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Exposed to changes in their environment, microorganisms will adapt their phenotype,
including metabolism, to ensure survival. To understand the adaptation principles,
resource allocation-based approaches were successfully applied to predict an optimal
proteome allocation under (quasi) steady-state conditions. Nevertheless, for a general,
dynamic environment, enzyme kinetics will have to be taken into account which was not
included in the linear resource allocation models. To this end, a resource-dependent
kinetic model was developed and applied to the model organism Saccharomyces
cerevisiae by combining published kinetic models and calibrating the model
parameters to published proteomics and fluxomics datasets. Using this approach, we
were able to predict specific proteomes at different dilution rates under chemostat
conditions. Interestingly, the approach suggests that the occurrence of aerobic
fermentation (Crabtree effect) in S. cerevisiae is not caused by space limitation in the
total proteome but rather an effect of constraints on the mitochondria. When exposing the
approach to repetitive, dynamic substrate conditions, the proteome space was allocated
differently. Less space was predicted to be available for non-essential enzymes (reserve
space). This could indicate that the perceived “overcapacity” present in experimentally
measured proteomes may very likely serve a purpose in increasing the robustness of a cell
to dynamic conditions, especially an increase of proteome space for the growth reaction as
well as of the trehalose cycle that was shown to be essential in providing robustness upon
stronger substrate perturbations. The model predictions of proteome adaptation to
dynamic conditions were additionally evaluated against respective experimentally
measured proteomes, which highlighted the model’s ability to accurately predict major
proteome adaptation trends. This proof of principle for the approach can be extended to
production organisms and applied for both understanding metabolic adaptation and
improving industrial process design.
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INTRODUCTION

The ability of microorganisms to adapt to changing extracellular
environmental conditions is essential for their survival and leads
to metabolic robustness and competitive fitness (Gerosa and
Sauer, 2011; Chubukov et al., 2014). Depending on the
environmental conditions, different metabolic functions and/or
flux distributions are needed that require a different proteome
composition (Litsios et al., 2018). The proteome adaption is
triggered by not yet fully unraveled protein signaling cascades
and further mechanisms (Zhao et al., 2016). An intuitive example
of this adaption is described for Saccharomyces cerevisiae (S.
cerevisiae) when shifting from growth under minimal to rich
medium conditions; cells grown under rich nutrient conditions
require a significantly smaller proteome fraction for biosynthesis
genes (de Godoy et al., 2008; Nagaraj et al., 2012; Liebermeister
et al., 2014) than cells grown in the mineral medium, in which
amino acids and other biomass precursors are not present but
have to be synthesized from glucose.

On the other hand, next to optimization of proteome
resources, cells do maintain metabolic fitness and/or
robustness (Basan, 2018), especially under substrate limiting
conditions cells seem to invest in proteins that may not be
required yet, for example, to quickly utilize alternative
substrates without delays in growth (Dekel and Alon, 2005).
However, any additional increase in protein abundance also
results in higher costs due to occupation of ribosomes,
resource consumption, and potentially additional protein
misfolding. Different hypotheses have been formulated and
respective models were developed to understand the
optimization and trade-offs.

Constraint-based modeling approaches are essential to
analyze putative properties of metabolic networks. The well-
established and frequently used method for the analysis of
(large genome-scale) metabolic networks is flux balance
analysis (FBA) (Varma and Palsson, 1994; Orth et al., 2010).
This method calculates feasible solutions under steady-state
conditions, depending on a defined objective function
(biomass or ATP maximization) (Schuetz et al., 2007).
However, this method cannot be applied to dynamic
cultivation conditions and does not consider gene regulation
or protein expression. To overcome these limitations, dynamic
flux balance analysis (dFBA) was developed to maximize biomass
growth over time, with changing extracellular conditions
(Mahadevan et al., 2002). To include the synthesis costs of
proteins and ribosomes, resource balance analysis (RBA) was
developed, allowing for the prediction of the optimal allocation of
intracellular resources for steady-state growth (Goelzer et al.,
2015). Looking at cellular behavior in terms of resource allocation
has also been used to explain overflow metabolism (Basan et al.,
2015; Nilsson and Nielsen, 2016). In this paradoxical
phenomenon, cells use catabolic pathways with low ATP
yields per substrate such as alcoholic fermentation when
growing at high growth rates, even when a high-yield pathway
such as respiration is available. Following the current hypothesis,
the answer is that these fermentative pathways are much cheaper
in terms of proteome space cost, meaning that the ATP

production rate per protein mass is larger (Nilsson and
Nielsen, 2016).

Combining approaches from both dFBA and RBA leads to
conditional FBA (cFBA) (Rügen et al., 2015; Reimers et al., 2017),
which combined both temporal changes in the extracellular
environment with constraints on intracellular resource
allocation. These powerful tools are able to reproduce and
predict metabolic phenotypes beyond steady-state conditions
and extend our understanding of microbial physiology.
Nevertheless, short-term dynamics require yet another
mechanism: kinetics instead of a quasi-steady state of the
intracellular metabolites to capture the rapid intracellular
changes of metabolites as well as kinetic regulation.

Experimentally, S. cerevisiae cultures have a different
metabolic response to substrate perturbations depending on
the cultivation condition, especially cells cultured under
repetitive dynamic substrate conditions, the so-called “feast/
famine” regime showed a different response compared to
cultures grown under steady-state limitations (Suarez-Mendez
et al., 2014). Ethanol production after a substrate pulse was
observed for cultures originating from a chemostat (Wu et al.,
2006), while no ethanol was observed for cells under a repetitive
excess/limitation regime (Suarez-Mendez, 2015). Furthermore,
the intracellular response to substrate excess has significantly
different properties: while the ATP concentration dropped after a
pulse originating from a chemostat culture (Wu et al., 2006), a rise
was observed for a feast/famine culture. Moreover, the biomass
yield of a feast/famine culture was lower than that of a chemostat
culture. Last, chemostat-grown cells showed short- and long-term
accumulation of glycolytic intermediates after a substrate pulse,
while this was not observed for feast/famine cultures. Storage
synthesis and degradation leads to “wasting” of ATP (futile cycle)
which was shown to rescue cellular metabolism, that is, balance
pathway capacities in case of sudden perturbations (van Heerden
et al., 2014).

The observed differential metabolic response implies an
adaptation during the prior dynamic growth condition. Similar
differences in adaptations have been observed earlier, for
example, the lag phase before exponential growth (Brejning
and Jespersen, 2002; Jõers and Tenson, 2016), upon a change
in the substrate (Chu and Barnes, 2016), and in the period just
after switching to a different dilution rate in a chemostat (Abulesz
and Lyberatos, 1989).

There are three levels of metabolic regulation commonly
assumed to be dominant (Wegner et al., 2015): 1) allosteric
regulation, in which enzyme activity is modified by non-
covalent binding with other molecules. The response time of
this type of regulation is almost instant (Pincus et al., 2017), and it
is often used for local fine-tuning in metabolism, and thus it is
unlikely to cause this adaptation effect. 2) Post-translational
modifications (PTMs), in which enzyme activity is altered by
the addition of covalent attachments. The timescale of this
response is a matter of seconds to minutes (Karim et al.,
2014), and it is often part of short-term responses to stress
situations (e.g., sudden changes in the environment). 3)
Translational regulation, which influences the composition of
the proteome. This regulation has a response time of hours
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(Cohen et al., 2008), which is in the same order of magnitude as
the generation time, and thus the choices made at this level are
important for the long-term strategy. It is also considered the
most expensive regulatory level: degradation and synthesis of
proteins requires significant amounts of ATP.

Recent studies have shown that the amount of protein in a cell is
limited due to macromolecular crowding, the kinetics of protein
synthesis, and degradation (Vazquez et al., 2008; Molenaar et al.,
2009). When all the proteome space is occupied, increasing the
concentration of one protein is only possible at the cost of another
(Pareto Frontier) (Mori et al., 2019).

We were curious to study the impact of short-term vs. long-
term adaptations to substrate perturbations encountered in
natural and laboratory environments. Therefore, we developed
a resource-dependent kinetic model and exposed this to different
dynamic environments to evaluate the impact of the allocation of
proteins in the cellular proteome on the metabolic fitness of a
yeast cell under short-term extracellular substrate dynamics.

MATERIALS AND METHODS

Proteome-Dependent Kinetic Yeast Model
The proteome-dependent kinetic yeast model is based on a
system of ordinary differential equations (ODEs) that describe
the mass balances of all intra- and extra-cellular metabolites. This
system of ODEs is solved with the ode15s function in MATLAB
2020b, for which the absolute tolerance is set to 1e-4, and all
variables are constrained to be higher than zero with the
“nonnegative” setting. A detailed description of the final
proteome-dependent kinetic yeast model used is given in
Supplementary Material S1.

To predict which proteome composition is the most
competitive for defined environmental conditions, a Monte
Carlo approach is used. The metabolic behavior of 1,000
random proteomes, generated around a seed proteome, is
compared based on an objective function. Under steady-state
conditions, the minimization of the residual substrate
concentration was used as an objective function. Under
dynamic conditions, the minimization of a time-weighted
average substrate concentration was used, to promote fast
consumption of the available substrate, therefore selecting for
competitive proteomes:

∫tcycle

0
cs · t dt

∫tcycle

0
t dt

.

Subsequently, it is determined whether the solution is
balanced. If the objective function is optimized and the
solution is balanced, the objective function and the seed
proteome are updated. In the next iteration, the proteome is
then generated around this new seed proteome, with a maximum
deviation of 25% per sector.

Proteome Allocation to Model Sectors
All proteins from experimental datasets are sorted in the same
nine protein sectors that are used in the model, to allow for a

direct comparison of the experimental proteomes and the
optimized proteomes. The proteins are categorized per sector
based on either the protein name or the description in the KEGG
database (Goffeau et al., 1996; Kanehisa et al., 2016)
(Supplementary Material S7). The whole dataset is sorted
with the MATLAB 2020b functions “strcmp” and “contains,”
which are used to search the dataset for specific names or
keywords to group the proteins.

Parameter Optimization
The proteome cost parameters are estimated by optimization
with the MATLAB 2020b function fmincon. For all parameter
optimizations, a multi-start approach is used. This approach
minimizes the risk of reaching a local minimum in the
solution space by starting the optimization from different
initial guesses. The tolerance of the function is set to 1e-12 for
all optimizations. For the estimation of the kcat parameters, the
difference between the experimental and simulated fluxes is
minimized. Additional weight in the objective function was
applied for the growth rate, as kcat parameters have to be
rejected if the maximum growth rate is not reached.

Overcapacity Simulations
The amount of overcapacity in the yeast proteome is determined
by introducing a 10th protein sector. This new protein sector does
not have a function for the cells, and hence, only takes up space in
the proteome. Therefore, the fraction of the proteome that can be
allocated into the extra sector without altering the metabolic
fluxes is defined as overcapacity. The overcapacity is estimated for
each sector separately, to minimize the changes in each step. The
sectors are sorted in a decreasing order and then optimized for
overcapacity in this order. The amount of overcapacity in each
sector is determined in a step-wise approach. Per iteration, one
percent of the specific protein sector is removed and allocated
into the extra sector. Subsequently, the fluxes of the adapted
proteome are compared to the reference fluxes, and only if the
change in the fluxes remains within the boundaries, the seed
proteome is updated. This new seed proteome is then used for the
next iteration, in which the sector size is again decreased by 1%.
By decreasing the sector size by 1% of the current size, the step
size is reduced with each iteration. If the flux profile deviates more
than the threshold value, the adapted proteome allocation is
rejected. The fluxes are evaluated based on the following criterion:
the average value of the uptake and growth fluxes should not
deviate more than 1% from the reference flux, to ensure that the
same substrate uptake and growth rates are achieved.

RESULTS

Construction of a Proteome-Dependent
Kinetic Model
We wanted to construct a proteome-dependent kinetic model,
which was small, but still able to reproduce the main phenotypes
observed for S. cerevisiae. Furthermore, it should be calibrated
with available experimental data. We constructed the model
based on the kinetic model of yeast glycolysis (Teusink et al.,
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2000) which we extended with reactions for the trehalose cycle
and respiration pathway as well as a growth reaction (see
Figure 1). Each (lumped) reaction has been associated with a
proteome fraction resulting in a proteome-dependent kinetic
model of yeast central carbon metabolism and growth.

The Embden–Meyerhof glycolytic pathway has been
implemented as three lumped reactions (uptake, upper, and
lower glycolysis) with three intermediates: G6P, FBP, and
pyruvate. The stoichiometry of the growth reaction was based
on Suarez-Mendez et al. (2016). The NADPH requirement was
assumed to be met by using the pentose phosphate pathway,
which in sum (together with PGI) converts one G6P to six CO2

and 12 NADPH. The required NADPH flux was balanced by a
respective consumption of G6P. The ATP demand for growth has
been derived from Della-Bianca et al. (2014) taking into account
that the demand was expressed as catabolized glucose amounts.
Furthermore, the trehalose cycle was included as two lumped
reactions, based on an existing kinetic model of the trehalose cycle
(Smallbone et al., 2011) (see Supplementary Material S1 for
details).

Due to a lack of kinetic models of yeast TCA cycle and
oxidative phosphorylation, the two respiratory reactions (from
cytosolic NADH and pyruvate, vNDE, and vTCA, respectively) have
been implemented using general Michaelis–Menten kinetics.
However, the two reactions are interdependent—both connect
to the electron transport chain—and consequently, the rate is
determined by the same proteome fraction. Amaximum value for
the rate of the two reactions combined is defined, reflecting the
capacity in the electron transport chain, limited by the provided
proteome sector size (see Supplementary Material S1).

The biomass reaction contains many complex reactions, and
the kinetics of the full process currently cannot be derived from
basic principles. Therefore, a holistic approach based on
experimental observations was chosen, i.e., the growth rate has
been found to correlate with the energy charge (Boer et al., 2010).

Here, the growth rate is described by a sigmoid function that is
the most sensitive within the range of an energy charge between
0.7 and 0.9 as observed for growing cells (Boer et al., 2010).

Calibration of Model Parameters Using
Available Experimental Data
The specific activity for the defined pathways has a major impact
on model predictions. To obtain realistic values, the specific
enzyme activities (kcat) were estimated from experimental
omics datasets. In the proposed model, the kcat,i for each
reaction i is defined as the maximum reaction rate per fraction
of proteome (mol/Cmolx/h), where 100% proteome reflects
500 mg protein per gX (Ertugay and Hamamci, 1997). Hence,
the maximum rate of the reaction i (Vmax,i) with a given sector
fraction φi is:

Vmax ,i � φi · kcat,i.
From this, �c enzymatic rate Vi is calculated by multiplying the
Vmax ,i with the function f i( �c ) describing the effects on the
enzymatic rate due to substrate and product concentrations as
well as effects by allosteric activators and inhibitors (see
Supplementary Material S1 for specification of f i( �c ) for each
reaction):

Vi � Vmax ,i · f i( �c ).

The kcat parameters have been estimated by combining the
proteome and fluxome measurements under batch conditions.
The proteome fractions were taken from de Godoy et al. (2008)
using S. cerevisiae grown under batch conditions with a defined
glucose minimal medium and aligned according to the protein
classification in the KEGG database. Specifically, grouping all
proteins with the KEGG BRITE label “Genetic Information
Processing” and all proteins with the “Metabolism” label that
were not classified as “Central Carbon Metabolism” or “Energy
Metabolism” being assigned to the “growth protein sector,”
assuming that their size is growth rate-dependent in the
minimal medium. Furthermore, for the calculations, it was
assumed that the whole proteome sector of cells grown under
excess substrate at the maximal growth rate was used.

The corresponding flux distribution, i.e., under batch
conditions was obtained from Heyland et al. (2009) with the
exception of fluxes for the trehalose cycle—these were obtained
from the feast/famine experiments conducted by Suarez-Mendez
et al. (2017). For both trehalose synthesis and degradation, the
maximum value of the flux reached in one feast/famine cycle was
used, which was 5.10·10−3 mol/CmolX/h for trehalose synthesis
and 4.09·10−3 mol/CmolX/h for the degradation of trehalose. The
kcat value for maintenance was set to 0.0155 mol/CmolX/h, which
is the maintenance requirement measured at near-zero growth
rates (Vos et al., 2016).

To obtain the kcat parameters, parameter optimization was
performed, estimating the parameters which produced the
smallest deviation between the simulated and experimental
fluxes (Heyland et al., 2009), using the batch proteome
composition taken from de Godoy et al. (2008) (see

FIGURE 1 | Map showing the metabolic network used in this model.
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Supplementary Material S2 for details). Using this approach, the
proteome-dependent kinetic model was able to largely reproduce
the experimental flux distribution (Table 1), and this kcat
calibration was used in all further calculations.

Prediction of the Steady-State Growth
Phenotype Under Carbon-Limited
Steady-State Conditions
S. cerevisiae is a Crabtree-positive yeast, and thus fermentation is
observed next to oxidative phosphorylation at substrate uptake
rates above an observed “critical” rate (Barford and Hall, 1979).
The ability of the model to reproduce the Crabtree effect is
assessed by optimizing proteomes for dilution rates in the
range from 0.05 h−1 to 0.4 h−1. The proteome optimization was
started at the dilution rate of 0.4 h−1 using the experimental batch
proteome as a starting value. The most competitive proteome out
of 1,000 randomly generated proteome allocations was selected
using minimization of the residual substrate concentration as an
objective function. Subsequently, this procedure was repeated for
the next lower dilution rate. The optimal proteome allocation of
the previous dilution rate was used as a starting value. To validate
the model, the predicted fluxes and metabolite concentrations
were compared with a flux and metabolome dataset (Suarez-
Mendez et al., 2016) at different dilution rates under chemostat
conditions. This comparison of predicted and measured fluxes
and metabolite concentrations can be found in Supplementary
Material S3 and in Supplementary Figures S2, S3, respectively.

The experimental data for ethanol production and oxygen
consumption in Figure 2 show that the ethanol production starts
at a dilution rate of 0.28 h−1 (Rieger et al., 1983; Van Hoek et al.,
1998). Above this critical dilution rate, the oxygen consumption
rate decreases, while ethanol production keeps increasing.
Ethanol production is first predicted by the model for a
dilution rate of 0.25 h−1, which is a lower rate than the
experimental data. Furthermore, there is no decrease in the
oxygen consumption rate above a dilution rate of 0.28 h−1 for
the optimized proteomes, which was observed in experimental
studies (Van Hoek et al., 1998). From the model, this can be
explained by the proteome-specific ATP production “cost”:
Respiration has a high yield compared to fermentation
(Table 2.). Hence, reducing the size of the respiration
proteome sector will not be predicted by the model as it is not
beneficial. The predicted plateau originates from a constraint that
was introducedmanually (12% of the proteome for respiration) to
reflect the maximum oxygen consumption rate measured by
Rieger et al. (1983) after long-term evolution. The continuous
increase in the ethanol production rate can then be explained by
the increasing need for ATP with an increasing growth rate while
respiration is at its maximum.

This result conflicts with the discussed dataset of Van Hoek
et al. (1998) as well as the model predictions of Nilsson and
Nielsen (2016), which was partly based on this experimental
dataset. This mismatch and conclusions will be discussed in more
detail later. Notably, there is also experimental evidence from
previous studies that the predicted plateau is reasonable. It was

TABLE 1 | Comparison of the predicted fluxes of a chemostat experiment at a dilution rate of 0.4 h−1 with the experimental flux distribution of Heyland et al. (2009). Upt,
uptake; UGlc, upper glycolysis; LGlc, lower glycolysis; Ferm, fermentation; Esnk, electron sink/glycerol pathway; Resp, respiration; Trsn, trehalose synthesis; Trdg,
trehalose degradation; Grwt, growth.

Upt Uglc LGlc Ferm Esnk Resp Trsn Trdg Grwt

Predicted flux (mol/Cmolx/h) 0.504 0.4669 0.8251 0.7391 0.0898 0.0719 0.0072 0.0072 0.4
Experimental flux (mol/Cmolx/h) 0.4753 0.4373 0.8745 0.7272 0.0428 0.0808 0.0051 0.0041 0.4
Deviation +6% +7% -6% +2% +110% -11% +41% +76% 0%

FIGURE 2 | Comparison of predicted and observed phenotypic rates (ethanol excretion, oxygen uptake rate, and biomass yield) at different dilution rates. Blue
represents the best proteome out of 1,000 randomly generated proteomes; red represents the best proteome out of 100 randomly generated proteomes (limited
evolution with adaptation from the batch proteome). For the experimental data similarly–red represents data from Van Hoek et al. (1998) (seven generations at steady-
state starting from batch), and blue represents a respiration-adapted culture (Rieger et al., 1983).
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shown that the respiratory repression observed by VanHoek et al.
(1998) could be negated upon long-term adaptation (Barford and
Hall, 1979; Rieger et al., 1983; Postma et al., 1989), and a stable
maximum oxygen uptake rate above a dilution rate of 0.28 h−1

was found.
To test the hypothesis of short- vs. long-term evolution, the

proteome optimization approach was performed with a reduced
number of generated proteomes and compared to the
experimental data of Van Hoek et al. (1998) (Figure 2, red
line). With a high number of generated proteomes for the
optimization, the experimental findings of long-term
chemostats could be reproduced. From these predictions, we
hypothesize that cells not exposed to long-term glucose-
limited conditions did not yet reach the “optimal” proteome
allocation and respective metabolic phenotype. This set number
of 1,000 simulations was chosen because only very limited further

optimization of the objective function was observed after this
number of simulations. As such, 1,000 simulations were
concluded as sufficient to reach the optimum. Work on
adapted glucose-grown cultures, at which point glucose
repression on respiration disappears, is cultivated for at least
50 generations at the same dilution rate (Barford and Hall, 1979).
A work by Van Hoek et al. (1998) describes the Crabtree effect
with its typical glucose repression of respiration, by cultivating
cultures at the same dilution rate for seven generations.
Therefore, a set number of 100 simulations was chosen to
reflect this state of limited adaptation of the proteome from
batch growth conditions.

Looking into the global trends in the fully evolved proteome
allocation at different dilution rates (Figure 3, see
Supplementary Material S4 for sensitivity analysis), an
increase in the dilution rate can be seen for nearly all sectors

TABLE 2 | Comparison of the proteome-specific ATP yield for fermentation and respiration obtained by Nilsson and Nielsen( 2016) and this study. Values of this study were
derived from simulations performed at a growth rate of 0.4 h−1.

Fermentation (molATP/gprot/h) Respiration (molATP/gprot/h)

Nilsson and Nielsen (2016) 0.40 0.21
This study 0.18 0.20

FIGURE 3 | Predicted proteome fractions at steady-state as a function of the dilution rate. Blue represents the best proteome out of 1,000 randomly generated
proteomes; red represents the best proteome out of 100 randomly generated proteomes. The values shown are averaged over 40 optimization runs, and the single
results are displayed in the Supplementary Figure S4. Upt, uptake; UGlc, upper glycolysis; LGlc, lower glycolysis; Ferm, fermentation; Esnk, electron sink/glycerol
pathway; Resp, respiration; Grwt, growth; Ocap, overcapacity. The trehalose sector was decreased to zero in all instances of the overcapacity simulation, and
therefore not shown in the figure.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2022 | Volume 9 | Article 8634706

Verhagen et al. Predicting Metabolic Adaptation in Yeast

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


leading to the unused space (in the following called overcapacity
sector, last panel). The overcapacity sector accounts for the
fraction of the proteome which remains unused within the
optimized proteomes. Before discussing specific trends, the
high dilution rates will be highlighted. Even close to the
maximal growth rate, the model predicts a small overcapacity
sector. Nevertheless, please note that the batch and very high
dilution rate might still have different optimization criteria; here,
in the model, minimal substrate concentration was applied as the
objective function. Because of the optimization approach, some
robustness is required that was not further tuned as the fraction is
rather small (7%) and does not change trends. Additionally, the
algorithm samples from an enumerated number of randomly
generated proteomes and therefore requires some buffer for
robustness.

A major difference between this model and earlier studies
(Nilsson and Nielsen, 2016) is that the proteome space limit is not
reached at the critical growth rate (D = 0.28 h−1). At the critical
dilution rate (D = 0.28 h−1), the overcapacity sector still has a
significant fraction (21%). As briefly discussed earlier, Nilsson
and Nielsen (2016) postulated that the Crabtree effect could be
explained by the catalytic efficiency of the fermentation and
respiration pathways expressed as ATP per amount of protein
used in the pathway (Table 2). To estimate these catalytic
efficiencies, Nilsson and Nielsen (2016) used the fluxes and
specific enzyme activities for fermentation and respiration,
under the assumption that all enzymes operate at half of their
maximum specific activity , whereas in this model, the estimation
of the catalytic efficiency is based upon the proteome and fluxome
dataset, using dynamic saturation of enzymes. The estimation
proposed by Nilsson and Nielsen (2016) subsequently produced a
proteome composition in which the mass of all respiration
proteins is 19 times larger than the protein mass of all
glycolysis enzymes , while from proteome measurements it
was observed that the mass of all respiration proteins is
0.3 times the size of the mass of all glycolysis proteins (de
Godoy et al., 2008; Elsemman et al., 2022). This large
difference in proteome allocation between glycolysis and
respiration causes the catalytic efficiency of fermentation to be
overestimated. The conclusion that the proteome is fully allocated
after the critical growth rate is reached leads to the prediction that
the “optimal” endpoint of proteome allocation is reached, which
cannot explain datasets by Barford and Hall (1979); Rieger et al.
(1983). Additional modeling studies by Elsemman et al. (2022)
suggest that the decrease in oxygen consumption at higher
growth rates observed by Van Hoek et al. (1998) is not caused
by a limitation in proteome capacity but rather by a maximum
rate of mitochondria biogenesis, in which long-term adaptation
could overcome the described glucose repression of respiration.

Prediction of Proteome Allocation Under
Dynamic Conditions
The proteome compositions, especially at low dilution rates were
characterized by a significant overcapacity sector. The kinetic
proteome allocation approach could not yet answer why the cells
maintained such an excess proteome. As discussed earlier, the

hypothesis for a proteome overcapacity is competitiveness and
robustness including dynamic environmental conditions.
Overcapacity could enable faster substrate uptake rates and
enable a competitive advantage and outcompete slower
consuming microbes (Jannasch, 1967). Furthermore, excess
capacity could enable a robust, balanced functioning of
pathways such as glycolysis (van Heerden et al., 2014) under
dynamic substrate conditions.

To test these hypotheses, we studied the predicted proteome
allocation under different repetitive substrate-feeding regimes
using the proteome-dependent kinetic model, using the
minimization of the time-weighted residual substrate
concentration as the objective function. With this approach,
we were able to select competitive proteomes with fast
substrate uptake rates. As a reference dynamic condition, an
experimentally explored feeding regime was chosen, i.e., a cycle
length of 400 s of which 20 s was used to feed the culture (D =
2 h−1), leading to the average dilution rate of D = 0.1 h−1 over the
complete cycle (Suarez-Mendez et al., 2014).

Proteome allocations and respective metabolic phenotypes
were then compared to the steady-state at the same (average)
growth rate. First, we studied the maximum, minimum, and
average enzyme saturation (V/Vmax) under dynamic
conditions compared to the enzyme saturation under
chemostat conditions (Table 3). Under dynamic conditions,
the maximal enzyme saturation is much higher (up to 92% for
the respiration reaction) than that under chemostat conditions
(77% for respiration). Nevertheless, the average enzyme
saturation over the whole cycle is actually lower than that
under the reference chemostat state (for respiration, 25%
compared to 77% at steady-state). This indicates that the
proteome optimization to some extent focuses on the
“peak” flux, especially for the large sectors of respiration
and growth, indicating high usage of the available flux
capacity while on average leaving a large overcapacity over
the whole cycle. This enables a rapid consumption of the
substrate as soon as it becomes available, which was the
optimization criteria.

We were now curious to see how the perturbation strength
would influence the proteome allocation. Therefore, the length of
the feeding period was varied at the same average dilution rate,
resulting in different substrate perturbation intensities. The
respective predicted proteome allocations were calculated and
compared (Figure 4) for the different ratios of feeding time over
cycle time (TF/TC). TF/TC values were chosen as log2
increments from the experimentally used TF/TC value of 1/20
(Suarez-Mendez et al., 2014).

The growth sector fraction increased with the perturbation
intensity, suggesting that this strategy was the most effective
measure to survive the higher substrate concentration variations
(from faster feeding) and consequently high flux dynamics. The
growth reaction seemed to act as an efficient and fast sink for
substrate and ATP. However, in reality, the growth sector does
not consist of a single reaction and may not be able to provide a
rapid response upon glucose influx. For this reason, two other
scenarios were additionally evaluated: 1) the regulation of the
trehalose cycle upon repeated substrate pulses and 2) the
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regulation of the ratio between upper and lower glycolysis (see
Supplementary Material S6).

Impact of the Proteome Fraction on the
Trehalose Cycle
The trehalose cycle has been described to function as a “safety
valve” upon large changes in the glycolytic flux (Thevelein and
Hohmann, 1995; Blomberg, 2000; van Heerden et al., 2014;
Vicente et al., 2018). Under dynamic conditions in yeast, it
was found that a significant amount of imported glucose was

recycled through the trehalose cycle, especially during periods of
high flux changes (Suarez-Mendez et al., 2017). To evaluate the
effect of storage metabolism activity under dynamic conditions,
the reference condition [D = 0.1 h-1, TF/TC = 0.05, (Suarez-
Mendez et al., 2014)], was further analyzed. We varied the
trehalose sector size between 0 and 1% (Figure 5) and
compared the response of metabolism using FBP and Pi as
indicators. A balanced metabolic response will lead to
repetitive cycles in FBP and Pi. Such repetitive response was
observed for proteomes with a trehalose sector larger than 0.1%.
Increasing the trehalose sector above 0.1% leads to reduced

TABLE 3 | Enzyme saturation, i.e., v/vmax under dynamic feeding conditions compared to steady-state (both at a dilution rate of D = 0.1 h-1). For dynamic conditions, v/vmax

is calculated at the maximum rate during the cycle and the minimum as well as the average over the cycle. Upt, uptake; UGlc, upper glycolysis; LGlc, lower glycolysis;
Ferm, fermentation; Esnk, electron sink/glycerol pathway; Resp, respiration; TrSn, trehalose synthesis; TrDg, trehalose degradation; Grwt, growth.

Upt Uglc LGlc Ferm Esnk Resp TrSn TrDg Grwt

Max V/Vmax ratio under FF 6% 19% 8% 25% 46% 92% 79% 11% 100%
Min V/Vmax ratio under FF <1% <1% <1% <1% <1% 1% <1% 4% <1%
Average V/Vmax ratio under FF 1% 3% 1% 4% 7% 25% 10% 7% 24%
V/Vmax ratio under chemostat <1% 2% 6% - 13% 77% - - 74%

FIGURE 4 | Proteome allocation as a function of the ratio of feeding time over cycle time (TF/TC). Further proteome sector fractions are shown in Supplementary
Material S5.

FIGURE 5 |Concentration time course over repetitive cycles (D = 0.1 h−1, TF/TC = 0.05) for different trehalose sector fractions (blue = 0.1 red 1%). Shown are FBP
and Pi as representative metabolites. For trehalose sector fractions <0.1%, no stable cycles were obtained.
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fluctuations in G6P/FBP and Pi, suggesting a more robust
metabolic response. Simulated changes in FBP and Pi are in
line with results from previous work by van Heerden et al. (2014).

Comparison of the Model Predictions to
Experimental Proteomes
To evaluate the prediction accuracy and trends of the predicted
proteomes under dynamic conditions, the simulated proteome
adaptation from chemostat to feast/famine conditions was
compared with the experimentally measured proteome fold
changes between chemostat and feast/famine conditions
(Verhagen et al., 2022) (Figure 6). Proteins of trehalose/
glycogen storage, ribosomes, and oxidative phosphorylation
were used as proxies for the storage, growth, and respiration
sectors, respectively (proteins categorized in the same way as
calibration approach, see Methods).

The model predicted the experimentally observed changes in
upper and lower glycolysis (Figure 6). The enzyme TDH
catalyzes the glyceraldehyde dehydrogenase reaction (TDH),
which forms ATP using Pi. However, if upper and lower
glycolysis reactions are imbalanced during high fluxes, this
reaction becomes a bottleneck, leading to the accumulation of
FBP and subsequently to an imbalancedmetabolism. Therefore, it
was expected that TDH had to be upregulated under substrate-
fluctuating conditions to facilitate balanced intermediates, which
was reflected in both the model predictions as well as in the

experimental dataset. The predicted change in lower glycolysis is
larger than that in the experimental data. This is likely caused by
the fact that simulated proteomes for chemostat conditions
contain no overcapacity in the lower glycolysis sector, whereas
experimental proteomes under chemostat conditions appear to
contain more overcapacity in this proteome sector. As such, the
fold change between measured and simulated values is higher.
Furthermore, the model reproduced the average change observed
for the uptake sector, although it should be noted that effects of
individual iso-enzymes (especially with regard to HXK/GLK,
which catalyzes the first step of glycolysis) were not taken into
account in the current model.

Significant deviations between experimental and predicted
fractions were observed for the storage sector. This was
significantly decreased experimentally, while the resource-
dependent kinetic model predicted an increase.
Experimentally, a decrease of 28%, from 0.25 to 0.2% of the
proteome, was observed, while an increase to 0.2% of the
proteome was predicted in the model. Possible reasons for this
difference in sector size could be: 1) the synthesis of trehalose has
additional functions in the cell which are not represented in the
model—it is described that trehalose plays an important role in
different stress responses, including severe substrate limitation at
low dilution rates (see also Supplementary Figure S3). 2) The
measured and predicted proteomes do not include neither post-
translational modifications, which are known to significantly
affect the kcat’s of enzymes in the trehalose cycle (Sengupta

FIGURE 6 | Protein concentration fold change from chemostat to feast/famine cultivation. The experimental fold change individual proteins are displayed as dots.
Proteins of trehalose/glycogen storage, ribosomes, and oxidative phosphorylation were used as proxies for the storage, growth, and respiration sectors, respectively.
Simulation fold changes for each sector are shown as vertical bars. The simulated storage sector for steady-state conditions was 0 and increased under simulated feast/
famine conditions. As such, no fold change could be calculated, and therefore this fold change is not shown.
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et al., 2011), nor changes that could occur during cell-cycle
progression.

Furthermore, there could also be a bias from the experimental
setup–the differences in the trehalose sector, combined with the
observed increase of the lower glycolysis sector, suggest that the
experimental chemostat proteome is potentially already primed
for dynamic environments, compared to experimental
conditions, and as such is more robust than the predicted
optimized chemostat proteomes.

CONCLUSION AND OUTLOOK

In this work, we developed a proteome-dependent kinetic
modeling framework that predicts the optimal proteome
composition for defined extracellular dynamic conditions. The
approach could reproduce observed complex metabolic
phenomena, such as the Crabtree effect, including long-term
adjustments under chemostat conditions.

Analysis of the predicted proteomes showed that under
substrate-limiting conditions (i.e., low dilution rates) with close
to constant extracellular concentrations, a significant part of the
optimized proteome is not required (thus a lot of overcapacity).
With increasing substrate availability and/or concentration
fluctuations, this overcapacity is shown to decrease. Cells
optimized for steady-state conditions were not able to survive
these substrate perturbations. This suggests that in reality, when
conditions are never as ideal and “optimal” as presented in the
model simulations, cells already possess proteome adjustments to
create a more robust metabolism, allowing them to cope effectively
with external perturbations such as substrate gradients.

Such adjustments to perturbations were found when
comparing steady-state and feast/famine condition predictions.
The approach generated a stable phenotype and the predicted
changes in proteome allocation, i.e., downregulation of uptake
and upper glycolysis sectors and upregulation of the lower
glycolysis sector were also found experimentally. This complex
and strongly kinetics-dependent prediction highlights the
relevance of kinetic properties also for the regulation of
protein expression. Nevertheless, to achieve this prediction,
some constraints, which had to be derived from experimental
observations, had to be included: the maximum mitochondrial
fraction and the glucose repression on fermentation. These
boundaries seemed to be only stretched after very long-term
evolution, as observed by Barford and Hall (1979). Following this

observation, the model was used to predict the proteome
composition and metabolic behavior of cells at different stages
of adaptation, able to simulate differences in cultivation history.
Thus, the modeling approach was able to cover a large range of
conditions and evolution outcomes, which could be specifically
relevant for the prediction of production process regimes running
over a long time span.
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