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INTRODUCTION
In microsurgery, the anastomosis is a surgical task 

integral to the success of a free flap. This step requires 
precision and dexterity, which can be acquired only 
through deliberate practice and experience accumu-
lated over a structured microsurgical training curric-
ulum. The traditional curriculum involves simulation 
practice on the living rat training model. However, 
recent ethical concerns regarding the use of animals 
in research and the introduction of the 3Rs (replace-
ment, reduction, and refinement) framework have 
shifted the barycentre of current microsurgery cur-
riculums toward nonliving models. This is especially 
true during the early stages of the learning curve, with 
hybrid approaches typically introduced in a step-lad-
der-type training employing a combination of ex vivo 
and in vivo models.1–4

The minimum requirement for a basic 5-days microsur-
gical training course, based on International Microsurgery 
Simulation Society guidelines, is to have 1 microscope per 

trainee and instruments—including 2 forceps (1 curved), 
curved needle holder, microsurgical scissors, vessel dila-
tor, 9/0 and 10/0 sutures, and at least 2 microvascular 
clamps.5 This equipment is proved to be costly, especially 
in developing countries, and during the early stages in 
skills acquisition, it can sustain damage from the interac-
tion of untrained hands of inexperienced microsurgeons.6 
Permanent instrument damage may arise from an exces-
sive application of pressure during tissue manipulation 
or from an inappropriate use that overpowers the instru-
ment’s capabilities, resulting in the premature disposal of 
the unit.7

Recent developments in additive manufacturing have 
rendered 3-dimensional (3D) printing technologies very 
accessible to institutions and individuals alike, in terms of 
price and functionality. The flexibility in design and mate-
rial variety afforded by these technologies is particularly 
attractive for the development of surgical instrumenta-
tion, both for low-cost prototyping and for customizing 
patient-precise dimensions when needed.8,9 Here, we dem-
onstrate a 3D design and method for the production of 3 
types of microvascular clamps that can be used by micro-
surgeons in training. In addition to bridging issues associ-
ated with disparity in availability and design, we show that 
the low cost of production afforded by 3D printing can 
reduce the long-term running costs of microsurgical train-
ing laboratories.
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DEVICE PRODUCTION
All microvascular clamps were designed using 

Autodesk’s Fusion 360 software, converted to machine 
tool code using an Ultmaker’s Cura slicer and printed 
on an Ender 5 FDM 3D printer (Creality, Shenzhen, 
China) using a poly-lactic acid filament (1.75 mm fila-
ment, RS-UK). This material was chosen because it proved 
to have sufficient tensile strength while maintaining the 
necessary elastic properties required for the applica-
tion. Crucially this material has been found to conserve 
its mechanical properties after autoclave sterilization.8 
All prints were produced using a 0.4-mm-diameter brass 
nozzle head, with the exception of supermicrosurgery 
clamps, which were produced using a 0.2-mm-diameter 
brass nozzle head.

DISCUSSION
The first vascular clamp was developed by Edmund 

Höpfner in 1903.10 As surgeons started applying vascu-
lar anastomosis operations to more refined operations, 
the need for new instruments rose, leading to Acland’s 
first description of the microvascular clamp in 1970.11 
Microvascular clamp assemblies often include the clamp 
jaws and handles connected to a torsional spring, so as to 
produce a clamping force proportional to the elastic coef-
ficient and the contraction of the spring.12 The vessel resists 
the applied pressure due to the intravascular blood pres-
sure and the resistance of the vessel against deformation. 
Therefore, a successful clamp ought to provide a sufficient 
clamping force to impede the blood flow, while also being 
delicate enough to prevent any damage to the vessel.

For microsurgical operations, clamps ought to be in 
the millimeter range to be practical with respect to acces-
sibility to the operating field. Given the dimension restric-
tions, alternative compression mechanisms to torsional 
springs are often sought after. Several manufacturers of 
microsurgical clamps provide single-piece stainless-steel 
devices whose V-shaped design takes advantage of the 
innate elasticity of the material.

Single-material designs are particularly suited for 3D 
printing, as the device can be produced directly without 
further assembly and used directly off the build plate. Given 
that fusion deposition modeling (FDM) compatible mate-
rials offer less elastic compressibility to metal analogs, we 
modified the traditional V-shape design to a parabolic analog 
(Fig. 1) to increase the clamp jaw travel distance, while pro-
viding the necessary clamping force required for blood ves-
sel occlusion. We defined the device’s adequacy criterion as 
being able to induce vessel occlusion. (See Video 1 [online], 
which displays the elasticity validation test.) (See  Video 2 
[online], which displays the occlusion validation test.)

A set of medium double clamps (including the rail) 
can be printed in 5 minutes at a material cost of 0.01 
GBP/0.013 USD. Given a relatively medium performance 
printer such as the one we used in this study costs in the 
range of 300 GBP/379 USD, an estimated turn-around 
period to initial equipment investment could be foreseen 
within the same timescale it would take to accumulate 
4 S&T double-clamp (average price estimated based on 

quotes received from 3 UK suppliers) replacements for a 
microsurgical training laboratory. The reusability of the 
clamps was tested and found to be adequate for 25 repeti-
tion tests after their use in silastic vessels and also in bio-
logical ex vivo models (ie, chicken thigh). The 3D printed 
clamps demonstrated occlusion capabilities akin to com-
mercial analogs in a range of vessels varying in diameter 
between 0.8 and 2.4 mm (see Video 2).

To show the applicability afforded by this technology, 
we designed and produced 3 types of simulation clamps 
in all 6 basic sizes (XXS–XL), as can be seen in Figure 2. 
We found our 3D printer model could produce operating 
clamps with dimensions as small as 5 mm in length. The 
extra small size clamps could potentially be used in the 
innovative novel applications of supermicrosurgery such 
as lymphovenous anastomosis (LVA) and perforator flaps 
surgery.13 The types designed included single, double, and 
gamma clamps. To introduce our trainees to a wider range 
of anastomosis technique options for end-to-side anastomo-
sis, we designed an adaptation to the original gamma (Γ) 
clamp rail format described by Baek et al14 in 1980, which 
is currently not available with commercial vendors. The 

Fig. 1. Illustration of the parabolic design of the microvascular 
clamp. Orange arrows show the force direction; when compressing 
the handles of the clamp, the jaws would open wide.

Fig. 2. Isometric view showing all 3 types of 3D printed microvascular 
clamps: single, double, and “gamma” clamp for end-to-side anastomo-
sis. Sizes shown (XXS–XL). Comparison is made on the smaller sizes 
(ideal for supermicrosurgery) with the classic V3 S&T metallic clamp.



 Papavasiliou et al. • Three-dimensional Printed Microvascular Clamps

3

gamma rail clamp uses a third clamp and a rail positioned 
in a direction orthogonal to the main vessel flow direction. 
This setting allows fine tuning of the approximation of the 
side vessel to the main branch and alleviates the need for 
surgical assistance during end-to-side anastomosis.

CONCLUSIONS
We designed and produced 3D printed microvascular 

clamps for use in training. The clamps are reusable, could 
sustain multiple applications, and were proved effective in 
ex vivo models during microvascular anastomosis training. 
Traditional stainless-steel instrumentation remains the 
gold standard in training and practice. Nonetheless, our 
experience demonstrated that 3D printing can find itself 
in the corner of microsurgical laboratories, as it has the 
ability to reduce long-term costs (especially in low-fidelity 
tasks training) and allow the rapid adoption of advances in 
instrumentation. We demonstrated the latter by restoring 
the designs of the commercially unavailable gamma rail 
clamp. This example showcased how creative applications 
of 3D printing can reinforce the training opportunities 
of trainees and may prove to facilitate the quick adoption 
of state-of-the-art instruments described in the literature 
directly to the microsurgical laboratory.
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