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Introduction
Medical gases, such as oxygen, carbon dioxide, nitric 
oxide (NO) and carbon monoxide (CO) are commonly 
used as medical tools to help patients breathe easier, to 
facilitate medical diagnosis or to function as an anesthetic 
or analgesic agent (Deng et al., 2014). Remarkably, recent 
studies suggest that a variety of medical gases may also 
serve as neuroprotective agents against cerebral ischemia 
in a manner distinct from their regular uses (Chen et al., 
2014; Ginsberg, 2016). The ready availability of these 
medical gases bedside renders them a viably translatable 
focus for stroke treatment, already attracting a consider-
able amount of studies (Deng et al., 2014). Although the 
underlying protective mechanisms afforded by medical 
gases against cerebral ischemia still remain obscure and 
may involve multiple pathways that reflect the complex-
ity of stroke pathology (Baxter et al., 2014; Gonzalez-
Moreno et al., 2014; Poittevin et al., 2014; Seifert and 
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Pennypacker, 2014), current evidence has suggested 
that the actions of these medical gases may converge 
on inflammatory signals (Chen et al., 2015; Xiong and 
Yang, 2015). 

Hyperbaric Oxygen (Hbo)
HBO is a nondrug and noninvasive treatment that has 
been widely used in clinical practice for many diseases, 
including acute CO poisoning (Weaver et al., 2002), gas 
gangrene (Roeckl-Wiedmann et al., 2005), decompression 
sickness (Bennett et al., 2012). With the capability to 
relieve cerebral hypoxia, HBO attenuates cerebral vaso-
spasm (Hald and Alford, 2014; Hasegawa et al., 2015), a 
condition highly detrimental for patients suffering from 
subarachnoid hemorrhage (Cheng et al., 2015; Guresir 
et al., 2015). HBO confers protection against cerebral 
ischemic stroke, as illustrated by a number of studies 
(Lee et al., 2013; Ding et al., 2014; Stetler et al., 2014). 
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Mechanistically, HBO affords protection associated 
with a variety of beneficial effects, including enhanced 
neuroplasticity (Efrati et al., 2013), inhibition of matrix 
metalloproteinase with subsequent attenuation of hemor-
rhagic transformation (Soejima et al., 2013), modulation 
of osteopontin expression (Hu et al., 2015) and upregula-
tion of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/
antioxidant defense pathway (Xue et al., 2016). Among 
these, the impact of HBO on inflammatory signals turns 
out to be an important part of the HBO-mediated neuro-
protection in cerebral ischemia. HBO is linked to a strong 
downregulation of the activity of p38 mitogen-activated 
protein kinases (p38 MAPK) (Grimberg-Peters et al., 
2016), which is closely related to inflammation. HBO 
significantly reduced the expression of hypoxia-inducible 
factor 1alpha (HIF-1a), p53, and Bcl-2/adenovirus E1B 
19 kDa-interacting protein 3 (BNIP3) extracts from the 
ischemic tissue in an ischemic wound model, and reduced 
the expression of endothelial growth factor (Zhang et 
al., 2008), cyclooxygenase-2, interleukine (IL)-1β and 
neutrophil infiltration, thus attenuating ischemia-induced 
inflammation (Cheng et al., 2011).

Molecular Hydrogen (H2) 
H2, an inert and non-functional molecule that normally 
exists in our body, also acts as a neuroprotective agent 
against cerebral ischemia (Ohta, 2014), with multiple stud-
ies demonstrating that H2 impacts ischemic inflammatory 
signaling (Buchholz et al., 2008; Cai et al., 2013; Li et 
al., 2013). H2 directly attenuates inflammation by inhibit-
ing nuclear factor kappa B (NF-κB) pathway activation 
(Chen et al., 2010), NO formation, tumor necrosis factor 
alpha (TNFα)-induced IL-6 and intercellular cell adhesion 
molecule-1 (ICAM-1) mRNA expression (Buchholz et al., 
2008; Cai et al., 2013; Li et al., 2013) and downregulating 
the expression of chemokine (C-C motif) ligand 2 (CCL2), 
interferon (INF)-γ, and prostaglandin E2 (PGE2) (Kawasaki 
et al., 2010), all of which are important inflammatory mol-
ecules that contribute to ischemic and hemorrhagic brain 
injury (Ansar et al., 2014; Pennypacker, 2014; Shimamura 
and Ohkuma, 2014; Brown et al., 2015; Wu et al., 2015; 
Xiong and Yang, 2015). In addition to a direct impact on 
inflammatory signaling molecules, H2 also affects oxida-
tive stress and thus regulates inflammation indirectly. H2 
reduces oxidative stress by inducing anti-oxidation systems, 
including hemeoxygenase-1 (HO-1), superoxide dismutase 
(SOD), catalase and myeloperoxidase (Huet et al., 2016). 
In particular, the up-regulated HO-1, a microsomal enzyme 
that degrades heme to CO, free iron, and biliverdin (Cre-
mers et al., 2014), functions as an important signal bridging 
oxidative stress and inflammation. Nrf-2 is a transcription 

factor with pleiotropic capacity and recruits multiple path-
ways aiming at reducing brain damage after intracerebral 
hemorrhage (Zhao and Aronowski, 2013). The activation 
of Nrf-2 can coordinate and regulate a number of oxidative 
stress-induced signals, such as HO-1 (Ishii et al., 2000). 
Additionally, HO-1 can feedback onto Nrf2 by modulating 
the subcellular distribution and activation of Nrf2 (Biswas 
et al., 2014).

Co
CO is a soluble gas generated almost exclusively through 
the degradation of heme by hemeoxygenase (HO) enzymes, 
including HO-1 (Xiong et al., 2014). Mice exposed to low 
concentrations of CO after permanent ischemia experience 
less severe brain damage and attenuation of neurological 
deficits (Wang et al., 2011; Oh and Choi, 2015). As we 
have mentioned, HO-1 can be induced by Nrf2 and thus 
bridges the regulation of oxidative stress to the regulation 
of inflammatory signals (Ishii et al., 2000; Biswas et al., 
2014). Together with NO, CO can also be synthesized 
from L-arginine by the catalytic reaction of NO synthase 
(NOS) (Nathan, 1992). NO is a highly reactive free radical 
that plays important roles in the regulation of vascular and 
immune functions, anti-apoptosis and neurotransmission 
by producing cyclic guanosine monophosphate (cGMP), 
nitrosyl iron complexes, and S-nitrosothiols (Chung et al., 
2008). Similar to NO, CO also has potent immunomodula-
tory capabilities and thus can potentially impact the corneal 
inflammatory response (Patil et al., 2008). Generation of 
CO in microglia is essential for effective elimination of 
blood and heme after subarachnoid hemorrhage that may 
otherwise lead to neuro-inflammation (Zhao et al., 2015) 
and neuronal loss (Schallner et al., 2015; Ma et al., 2016). 
Notably, most of the studies describing CO as a neuroprotec-
tive gas use a relatively low dose. It needs to be remembered 
that higher concentrations of CO are potently neurotoxic 
and can result in memory loss, confusion and even more 
severe symptoms in and of itself. 

No
NO has dual effects during different phases of ischemic 
injury depending on the expression of different NOS 
enzyme isoforms, which include inducible NOS (iNOS), 
neuronal NOS (nNOS) or endothelial NOS (eNOS) 
(Iadecola, 1997). Upon cerebral ischemia, NO concen-
tration decreases, while immediately after reperfusion, 
NO biosynthesis is triggered by overactivation of nNOS 
(Ito et al., 2010). After 12 hours of reperfusion, the level 
of NO increases again due to the induction of iNOS ex-
pression (Khan et al., 2005). At this stage, NO is derived 
from different sources, including microglia (Khan et al., 
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Xenon
Xenon is one type of anesthetic gas that has gained pro-
found attention because of its potentially neuroprotective 
properties. As an anesthetic gas, xenon has the advantage 
of more rapid recovery compared to isoflurane-nitrous 
oxide anesthesia or propofol anesthesia (Rossaint et al., 
2003). As a neuroprotective gas, xenon can improve fo-
cal ischemic outcomes (Sheng et al., 2012). In terms of 
potential mechanism, xenon inhibits the catalytic activity 
of tissue plasminogen activator (tPA), and thus suppresses 
tPA-induced hemorrhage and disruption of the blood-brain 
barrier (David et al., 2010). However, in terms of the im-
pact of xenon on the post-stroke inflammatory responses, 
evidence is still lacking and further studies would like to 
yield interesting finding. 

Conclusions
Collectively, studies in the past two decades have led to 
a better understanding of the pleiotropic mechanisms of 
protection afforded by medical gases against cerebral 
ischemic injury. Inflammation is one of the important 
mechanisms targeted by various medical gases and it 
bridges a wide range of signaling pathways. Understanding 
those mechanisms and their interactions may give rise to 
novel therapeutic targets and promote clinical translation 
of medical gas therapy. 
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