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Natural language is inherently a discrete symbolic representation of human knowledge.

Recent advances in machine learning (ML) and in natural language processing (NLP)

seem to contradict the above intuition: discrete symbols are fading away, erased by

vectors or tensors called distributed and distributional representations. However, there

is a strict link between distributed/distributional representations and discrete symbols,

being the first an approximation of the second. A clearer understanding of the strict

link between distributed/distributional representations and symbols may certainly lead to

radically new deep learning networks. In this paper we make a survey that aims to renew

the link between symbolic representations and distributed/distributional representations.

This is the right time to revitalize the area of interpreting how discrete symbols are

represented inside neural networks.

Keywords: natural language processing (NLP), distributed representation, concatenative compositionality, deep

learning (DL), compositional distributional semantic models, compositionality

1. INTRODUCTION

Natural language is inherently a discrete symbolic representation of human knowledge. Sounds
are transformed in letters or ideograms and these discrete symbols are composed to obtain words.
Words then form sentences and sentences form texts, discourses, dialogs, which ultimately convey
knowledge, emotions, and so on. This composition of symbols in words and of words in sentences
follow rules that both the hearer and the speaker know (Chomsky, 1957). Hence, it seems extremely
odd thinking to natural language understanding systems that are not based on discrete symbols.

Recent advances in machine learning (ML) applied to natural language processing (NLP)
seem to contradict the above intuition: discrete symbols are fading away, erased by vectors or
tensors called distributed and distributional representations. In ML applied to NLP, distributed
representations are pushing deep learning models (LeCun et al., 2015; Schmidhuber, 2015) toward
amazing results in many high-level tasks such as image generation (Goodfellow et al., 2014), image
captioning (Vinyals et al., 2015b; Xu et al., 2015), machine translation (Zou et al., 2013; Bahdanau
et al., 2015), syntactic parsing (Vinyals et al., 2015a; Weiss et al., 2015) and in a variety of other NLP
tasks (Devlin et al., 2019). In a more traditional NLP, distributional representations are pursued as a
more flexible way to represent semantics of natural language, the so-called distributional semantics
(see Turney and Pantel, 2010). Words as well as sentences are represented as vectors or tensors of
real numbers. Vectors for words are obtained observing how these words co-occur with other words
in document collections. Moreover, as in traditional compositional representations, vectors for
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phrases (Clark et al., 2008; Mitchell and Lapata, 2008; Baroni
and Zamparelli, 2010; Zanzotto et al., 2010; Grefenstette and
Sadrzadeh, 2011) and sentences (Socher et al., 2011, 2012;
Kalchbrenner and Blunsom, 2013) are obtained by composing
vectors for words.

The success of distributed and distributional representations
over symbolic approaches is mainly due to the advent of new
parallel paradigms that pushed neural networks (Rosenblatt,
1958; Werbos, 1974) toward deep learning (LeCun et al., 2015;
Schmidhuber, 2015). Massively parallel algorithms running on
Graphic Processing Units (GPUs) (Chetlur et al., 2014; Cui et al.,
2015) crunch vectors, matrices, and tensors faster than decades
ago. The back-propagation algorithm can be now computed for
complex and large neural networks. Symbols are not needed any
more during “resoning.” Hence, discrete symbols only survive as
inputs and outputs of these wonderful learning machines.

However, there is a strict link between distributed/
distributional representations and symbols, being the first
an approximation of the second (Fodor and Pylyshyn, 1988;
Plate, 1994, 1995; Ferrone et al., 2015). The representation
of the input and the output of these networks is not that far
from their internal representation. The similarity and the
interpretation of the internal representation is clearer in image
processing (Zeiler and Fergus, 2014a). In fact, networks are
generally interpreted visualizing how subparts represent salient
subparts of target images. Both input images and subparts are
tensors of real number. Hence, these networks can be examined
and understood. The same does not apply to natural language
processing with its discrete symbols.

A clearer understanding of the strict link between
distributed/distributional representations and discrete symbols
is needed (Jacovi et al., 2018; Jang et al., 2018) to understand
how neural networks treat information and to propose novel
deep learning architectures. Model interpretability is becoming
an important topic in machine learning in general (Lipton,
2018). This clearer understanding is then the dawn of a new
range of possibilities: understanding what part of the current
symbolic techniques for natural language processing have
a sufficient representation in deep neural networks; and,
ultimately, understanding whether a more brain-like model—the
neural networks—is compatible with methods for syntactic
parsing or semantic processing that have been defined in these
decades of studies in computational linguistics and natural
language processing. There is thus a tremendous opportunity to
understand whether and how symbolic representations are used
and emitted in a brain model.

In this paper we make a survey that aims to draw the link
between symbolic representations and distributed/distributional
representations. This is the right time to revitalize the area of
interpreting how symbols are represented inside neural networks.
In our opinion, this survey will help to devise new deep neural
networks that can exploit existing and novel symbolic models of
classical natural language processing tasks.

The paper is structured as follow: first we give an introduction
to the very general concept of representation, the notion of
concatenative composition and the difference between local
and distributed representations (Plate, 1995). After that we
present each techniques in detail. Afterwards, we focus on

distributional representations (Turney and Pantel, 2010), which
we treat as a specific example of a distributed representation.
Finally we discuss more in depth the general issue of
compositionality, analyzing three different approaches to the
problem: compositional distributional semantics (Clark et al.,
2008; Baroni et al., 2014), holographic reduced representations
(Plate, 1994; Neumann, 2001), and recurrent neural networks
(Socher et al., 2012; Kalchbrenner and Blunsom, 2013).

2. SYMBOLIC AND DISTRIBUTED
REPRESENTATIONS: INTERPRETABILITY
AND CONCATENATIVE

COMPOSITIONALITY

Distributed representations put symbolic expressions in metric
spaces where similarity among examples is used to learn
regularities for specific tasks by using neural networks or other
machine learning models. Given two symbolic expressions, their
distributed representation should capture their similarity along
specific features useful for the final task. For example, two
sentences such as s1 = “a mouse eats some cheese” and s2 = “a cat
swallows a mouse” can be considered similar in many different
ways: (1) number of words in common; (2) realization of the
pattern “ANIMAL EATS FOOD.” The key point is to decide or
to let an algorithm decide which is the best representation for a
specific task.

Distributed representations are then replacing long-lasting,
successful discrete symbolic representations in representing
knowledge for learning machines but these representations
are less human interpretable. Hence, discussing about basic,
obvious properties of discrete symbolic representations is
not useless as these properties may guarantee success to
distributed representations similar to the one of discrete
symbolic representations.

Discrete symbolic representations are human interpretable
as symbols are not altered in expressions. This is one of the
most important, obvious feature of these representations. Infinite
sets of expressions, which are sequences of symbols, can be
interpreted as these expressions are obtained by concatenating a
finite set of basic symbols according to some concatenative rules.
During concatenation, symbols are not altered and, then, can be
recognized. By using the principle of semantic compositionality,
the meaning of expressions can be obtained by combining the
meaning of the parts and, hence, recursively, by combining the
meaning of the finite set of basic symbols. For example, given
the set of basic symbols D = {mouse, cat, a, swallows, (,)},
expressions like:

s1 = “a cat swallows a mouse” (1)

t1 = ((a cat) (swallows (a mouse))) (2)

are totally plausible and interpretable given rules for producing
natural language utterances or for producing tree structured
representations in parenthetical form, respectively. This strongly
depends on the fact that individual symbols can be recognized.

Distributed representations instead seem to alter symbols
when applied to symbolic inputs and, thus, are less interpretable.
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In fact, symbols as well as expressions are represented as vectors
in these metric spaces. Observing distributed representations,
symbols and expressions do not immediately emerge. Moreover,
these distributed representations may be transformed by using
matrix multiplication or by using non-linear functions. Hence, it
is generally unclear: (1) what is the relation between the initial
symbols or expressions and their distributed representations
and (2) how these expressions are manipulated during matrix
multiplication or when applying non-linear functions. In other
words, it is unclear whether symbols can be recognized in
distributed representations.

Hence, a debated question is whether discrete symbolic
representations and distributed representations are two very
different ways of encoding knowledge because of the difference
in altering symbols. The debate dates back in the late 80s.
For Fodor and Pylyshyn (1988), distributed representations in
Neural Network architectures are “only an implementation of
the Classical approach” where classical approach is related to
discrete symbolic representations.Whereas, for Chalmers (1992),
distributed representations give the important opportunity to
reason “holistically” about encoded knowledge. This means that
decisions over some specific part of the stored knowledge can be
taken without retrieving the specific part but acting on the whole
representation. However, this does not solve the debated question
as it is still unclear what is in a distributed representation.

To contribute to the above debated question, Gelder (1990)
has formalized the property of altering symbols in expressions by
defining two different notions of compositionality: concatenative
compositionality and functional compositionality.

Concatenative compositionality explains how discrete
symbolic representations compose symbols to obtain
expressions. In fact, the mode of combination is an extended
concept of juxtaposition that provides a way of linking successive
symbols without altering them as these form expressions.
Concatenative compositionality explains discrete symbolic
representations no matter the means is used to store expressions:
a piece of paper or a computer memory. Concatenation is
sometime expressed with an operator like ◦, which can be used
in a infix or prefix notation, that is a sort of function with
arguments ◦(w1, ...,wn). By using the operator for concatenation,
the two above examples s1 and t1 can be represented as the
following:

a ◦ cat ◦ swallows ◦ a ◦mouse

that represents a sequence with the infix notation and

◦(◦(a, cat), ◦(swallows, ◦(a,mouse)))

that represents a tree with the prefix notation.
Functional compositionality explains compositionality in

distributed representations and in semantics. In functional
compositionality, the mode of combination is a function 8

that gives a reliable, general process for producing expressions
given its constituents. Within this perspective, semantic
compositionality is a special case of functional compositionality
where the target of the composition is a way for meaning
representation (Blutner et al., 2003).

Local distributed representations (as referred in Plate, 1995)
or one-hot encodings are the easiest way to visualize how
functional compositionality acts on distributed representations.
Local distributed representations give a first, simple encoding of
discrete symbolic representations in a metric space. Given a set
of symbols D, a local distributed representation maps the i-th
symbol in D to the i-th base unit vector ei in R

n, where n is the
cardinality of D. Hence, the i-th unit vector represents the i-th
symbol. In functional compositionality, expressions s = w1 . . .wk

are represented by vectors s obtained with an eventually recursive
function 8 applied to vectors ew1 . . . ewk

. The function f may be
very simple as the sum or more complex. In case the function 8

is the sum, that is:

func6(s) =
k∑

j= 1

ewj (3)

the derived vector is the classical bag-of-word vector space
model (Salton, 1989). Whereas, more complex functions f can
range from different vector-to-vector operations like circular
convolution in Holographic Reduced Representations (Plate,
1995) to matrix multiplications plus non-linear operations in
models such as in recurrent neural networks (Hochreiter and
Schmidhuber, 1997; Schuster and Paliwal, 1997) or in neural
networks with attention (Vaswani et al., 2017; Devlin et al., 2019).
Example s1 in Equation (1) can be useful to describe functional
compositionality. The set D = {mouse, cat, a, swallows, eats,
some, cheese, (,)} may be represented with the base vectors ei ∈ R

9

where e1 is the base vector for mouse, e2 for cat, e3 for a, e4 for
swallaws, e5 for eats, e6 for some, e7 for cheese, e8 for (, and e9
for). The additive functional composition of the expression s1 =
a cat swallows a mouse is then:

additive functional composition

ea = e3 ecat = e2 eswallows = e4 ea = e3 emouse = e1


0
0
1
0
0
0
0
0
0







0
1
0
0
0
0
0
0
0







0
0
0
1
0
0
0
0
0







0
0
1
0
0
0
0
0
0







1
0
0
0
0
0
0
0
0




e3 + e2 + e4 + e3 + e1

func6(s1) =




1
1
2
1
0
0
0
0
0



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where the concatenative operator ◦ has been substituted with the
sum +. Just to observe, in the additive functional composition
func6(s1), symbols are still visible but the sequence is lost. In fact,
it is difficult to reproduce the initial discrete symbolic expression.
However, for example, the additive composition function gives
the possibility to compare two expressions. Given the expression
s1 and s2 = a mouse eats some cheese, the dot product

between func6(s1) and func6(s2) =
(
1 0 1 0 1 1 1 0 0

)T
counts the common words between the two expressions. In a
functional composition with a function 8, the expression s1 may
become func8(s1) = 8(8(8(8(e3, e2), e4), e3), e1) by following
the concatenative compositionality of the discrete symbolic
expression. The same functional compositional principle can
be applied to discrete symbolic trees as t1 by producing this
distributed representation8(8(e3, e2),8(e4,8(e3, e1))). Finally,
in the functional composition with a generic recursive function
func8(s1), the function 8 will be crucial to determine whether
symbols can be recognized and sequence is preserved.

Distributed representations in their general form are more
ambitious than distributed local representations and tend to
encode basic symbols of D in vectors in R

d where d << n.
These vectors generally alter symbols as there is not a direct
link between symbols and dimensions of the space. Given a
distributed local representation ew of a symbol w, the encoder
for a distributed representation is a matrixWd×n that transforms
ew in yw = Wd×new. As an example, the encoding matrixWd×n

can be build by modeling words in D around three dimensions:
number of vowels, number of consonants and, finally, number
of non-alphabetic symbols. Given these dimensions, the matrix
W3×9 for the example is :

W3×9 =



3 1 1 2 2 2 3 0 0
2 2 0 6 2 2 3 0 0
0 0 0 0 0 0 0 1 1


 (4)

This is a simple example of a distributed representation.
In a distributed representation (Hinton et al., 1986; Plate,
1995) the informational content is distributed (hence the
name) among multiple units, and at the same time each unit
can contribute to the representation of multiple elements.
Distributed representation has two evident advantages with
respect to a distributed local representation: it is more
efficient (in the example, the representation uses only 3
numbers instead of 9) and it does not treat each element
as being equally different to any other. In fact, mouse
and cat in this representation are more similar than mouse
and a. In other words, this representation captures by
construction something interesting about the set of symbols.
The drawback is that symbols are altered and, hence, it
may be difficult to interpret which symbol is given its
distributed representation. In the example, the distributed
representations for eats and some are exactly the same vector
W3 ×9 e5 = W3 ×9 e6.

Even for distributed representations in the general form,
it is possible to define functional composition to represent
expressions. Vectors Wd×nei should be replaced to vectors ei in
the definition of functional compositionality. Equation (3) for

additive functional compositionality becomes:

ys = Wd×nfunc6(s) =
k∑

j= 1

Wd×newj

In the running example, the additive functional compositionality
of sentence s1 in Example 1 is:

ys1 = W3×9func6(s1) =




8
12
0




Clearly, in this case, it is extremely difficult to derive back
the discrete symbolic sequence s1 that has generated the final
distributed representation.

Hence, interpretability of distributed representations can be
framed as the following question:

how much the underlying functional composition of distributed
representations is concatenative?

In fact, discrete symbolic representations are interpretable
as their composition is concatenative. Then, in order
to be interpretable, distributed representations, and
the related functional composition, should have some
concatenative properties.

Then, since a distributed representation ys of discrete
symbolic expressions s are obtained by using an encoder Wd×n

and a composition function, assessing interpretability becomes:

• Symbol-level Interpretability - The question “Can discrete
symbols be recognized?” becomes “to which degree the
embedding matrixW is invertible?”

• Sequence-level Interpretability - The question “Can symbols
and their relations be recognized in sequences of symbols?”
becomes “how much functional composition models are
concatenative?”

The two driving questions of Symbol-level Interpretability and
Sequence-level Interpretability will be used to describe the
presented distributed representations. In fact, we are interested
in understanding whether distributed representations can be
used to encode discrete symbolic structures and whether
it is possible to decode the underlying discrete symbolic
structure given a distributed representation. For example,
it is clear that a local distributed representation is more
interpretable at symbol level than the distributed representation
presented in Equation (4). Yet, both representations lack in
concatenative compositionality when sequences are collapsed
in vectors. In fact, the sum as composition function builds
bag-of-word local and distributed representation, which neglect
the order of symbols in sequences. In the rest of the
paper, we analyze whether other representations, such as
holographic reduced representations (Plate, 1995), recurrent
and recursive neural networks (Hochreiter and Schmidhuber,
1997; Schuster and Paliwal, 1997) or neural networks with
attention (Vaswani et al., 2017; Devlin et al., 2019), are instead
more interpretable.
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3. STRATEGIES TO OBTAIN DISTRIBUTED
REPRESENTATIONS FROM SYMBOLS

There is a wide range of techniques to transform symbolic
representations in distributed representations. When combining
natural language processing andmachine learning, this is a major
issue: transforming symbols, sequences of symbols or symbolic
structures in vectors or tensors that can be used in learning
machines. These techniques generally propose a function η

to transform a local representation with a large number of
dimensions in a distributed representation with a lower number
of dimensions:

η : Rn → R
d

This function is often called encoder.
We propose to categorize techniques to obtain distributed

representations in two broad categories, showing some degree of
overlapping (Cotterell et al., 2017):

• Representations derived from dimensionality reduction
techniques;

• Learned representations.

In the rest of the section, we will introduce the different
strategies according to the proposed categorization. Moreover,
we will emphasize its degree of interpretability for each
representation and its related function η by answering to
two questions:

• Has a specific dimension in R
d a clear meaning?

• Can we decode an encoded symbolic representation? In other
words, assuming a decoding function δ : Rd → R

n, how far
is v ∈ R

n, which represents a symbolic representation, from
v′ = δ(η(v))?

Sequence-level interpretability of the resulting representations will
be analyzed in section 5.

3.1. Dimensionality Reduction With
Random Projections
Random projection (RP) (Bingham and Mannila, 2001; Fodor,
2002) is a technique based on random matrices Wd ∈ R

d×n.
Generally, the rows of the matrix Wd are sampled from a
Gaussian distribution with zero mean, and normalized as to
have unit length (Johnson and Lindenstrauss, 1984) or even less
complex random vectors (Achlioptas, 2003). Random projections
from Gaussian distributions approximately preserves pairwise
distance between points (see the Johnsonn-Lindenstrauss Lemma;
Johnson and Lindenstrauss, 1984), that is, for any vector x, y ∈ X:

(1− ε) ‖x− y‖2 ≤ ‖Wx−Wy‖2 ≤ (1+ ε) ‖x− y‖2

where the approximation factor ε depends on the dimension of
the projection, namely, to assure that the approximation factor is
ε, the dimension kmust be chosen such that:

k ≥
8 log(m)

ε2

Constraints for building thematrixW can be significantly relaxed
to less complex random vectors (Achlioptas, 2003). Rows of the
matrix can be sampled from very simple zero-mean distributions
such as:

Wij =
√
3





+1 with probability 1
6

−1 with probability 1
6

0 with probability 2
3

without the need to manually ensure unit-length of the rows, and
at the same time providing a significant speed up in computation
due to the sparsity of the projection.

These vectors η(v) are interpretable at symbol level as these
functions can be inverted. The inverted function, that is, the
decoding function, is:

δ(v′) = WT
d v

′

and WT
d
Wd ≈ I when Wd is derived using Gaussian random

vectors. Hence, distributed vectors in R
d can be approximately

decoded back in the original symbolic representation with a
degree of approximation that depends on the distance between d.

The major advantage of RP is the matrix Wd can be
produced à-la-carte starting from the symbols encountered
so far in the encoding procedure. In fact, it is sufficient
to generate new Gaussian vectors for new symbols when
they appear.

3.2. Learned Representation
Learned representations differ from the dimensionality reduction
techniques by the fact that: (1) encoding/decoding functions
may not be linear; (2) learning can optimize functions that
are different with respect to the target of Principal Component
Analysis (see section 4.2); and, (3) solutions are not derived in a
closed form but are obtained using optimization techniques such
as stochastic gradient decent.

Learned representation can be further classified into:

• Task-independent representations learned with a standalone
algorithm (as in autoencoders; Socher et al., 2011; Liou et al.,
2014) which is independent from any task, and which learns a
representation that only depends from the dataset used;

• Task-dependent representations learned as the first step of
another algorithm (this is called end-to-end training), usually
the first layer of a deep neural network. In this case the new
representation is driven by the task.

3.2.1. Autoencoder
Autoencoders are a task independent technique to learn a
distributed representation encoder η : Rn → R

d by using local
representations of a set of examples (Socher et al., 2011; Liou
et al., 2014). The distributed representation encoder η is half of
an autoencoder.

An autoencoder is a neural network that aims to reproduce an
input vector inRn as output by traversing hidden layer(s) that are
in R

d. Given η : Rn → R
d and δ : Rd → R

n as the encoder and
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the decoder, respectively, an autoencoder aims to maximize the
following function:

L(x, x′) = ‖x− x′‖2

where

x′ = δ(η(x))

The encoding and decoding module are two neural networks,
which means that they are functions depending on a set of
parameters θ of the form

ηθ (x) = s(Wx+ b)

δθ ′ (y) = s(W′y+ b′)

where the parameters of the entire model are θ , θ ′ ={
W, b,W′, b′

}
with W,W′ matrices, b, b′ vectors and s is a

function that can be either a non-linearity sigmoid shaped
function, or in some cases the identity function. In some variants
the matricesW andW′ are constrained toWT = W′. This model
is different with respect to PCA due to the target loss function and
the use of non-linear functions.

Autoencoders have been further improved with denoising
autoencoders (Vincent et al., 2008, 2010; Masci et al., 2011) that
are a variant of autoencoders where the goal is to reconstruct
the input from a corrupted version. The intuition is that higher
level features should be robust with regard to small noise
in the input. In particular, the input x gets corrupted via a
stochastic function:

x̃ = g(x)

and then one minimizes again the reconstruction error, but with
regard to the original (uncorrupted) input:

L(x, x′) = ‖x− δ(η(g(x)))‖2

Usually g can be either:

• Adding Gaussian noise: g(x) = x+ ε, where ε ∼ N (0, σ I);
• Masking noise: where a given a fraction ν of the components

of the input gets set to 0.

For what concerns symbol-level interpretability, as for random
projection, distributed representations η(v) obtained with
encoders from autoencoders and denoising autoencoders are
invertible, that is decodable, as this is the nature of autoencoders.

3.2.2. Embedding Layers
Embedding layers are generally the first layers of more
complex neural networks which are responsible to transform
an initial local representation in the first internal distributed
representation. The main difference with autoencoders is that
these layers are shaped by the entire overall learning process. The
learning process is generally task dependent. Hence, these first
embedding layers depend on the final task.

It is argued that each layers learn a higher-level representation
of its input. This is particularly visible with convolutional

network (Krizhevsky et al., 2012) applied to computer vision
tasks. In these suggestive visualizations (Zeiler and Fergus,
2014b), the hidden layers are seen to correspond to abstract
feature of the image, starting from simple edges (in lower layers)
up to faces in the higher ones.

However, these embedding layers produce encoding functions
and, thus, distributed representations that are not interpretable
at symbol level. In fact, these embedding layers do not naturally
provide decoders.

4. DISTRIBUTIONAL REPRESENTATIONS
AS ANOTHER SIDE OF THE COIN

Distributional semantics is an important area of research in
natural language processing that aims to describe meaning of
words and sentences with vectorial representations (see Turney
and Pantel, 2010 for a survey). These representations are called
distributional representations.

It is a strange historical accident that two similar sounding
names—distributed and distributional—have been given to two
concepts that should not be confused for many. Maybe, this
has happened because the two concepts are definitely related.
We argue that distributional representation are nothing more
than a subset of distributed representations, and in fact can
be categorized neatly into the divisions presented in the
previous section.

Distributional semantics is based on a famous slogan—“you
shall judge a word by the company it keeps” (Firth, 1957)—and on
the distributional hypothesis (Harris, 1954)—words have similar
meaning if used in similar contexts, that is, words with the same
or similar distribution. Hence, the name distributional as well as
the core hypothesis comes from a linguistic rather than computer
science background.

Distributional vectors represent words by describing
information related to the contexts in which they appear. Put
in this way it is apparent that a distributional representation is
a specific case of a distributed representation, and the different
name is only an indicator of the context in which this techniques
originated. Representations for sentences are generally obtained
combining vectors representing words.

Hence, distributional semantics is a special case of
distributed representations with a restriction on what can
be used as features in vector spaces: features represent
a bit of contextual information. Then, the largest body
of research is on what should be used to represent
contexts and how it should be taken into account. Once
this is decided, large matrices X representing words in
context are collected and, then, dimensionality reduction
techniques are applied to have treatable and more
discriminative vectors.

In the rest of the section, we present how to build
matrices representing words in context, we will shortly recap
on how dimensionality reduction techniques have been used in
distributional semantics, and, finally, we report on word2vec
(Mikolov et al., 2013), which is a novel distributional semantic
techniques based on deep learning.
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4.1. Building Distributional
Representations for Words From a Corpus
The major issue in distributional semantics is how to build
distributional representations for words by observing word
contexts in a collection of documents. In this section, we will
describe these techniques using the example of the corpus
in Table 1.

A first and simple distributional semantic representations
of words is given by word vs. document matrices as those
typical in information retrieval (Salton, 1989). Word context
are represented by document indexes. Then, words are similar
if these words similarly appear in documents. This is generally
referred as topical similarity (Landauer and Dumais, 1997) as
words belonging to the same topic tend to be more similar.

A second strategy to build distributional representations for
words is to build word vs. contextual feature matrices. These
contextual features represent proxies for semantic attributes of
modeled words (Baroni and Lenci, 2010). For example, contexts
of the word dog will somehow have relation with the fact that a
dog has four legs, barks, eats, and so on. In this case, these vectors
capture a similarity that is more related to a co-hyponymy, that
is, words sharing similar attributes are similar. For example, dog
is more similar to cat than to car as dog and cat share more
attributes than dog and car. This is often referred as attributional
similarity (Turney, 2006).

A simple example of this second strategy are word-to-word
matrices obtained by observing n-word windows of target words.
For example, a word-to-word matrix obtained for the corpus in
Table 1 by considering a 1-word window is the following:

X =




a cat dog mouse catches eats

a 0 1 2 2 2 2
cat 2 0 0 0 1 0
dog 2 0 0 0 1 1

mouse 2 0 0 0 0 0
catches 2 1 1 0 0 0
eats 1 0 1 0 0 0




(5)

Hence, the word cat is represented by the vector cat =(
2 0 0 0 1 0

)
and the similarity between cat and dog is higher

than the similarity between cat andmouse as the cosine similarity
cos(cat, dog) is higher than the cosine similarity cos(cat,mouse).

The research on distributional semantics focuses on two
aspects: (1) the best features to represent contexts; (2) the best
correlation measure among target words and features.

How to represent contexts is a crucial problem in
distributional semantics. This problem is strictly correlated
to the classical question of feature definition and feature
selection in machine learning. A wide variety of features have

TABLE 1 | A very small corpus.

s1 a cat catches a mouse

s2 a dog eats a mouse

s3 a dog catches a cat

been tried. Contexts have been represented as set of relevant
words, sets of relevant syntactic triples involving target words
(Pado and Lapata, 2007; Rothenhäusler and Schütze, 2009) and
sets of labeled lexical triples (Baroni and Lenci, 2010).

Finding the best correlation measure among target words and
their contextual features is the other issue. Many correlation
measures have been tried. The classical measures are term
frequency-inverse document frequency (tf-idf ) (Salton, 1989)
and point-wise mutual information (pmi). These, among other
measures, are used to better capture the importance of contextual
features for representing distributional semantic of words.

This first formulation of distributional semantics is a
distributed representation that is human-interpretable. In fact,
features represent contextual information which is a proxy for
semantic attributes of target words (Baroni and Lenci, 2010).

4.2. Compacting Distributional
Representations
As distributed representations, distributional representations can
undergo the process of dimensionality reduction with Principal
Component Analysis and Random Indexing. This process is
used for two issues. The first is the classical problem of
reducing the dimensions of the representation to obtain more
compact representations. The second instead want to help the
representation to focus on more discriminative dimensions. This
latter issue focuses on the feature selection and merging which is
an important task in making these representations more effective
on the final task of similarity detection.

Principal Component Analysis (PCA) is largely applied
in compacting distributional representations: Latent Semantic
Analysis (LSA) is a prominent example (Landauer and Dumais,
1997). LSA were born in Information Retrieval with the idea of
reducing word-to-document matrices. Hence, in this compact
representation, word context are documents and distributional
vectors of words report on the documents where words appear.
This or similar matrix reduction techniques have been then
applied to word-to-word matrices.

Principal Component Analysis (PCA) (Pearson, 1901;
Markovsky, 2011) is a linear method which reduces the number
of dimensions by projecting R

n into the “best” linear subspace
of a given dimension d by using the a set of data points.
The “best” linear subspace is a subspace where dimensions
maximize the variance of the data points in the set. PCA can
be interpreted either as a probabilistic method or as a matrix
approximation and is then usually known as truncated singular
value decomposition. We are here interested in describing PCA
as probabilistic method as it related to the interpretability of the
related distributed representation.

As a probabilisticmethod, PCA finds an orthogonal projection
matrix Wd ∈ R

n×d such that the variance of the projected set
of data points is maximized. The set of data points is referred
as a matrix X ∈ R

m×n where each row xTi ∈ R
n is a single

observation. Hence, the variance that is maximized is X̂d =
XWT

d
∈ R

m×d.
More specifically, let’s consider the first weight vector w1,

which maps an element of the dataset x into a single number
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〈x,w1〉. Maximizing the variance means that w is such that:

w1 = argmax
‖w‖= 1

∑

i

(〈xi,w〉)2

and it can be shown that the optimal value is achieved when
w is the eigenvector of XTX with largest eigenvalue. This then
produces a projected dataset:

X̂1 = XTW1 = XTw1

The algorithm can then compute iteratively the second and
further components by first subtracting the components already
computed from X:

X − Xw1w1
T

and then proceed as before. However, it turns out that all
subsequent components are related to the eigenvectors of the
matrix XTX, that is, the d-th weight vector is the eigenvector of
XTX with the d-th largest corresponding eigenvalue.

The encoding matrix for distributed representations derived
with a PCA method is the matrix:

Wd =




w1

w2

. . .

wd


 ∈ R

d×n

where wi are eigenvectors with eigenvalues decreasing with
i. Hence, local representations v ∈ R

n are represented in
distributed representations in R

d as:

η(v) = Wdv

Hence, vectors η(v) are human-interpretable as their
dimensions represent linear combinations of dimensions in the
original local representation and these dimensions are ordered
according to their importance in the dataset, that is, their
variance. Moreover, each dimension is a linear combination of
the original symbols. Then, the matrix Wd reports on which
combination of the original symbols is more important to
distinguish data points in the set.

Moreover, vectors η(v) are decodable. The decoding
function is:

δ(v′) = WT
d v

′

and WT
d
Wd = I if d is the rank of the matrix X, otherwise it

is a degraded approximation (for more details refer to Fodor,
2002; Sorzano et al., 2014). Hence, distributed vectors in R

d can
be decoded back in the original symbolic representation with a
degree of approximation that depends on the distance between d
and the rank of the matrix X.

The compelling limit of PCA is that all the data points have
to be used in order to obtain the encoding/decoding matrices.
This is not feasible in two cases. First, when the model has to deal
with big data. Second, when the set of symbols to be encoded in

extremely large. In this latter case, local representations cannot
be used to produce matrices X for applying PCA.

In Distributional Semantics, random indexing has been used
to solve some issues that arise naturally with PCA when working
with large vocabularies and large corpora. PCA has some
scalability problems:

• The original co-occurrence matrix is very costly to obtain and
store, moreover, it is only needed to be later transformed;

• Dimensionality reduction is also very costly, moreover, with
the dimensions at hand it can only be done with iterative
methods;

• The entire method is not incremental, if we want to add
new words to our corpus we have to recompute the entire
co-occurrence matrix and then re-perform the PCA step.

Random Indexing (Sahlgren, 2005) solves these problems: it is
an incremental method (new words can be easily added any time
at low computational cost) which creates word vector of reduced
dimension without the need to create the full dimensional matrix.

Interpretability of compacted distributional semantic
vectors is comparable to the interpretability of distributed
representations obtained with the same techniques.

4.3. Learning Representations: Word2vec
Recently, distributional hypothesis has invaded neural networks:
word2vec (Mikolov et al., 2013) uses contextual information to
learn word vectors. Hence, we discuss this technique in the
section devoted to distributional semantics.

The name word2Vec comprises two similar techniques, called
skip grams and continuous bag of words (CBOW). Both methods
are neural networks, the former takes input a word and try to
predict its context, while the latter does the reverse process,
predicting a word from the words surrounding it. With this
technique there is no explicitly computed co-occurrence matrix,
and neither there is an explicit association feature between pairs
of words, instead, the regularities and distribution of the words
are learned implicitly by the network.

We describe only CBOW because it is conceptually simpler
and because the core ideas are the same in both cases. The full
network is generally realized with two layers W1n×k and W2k×n

plus a softmax layer to reconstruct the final vector representing
the word. In the learning phase, the input and the output of
the network are local representation for words. In CBOW, the
network aims to predict a target word given context words. For
example, given the sentence s1 of the corpus in Table 1, the
network has to predict catches given its context (see Figure 1).

Hence, CBOW offers an encoderW1n×k, that is, a linear word
encoder from data where n is the size of the vocabulary and
k is the size of the distributional vector. This encoder models
contextual information learned by maximizing the prediction
capability of the network. A nice description on how this
approach is related to previous techniques is given in Goldberg
and Levy (2014).

Clearly, CBOW distributional vectors are not easily human
and machine interpretable. In fact, specific dimensions of vectors
have not a particular meaning and, differently fromwhat happens
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FIGURE 1 | word2vec: CBOW model.

for auto-encoders (see section 3.2.1), these networks are not
trained to be invertible.

5. COMPOSING DISTRIBUTED
REPRESENTATIONS

In the previous sections, we described how one symbol or a bag-
of-symbols can be transformed in distributed representations
focusing on whether these distributed representations are
interpretable. In this section, we want to investigate a second
and important aspect of these representations, that is, have these
representations Concatenative Compositionality as symbolic
representations? And, if these representations are composed, are
still interpretable?

Concatenative Compositionality is the ability of a symbolic
representation to describe sequences or structures by
composing symbols with specific rules. In this process, symbols
remain distinct and composing rules are clear. Hence, final
sequences and structures can be used for subsequent steps as
knowledge repositories.

Concatenative Compositionality is an important aspect for
any representation and, then, for a distributed representation.
Understanding to what extent a distributed representation
has concatenative compositionality and how information can
be recovered is then a critical issue. In fact, this issue has
been strongly posed by Plate (1994, 1995) who analyzed
how same specific distributed representations encode structural
information and how this structural information can be
recovered back.

Current approaches for treating distributed/distributional
representation of sequences and structures mix two aspects in
one model: a “semantic” aspect and a representational aspect.
Generally, the semantic aspect is the predominant and the
representational aspect is left aside. For “semantic” aspect, we

refer to the reason why distributed symbols are composed: a
final task in neural network applications or the need to give a
distributional semantic vector for sequences of words. This latter
is the case for compositional distributional semantics (Clark et al.,
2008; Baroni et al., 2014). For the representational aspect, we refer
to the fact that composed distributed representations are in fact
representing structures and these representations can be decoded
back in order to extract what is in these structures.

Although the “semantic” aspect seems to be predominant
in models-that-compose, the convolution conjecture (Zanzotto
et al., 2015) hypothesizes that the two aspects coexist and the
representational aspect plays always a crucial role. According to
this conjecture, structural information is preserved in any model
that composes and structural information emerges back when
comparing two distributed representations with dot product to
determine their similarity.

Hence, given the convolution conjecture, models-that-compose
produce distributed representations for structures that can be
interpreted back. Interpretability is a very important feature in
thesemodels-that-compose which will drive our analysis.

In this section we will explore the issues faced with the
compositionality of representations, and the main “trends”,
which correspond somewhat to the categories already presented.
In particular we will start from the work on compositional
distributional semantics, then we revise the work on holographic
reduced representations (Plate, 1995; Neumann, 2001) and,
finally, we analyze the recent approaches with recurrent and
recursive neural networks. Again, these categories are not entirely
disjoint, and methods presented in one class can be often
interpreted to belonging into another class.

5.1. Compositional Distributional
Semantics
In distributional semantics, models-that-compose have the name
of compositional distributional semantics models (CDSMs)
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(Mitchell and Lapata, 2010; Baroni et al., 2014) and aim to
apply the principle of compositionality (Frege, 1884; Montague,
1974) to compute distributional semantic vectors for phrases.
These CDSMs produce distributional semantic vectors of
phrases by composing distributional vectors of words in these
phrases. These models generally exploit structured or syntactic
representations of phrases to derive their distributional meaning.
Hence, CDSMs aim to give a complete semantic model for
distributional semantics.

As in distributional semantics for words, the aim of CDSMs
is to produce similar vectors for semantically similar sentences
regardless their lengths or structures. For example, words and
word definitions in dictionaries should have similar vectors as
discussed in Zanzotto et al. (2010). As usual in distributional
semantics, similarity is captured with dot products (or similar
metrics) among distributional vectors.

The applications of these CDSMs encompass multi-document
summarization, recognizing textual entailment (Dagan et al.,
2013) and, obviously, semantic textual similarity detection
(Agirre et al., 2013).

Apparently, these CDSMs are far from having concatenative
compositionality, since these distributed representations that can
be interpreted back. In some sense, their nature wants that
resulting vectors forget how these are obtained and focus on the
final distributional meaning of phrases. There is some evidence
that this is not exactly the case.

The convolution conjecture (Zanzotto et al., 2015) suggests that
many CDSMs produce distributional vectors where structural
information and vectors for individual words can be still
interpreted. Hence, many CDSMs have the concatenative
compositionality property and interpretable.

In the rest of this section, we will show some classes of
these CDSMs and we focus on describing how these morels
are interpretable.

5.1.1. Additive Models
Additive models for compositional distributional semantics are
important examples ofmodels-that-composeswhere semantic and
representational aspects is clearly separated. Hence, these models
can be highly interpretable.

These additive models have been formally captured in
the general framework for two words sequences proposed
by Mitchell and Lapata (2008). The general framework for
composing distributional vectors of two word sequences “uv” is
the following:

p = f (u, v;R;K) (6)

where p ∈ R
n is the composition vector, u and v are the vectors

for the two words u and v, R is the grammatical relation linking
the two words and K is any other additional knowledge used in
the composition operation. In the additive model, this equation
has the following form:

p = f (u, v;R;K) = ARu+ BRv (7)

where AR and BR are two square matrices depending on
the grammatical relation R which may be learned from data
(Guevara, 2010; Zanzotto et al., 2010).

Before investigating if these models are interpretable, let
introduce a recursive formulation of additive models which can
be applied to structural representations of sentences. For this
purpose, we use dependency trees. A dependency tree can be
defined as a tree whose nodes are words and the typed links are
the relations between two words. The root of the tree represents
the word that governs themeaning of the sentence. A dependency
tree T is then a word if it is a final node or it has a root rT and links
(rT ,R,Ci) where Ci is the i-th subtree of the node rT and R is the
relation that links the node rT with Ci. The dependency trees of
two example sentences are reported in Figure 2. The recursive
formulation is then the following:

fr(T) =
∑

i

(ARrT + BRfr(Ci))

According to the recursive definition of the additive model, the
function fr(T) results in a linear combination of elements Msws

whereMs is a product of matrices that represents the structure and
ws is the distributional meaning of one word in this structure, that
is:

fr(T) =
∑

s∈ S(T)

Msws

where S(T) are the relevant substructures of T. In this case,
S(T) contains the link chains. For example, the first sentence in
Figure 2 has a distributed vector defined in this way:

fr(cows eat animal extracts) =
= AVNeat+ BVNcows+ AVNeat+
+BVN fr(animal extracts) =
= AVNeat+ BVNcows+ AVNeat+
+BVNANNextracts+ BVNBNNanimal

Each term of the sum has a part that represents the structure and
a part that represents the meaning, for example:

structure︷ ︸︸ ︷
BVNBNN beef︸︷︷︸

meaning

FIGURE 2 | A sentence and its dependency graph.
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Hence, this recursive additive model for compositional
semantics is a model-that-composes which, in principle, can be
highly interpretable. By selecting matricesMs such that:

MT
s1
Ms2 ≈

{
I s1 = s2

0 s1 6= s2
(8)

it is possible to recover distributional semantic vectors related to
words that are in specific parts of the structure. For example, the
main verb of the sample sentence in Figure 2 with a matrix AT

VN ,
that is:

AT
VN fr(cows eat animal extracts) ≈ 2eat

In general, matrices derived for compositional distributional
semantic models (Guevara, 2010; Zanzotto et al., 2010) do not
have this property but it is possible to obtain matrices with
this property by applying thee Jonson-Linderstrauss Tranform
(Johnson and Lindenstrauss, 1984) or similar techniques as
discussed also in Zanzotto et al. (2015).

5.1.2. Lexical Functional Compositional Distributional

Semantic Models
Lexical Functional Models are compositional distributional
semantic models where words are tensors and each type of
word is represented by tensors of different order. Composing
meaning is then composing these tensors to obtain vectors. These
models have solid mathematical background linking Lambek
pregroup theory, formal semantics and distributional semantics
(Coecke et al., 2010). Lexical Function models are concatenative
compositional, yet, in the following, we will examine whether
these models produce vectors that my be interpreted.

To determine whether these models produce interpretable
vectors, we start from a simple Lexical Function model applied
to two word sequences. This model has been largely analyzed in
Baroni and Zamparelli (2010) as matrices were considered better
linear models to encode adjectives.

In Lexical Functional models over two words sequences, there
is one of the two words which as a tensor of order 2 (that
is, a matrix) and one word that is represented by a vector.
For example, adjectives are matrices and nouns are vectors
(Baroni and Zamparelli, 2010) in adjective-noun sequences.
Hence, adjective-noun sequences like “black cat” or “white dog”
are represented as:

f (black cat) = BLACKcat

f (white dog) = WHITEdog

where BLACK and WHITE are matrices representing the two
adjectives and cat and dog are the two vectors representing the
two nouns.

These two words models are partially interpretable: knowing
the adjective it is possible to extract the noun but not vice-
versa. In fact, if matrices for adjectives are invertible, there is
the possibility of extracting which nouns has been related to
particular adjectives. For example, if BLACK is invertible, the

inverse matrix BLACK−1 can be used to extract the vector of cat
from the vector f (black cat):

cat = BLACK−1f (black cat)

This contributes to the interpretability of this model. Moreover,
if matrices for adjectives are built using Jonson-Lindestrauss
Transforms (Johnson and Lindenstrauss, 1984), that is matrices
with the property in Equation (8), it is possible to pack different
pieces of sentences in a single vector and, then, select only
relevant information, for example:

cat ≈ BLACKT(f (black cat)+ f (white dog))

On the contrary, knowing noun vectors, it is not possible to
extract back adjective matrices. This is a strong limitation in term
of interpretability.

Lexical Functional models for larger structures are
concatenative compositional but not interpretable at all. In
fact, in general these models have tensors in the middle and
these tensors are the only parts that can be inverted. Hence,
in general these models are not interpretable. However, using
the convolution conjecture (Zanzotto et al., 2015), it is possible
to know whether subparts are contained in some final vectors
obtained with these models.

5.2. Holographic Representations
Holographic reduced representations (HRRs) are models-that-
compose expressly designed to be interpretable (Plate, 1995;
Neumann, 2001). In fact, these models encode flat structures
representing assertions and these assertions should be then
searched in order to recover pieces of knowledge that is in.
For example, these representations have been used to encode
logical propositions such as eat(John, apple). In this case, each
atomic element has an associated vector and the vector for the
compound is obtained by combining these vectors. The major
concern here is to build encoding functions that can be decoded,
that is, it should be possible to retrieve composing elements from
final distributed vectors such as the vector of eat(John, apple).

In HRRs, nearly orthogonal unit vectors (Johnson and
Lindenstrauss, 1984) for basic symbols, circular convolution
⊗ and circular correlation ⊕ guarantees composability and
interpretability. HRRs are the extension of Random Indexing
(see section 3.1) to structures. Hence, symbols are represented
with vectors sampled from a multivariate normal distribution
N(0, 1

d
Id). The composition function is the circular convolution

indicated as⊗ and defined as:

zj = (a⊗ b)j =
d−1∑

k= 0

akbj−k

where subscripts are modulo d. Circular convolution is
commutative and bilinear. This operation can be also computed
using circulant matrices:

z = (a⊗ b) = A◦b = B◦a
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where A◦ and B◦ are circulant matrices of the vectors a and b.
Given the properties of vectors a and b, matrices A◦ and B◦
have the property in Equation (8). Hence, circular convolution
is approximately invertible with the circular correlation function
(⊕) defined as follows:

cj = (z⊕ b)j =
d−1∑

k= 0

zkbj+k

where again subscripts are modulo d. Circular correlation is
related to inverse matrices of circulant matrices, that is BT

◦ . In
the decoding with ⊕, parts of the structures can be derived in an
approximated way, that is:

(a⊗ b)⊕ b ≈ a

Hence, circular convolution ⊗ and circular correlation ⊕ allow
to build interpretable representations. For example, having
the vectors e, J, and a for eat, John and apple, respectively,
the following encoding and decoding produces a vector that
approximates the original vector for John:

J ≈ (J⊗ e⊗ a)⊕ (e⊗ a)

The “invertibility” of these representations is important because
it allow us not to consider these representations as black boxes.

However, holographic representations have severe limitations
as these can encode and decode simple, flat structures. In fact,
these representations are based on the circular convolution,
which is a commutative function; this implies that the
representation cannot keep track of composition of objects where
the order matters and this phenomenon is particularly important
when encoding nested structures.

Distributed trees (Zanzotto and Dell’Arciprete, 2012)
have shown that the principles expressed in holographic
representation can be applied to encode larger structures,
overcoming the problem of reliably encoding the order in which
elements are composed using the shuffled circular convolution
function as the composition operator. Distributed trees are
encoding functions that transform trees into low-dimensional
vectors that also contain the encoding of every substructures of
the tree. Thus, these distributed trees are particularly attractive
as they can be used to represent structures in linear learning
machines which are computationally efficient.

Distributed trees and, in particular, distributed smoothed trees
(Ferrone and Zanzotto, 2014) represent an interesting middle
way between compositional distributional semantic models and
holographic representation.

5.3. Compositional Models in Neural
Networks
When neural networks are applied to sequences or structured
data, these networks are in fact models-that-compose. However,
these models result in models-that-compose which are not
interpretable. In fact, composition functions are trained on
specific tasks and not on the possibility of reconstructing the
structured input, unless in some rare cases (Socher et al., 2011).

The input of these networks are sequences or structured data
where basic symbols are embedded in local representations
or distributed representations obtained with word embedding
(see section 4.3). The output are distributed vectors derived
for specific tasks. Hence, these models-that-compose are not
interpretable in our sense for their final aim and for the fact
that non linear functions are adopted in the specification of the
neural networks.

In this section, we revise some prominent neural network
architectures that can be interpreted as models-that-compose: the
recurrent neural networks (Krizhevsky et al., 2012; Graves, 2013;
Vinyals et al., 2015a; He et al., 2016) and the recursive neural
networks (Socher et al., 2012).

5.3.1. Recurrent Neural Networks
Recurrent neural networks form a very broad family of neural
networks architectures that deal with the representation (and
processing) of complex objects. At its core a recurrent neural
network (RNN) is a network which takes in input the current
element in the sequence and processes it based on an internal
state which depends on previous inputs. At the moment the
most powerful network architectures are convolutional neural
networks (Krizhevsky et al., 2012; He et al., 2016) for vision
related tasks and LSTM-type network for language related task
(Graves, 2013; Vinyals et al., 2015a).

A recurrent neural network takes as input a sequence x =
(x1 . . . xn) and produce as output a single vector y ∈ R

n

which is a representation of the entire sequence. At each step 1

t the network takes as input the current element xt, the previous
output ht−1 and performs the following operation to produce the
current output ht

ht = σ (W [ht−1 xt]+ b) (9)

where σ is a non-linear function such as the logistic function or
the hyperbolic tangent and [ht−1 xt] denotes the concatenation
of the vectors ht−1 and xt. The parameters of the model are the
matrixW and the bias vector b.

Hence, a recurrent neural network is effectively a learned
composition function, which dynamically depends on its current
input, all of its previous inputs and also on the dataset on which is
trained. However, this learned composition function is basically
impossible to analyze or interpret in any way. Sometime an
“intuitive” explanation is given about what the learned weights
represent: with some weights representing information that must
be remembered or forgotten.

Even more complex recurrent neural networks as long-short
termmemory (LSTM) (Hochreiter and Schmidhuber, 1997) have
the same problem of interpretability. LSTM are a recent and
successful way for neural network to deal with longer sequences
of inputs, overcoming some difficulty that RNN face in the
training phase. As with RNN, LSTM network takes as input a
sequence x = (x1 . . . xn) and produce as output a single vector
y ∈ R

n which is a representation of the entire sequence. At
each step t the network takes as input the current element xt,

1we can usually think of this as a timestep, but not all applications of recurrent

neural network have a temporal interpretation.
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FIGURE 3 | A simple binary tree.

the previous output ht−1 and performs the following operation
to produce the current output ht and update the internal state ct.

ft = σ (Wf [ht−1 xt]+ bf )

it = σ (Wi [ht−1 xt]+ bi)

ot = σ (Wo [ht−1 xt]+ bo)

c̃t = tanh(Wc [ht−1 xt]+ bc)

ct = ft ⊙ ct−i + it ⊙ c̃t

ht = ot ⊙ tanh(ct)

where ⊙ stands for element-wise multiplication, and the
parameters of the model are the matricesWf ,Wi,Wo,Wc and the
bias vectors bf , bi, bo, bc.

Generally, the interpretation offered for recursive neural
networks is functional or “psychological” and not on the content
of intermediate vectors. For example, an interpretation of the
parameters of LSTM is the following:

• ft is the forget gate: at each step takes in consideration the new
input and output computed so far to decide which information
in the internal state must be forgotten (that is, set to 0);

• it is the input gate: it decides which position in the internal
state will be updated, and by how much;

• c̃t is the proposed new internal state, which will then be
updated effectively combining the previous gate;

• ot is the output gate: it decides how to modulate the internal
state to produce the output

Thesemodels-that-compose have high performance on final tasks
but are definitely not interpretable.

5.3.2. Recursive Neural Network
The last class of models-that-compose that we present is the class
of recursive neural networks (Socher et al., 2012). These networks
are applied to data structures as trees and are in fact applied
recursively on the structure. Generally, the aim of the network
is a final task as sentiment analysis or paraphrase detection.

Recursive neural networks is then a basic block that is
recursively applied on trees like the one in Figure 3. The formal
definition is the following:

p = fU,V (u, v) = f (Vu,Uv) = g

(
W

(
Vu
Uv

))

where g is a component-wise sigmoid function or tanh, andW is

a matrix that maps the concatenation vector

(
Vu
Uv

)
to have the

same dimension.

This method deals naturally with recursion: given a binary
parse tree of a sentence s, the algorithm creates vectors and
matrices representation for each node, starting from the terminal
nodes. Words are represented by distributed representations
or local representations. For example, the tree in Figure 3

is processed by the recursive network in the following way.
First, the network is applied to the pair (animal,extracts) and
fUV (animal, extract) is obtained. Then, the network is applied to
the result and eat and fUV (eat, fUV (animal, extract)) is obtained
and so on.

Recursive neural networks are not easily interpretable even if
quite similar to the additive compositional distributional semantic
models as those presented in section 5.1.1. In fact, the non-linear
function g is the one that makes final vectors less interpretable.

5.3.3. Attention Neural Network
Attention neural networks (Vaswani et al., 2017; Devlin et al.,
2019) are an extremely successful approach for combining
distributed representations of sequences of symbols. Yet, these
models are very simple. In fact, these attention models
are basically gigantic multi-layered perceptrons applied to
distributed representations of discrete symbols. The key point is
that these gigantic multi-layer percpetrons are trained on generic
tasks and, then, these pre-trainedmodels are used in specific tasks
by training the last layers. From the point of view of sequence-
level interpretability, these models are still under investigation
as the eventual concatenative compositionality is scattered in the
overall network.

6. CONCLUSIONS

In the ‘90, the hot debate on neural networks was whether or not
distribute representations are only an implementation of discrete
symbolic representations. The question behind this debate is
in fact crucial to understand if neural networks may exploit
something more that systems strictly based on discrete symbolic
representations. The question is again becoming extremely
relevant since natural language is by construction a discrete
symbolic representations and, nowadays, deep neural networks
are solving many tasks.

We made this survey to revitalize the debate. In fact, this
is the right time to focus on this fundamental question. As
we show, distributed representations have a the not-surprising
link with discrete symbolic representations. In our opinion, by
shading a light on this debate, this survey will help to devise
new deep neural networks that can exploit existing and novel
symbolic models of classical natural language processing tasks.
We believe that a clearer understanding of the strict link between
distributed/distributional representations and symbols may lead
to radically new deep learning networks.
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