD-related sex differences
in cognitive functions, which may suggest different etiologic
pathways for girls and boys with ADHD that may ultimately
inform prevention and intervention approaches. Future studies
oversampling girls with ADHD, as we have done, will be
important for replicating these findings and establishing the
utility of this novel approach to analysis of intrinsic functional
network topology in relation to ADHD and associated cognitive
functions.
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