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Application Note

Introduction

Phenotypic assays have increasingly become a staple for 
biopharmaceutical R&D, with over half of first-in-class 
drugs having been estimated to originate from phenotypic 
instead of target-based screening campaigns.1 Among phe-
notypic approaches, image-based high-content screening 
enables discovery in more biologically relevant, cellular 
model systems and leveraging of spatiotemporal informa-
tion missing from biochemical target-based assays.2 More 
recently, new approaches such as the cell painting assay 
have taken a multiplexed approach employing several mor-
phological stains—instead of specific protein markers tied 
to a preselected biological response—in order to capture a 
broader, more unbiased profile of cellular phenotypes.3,4 In 
addition to the challenge of performing such assays, the 
analytical demands of identifying and classifying the result-
ing large volume of images with such high information con-
tent prove to be a major impediment to the routine 
application of multiplexed assays. In such situations, tradi-
tional computer vision analysis pipelines are complex and 

investment-intensive, creating an analytical bottleneck even 
when only a few phenotypes are present.

The recent introduction of deep learning-based methods 
presents a promising alternative solution capable of analyz-
ing complex data at the quality and speed required for rou-
tine pharma research applications.5 Image-based assays 
lend themselves to the application of deep learning thanks 
to recent progress in applying deep learning for general 
image recognition. As recently shown,6–10 deep learning-
based image analysis reduces the effort needed to analyze 
large amounts of complex image data fast enough and with 
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Drug discovery programs are moving increasingly toward phenotypic imaging assays to model disease-relevant pathways 
and phenotypes in vitro. These assays offer richer information than target-optimized assays by investigating multiple cellular 
pathways simultaneously and producing multiplexed readouts. However, extracting the desired information from complex 
image data poses significant challenges, preventing broad adoption of more sophisticated phenotypic assays. Deep learning-
based image analysis can address these challenges by reducing the effort required to analyze large volumes of complex 
image data at a quality and speed adequate for routine phenotypic screening in pharmaceutical research. However, while 
general purpose deep learning frameworks are readily available, they are not readily applicable to images from automated 
microscopy. During the past 3 years, we have optimized deep learning networks for this type of data and validated the 
approach across diverse assays with several industry partners. From this work, we have extracted five essential design 
principles that we believe should guide deep learning-based analysis of high-content images and multiparameter data: (1) 
insightful data representation, (2) automation of training, (3) multilevel quality control, (4) knowledge embedding and 
transfer to new assays, and (5) enterprise integration. We report a new deep learning-based software that embodies 
these principles, Genedata Imagence, which allows screening scientists to reliably detect stable endpoints for primary drug 
response, assess toxicity and safety-relevant effects, and discover new phenotypes and compound classes. Furthermore, 
we show how the software retains expert knowledge from its training on a particular assay and successfully reapplies it to 
different, novel assays in an automated fashion.
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sufficient quality to use for pharmaceutical screening. It 
also seems to work very well on complex phenotypic data 
such as that from cell painting assays with their holistic 
capability to relate phenotypic effects of compounds with 
known mechanism of action (MoA) to compounds with an 
unknown MoA. Despite the utility of such assays, their 
widespread adoption remains hampered by the lack of algo-
rithmic expertise among the biologists involved in assay 
development,2 difficulty in recruiting such specialists to 
drug discovery,11 and, until recently, the absence of an 
enterprise-appropriate software solution that easily inte-
grates into discovery science workflows and allows itera-
tive development and rapid assessment of screening assays 
for production use.

Here, we report an innovative deep learning application 
for automating the image analysis of phenotypic screens 
that enables their broad implementation, acceleration, and 
scaling. The application, Genedata Imagence, generates 
pharmacologically meaningful phenotypes via a single 
workflow from assay development to production screening 
(Fig. 1). While a classical analysis pipeline requires multi-
ple data handovers between teams and employs multiple 
software packages, this application covers all steps on a 
single platform and workflow and can be run by the assay 
scientist himself, bringing about a significant reduction in 
operational complexity.

The application embodies five essential design princi-
ples, the implementation of which enables the everyday, 
routine production use of deep learning-based methods in 
discovery sciences: (1) insightful data representation, (2) 
automation of training, (3) multilevel quality control, (4) 
knowledge embedding and transfer to new assays, and (5) 
enterprise integration. Insightful data representation means 

the provision of human-interpretable representations of 
phenotypic space; automation of training includes both 
automated training set curation and network training to 
minimize hands-on time while maximizing the classifica-
tion quality; quality control encompasses both the deep 
learning image analytical process and the pharmacological 
results derived from it, using typical screening visualiza-
tions and statistics to assess quality in a pharmacologically 
relevant context for drug discovery. We define knowledge 
transfer as the ability of deep learning-based solutions to 
embody learnings from previous training sessions toward 
the automated analysis of similar assays. Finally, enterprise 
integration refers to embedding this software and process 
with the infrastructure of global R&D organizations to use 
it across multiple sites, departments, and research groups.

Finally, we illustrate the benefits of applying such a solu-
tion to production-scale drug screens, on both a more con-
ventional HCS receptor internalization assay and a more 
complex cell painting assay.

Materials and Methods

Software

Recently, we have reviewed deep learning applications in 
the life science and pharma domain and have assessed 
underlying development frameworks currently available in 
the public domain.12 Our selection criteria encompassed 
agile software development and the ability to cope with a 
rapid algorithmic and intellectual turnover rate in this fast-
moving field. From these, we selected TensorFlow and its 
family of high-level wrappers (Keras, TFlearn) for the de 
novo design of the classification network and its production 

Figure 1. Comparison of classical HCS analysis workflow versus deep learning-based HCS workflow. In a classical HCS analysis 
workflow (top), establishing the analysis procedure is labor- and time-intensive. The work is usually split between distinct roles 
and people (assay biologists, yellow, and image analysis experts, blue) and involves several handovers. This workflow requires tight 
coordination and quality control to guarantee robust assay outcomes. In a deep learning-based HCS workflow (bottom), the same 
results can be generated by a single scientist in a fraction of the time. The scientist is responsible for training data generation and 
curation using the HCS images as reference, which is the only hands-on step in an otherwise automated workflow.
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deployment in Imagence. A distinct default pretrained con-
volutional neural network (CNN), which we term the 
“extraction CNN,” was tailored for an unsupervised feature 
extraction from high-content images.

Hardware

Algorithmic design and development were carried out on dif-
ferent workstations and servers with commodity hardware 
(Intel, Santa Clara, CA, XEON processor [10 cores], 128–
512 GB RAM, 1–2 TB SSD hard drive and one high-end 
workstation graphic card [Nvidia, Santa Clara, CA, Titan 
X]). This setup is sufficient for processing image data from 
one 384-well microtiter plate (around 6500 images) to final 
results in approximately 1 h. On the same hardware, conven-
tional image analysis using CellProfiler13 takes around 1.3 h.

For production, a hardware setup with moderate state-of-
the-art servers in a multiple graphics processing unit (GPU)-
node configuration was applied (see Fig. 6). This resulted in 
an approximate fivefold speed-up (with four cluster nodes) 
leading to a turnaround time of circa 12 min from images to 
potency results, per plate.

Image Data Set for Cell Painting Assay

Cell painting8 is a morphological profiling assay that, instead 
of labeling molecular targets, multiplexes fluorescent dyes to 
reveal seven broadly relevant cellular components or organ-
elles. Cell painting can be used to identify the phenotypic 
impact of chemical or genetic perturbations, grouping com-
pounds and/or genes into functional pathways, or identify 
disease signatures. It can also be used to infer MoA through 
comparison of the phenotypes induced by compounds with 
unknown MoA with phenotypes of tool compounds of known 
MoA. We used the BBBC022 data set, which is publicly 
available as part of the Broad Image Data Base (https://data.
broadinstitute.org/bbbc/BBBC022/). Typically, image analy-
sis software like CellProfiler13 is used to identify individual 
cells in the images and calculate ~1500 morphological fea-
tures (various measures of size, shape, texture, and intensity) 
in order to produce a rich enough profile suitable for the 
detection of subtle phenotypes. The development of a robust 
image analysis algorithm generating such a rich profile can 
take more than a week. Using Genedata Imagence, this pro-
cess can be shortened to a few hours.

Image Data Set for Receptor Internalization Assay

The neurotensin receptor 1 (NTR1) is a G-protein-coupled 
receptor. Upon activation the receptor is internalized into 
endosomes in a beta-arresting mediated process. The data 
shown in this publication stem from a screen for modulators 
of NTR1.14 Briefly, the redistribution of β-arrestin-conjugated 
green fluorescent protein (GFP) was measured to assess the 
activation of NTR1.

Results and Discussion

Recent excitement around artificial intelligence stems from 
its capabilities in automated image classification, which out-
perform conventional computer vision methods by the intro-
duction of deep neural networks with convolutional layers 
and appropriate training schemes.15 In cell imaging, deep 
learning methods can replace the conventional approach of 
tedious and often highly biased manual selection of image 
analysis methods and pipelines to extract hundreds of cell 
features that are discriminative for a certain classification 
task.16 For example, in a classical receptor internalization 
assay, the measurable translocation of the receptor upon sig-
naling can be quantified by a set of manually engineered 
features specifying the relevant movement of a labeled 
receptor from the cell membrane to endosomes, for exam-
ple, using a spot count measure within the cell body. These 
are steps that heretofore have required human expertise. The 
consequence of removing these steps is a significant reduc-
tion in data handovers and specialized intermediaries. 
Figure 1 contrasts a classical HCS analytical workflow with 
a deep learning-based HCS workflow and illustrates the 
advantages—including major time gains—of the latter.

A deep learning-based analysis holds the promises of 
increased speed and reliability at reduced complexity and 
dependency on image analysis experts. However, taking 
full advantage of these benefits necessitates a shift in how 
experts interact with their data, and requires their effective 
collaboration with artificial intelligence systems. To enable 
this shift and enable a more rapid adoption of deep learning-
based workflows broadly across drug discovery, we have 
developed a set of five key design principles for an appro-
priate workflow and supporting software. In the next sec-
tions we present and discuss the rationale underlying these 
principles and show how these have been incorporated into 
Imagence, in the specific case of image-based phenotypic 
screening.

Automation of Training Data Generation and 
Insightful Data Representation

Applying deep learning to production-level high-content 
screens involves three main stages: (1) Generation of train-
ing data sets, a process that typically requires the assay 
biologist to manually classify images or—at minimum—
curate an automatically proposed image set; for example, an 
experienced biologist might need to visually assess whether 
images represent a disease versus a nondisease state. (2) 
Training of the neural network on the training data set, 
which is an automated (hands-off) process. (3) Running 
images from a screening batch through the pretrained net-
work.3 In this process, the biologist spends time mostly on 
the first step, the training data generation. Therefore, once 
this process has been adopted, the greatest further efficiency 
returns can be gained from automating this process.
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We therefore sought to develop a highly efficient image 
curation workflow that supports human decisions with the 
use of artificial intelligence and visual review tools (Fig. 2). 
Ideally, the starting assay image set consists of images from 
multiple replicate wells per anticipated phenotypic condi-
tion, which sample sufficient cells and suitable controls 
and/or analytes with a known mode of action and which 
serve as guideposts during later curation steps. From this 
starting point, the workflow is as follows: (1) Unsupervised 
feature extraction using a neural network tailored for high-
content image analysis (Fig. 2A, left). (2) Manual selection 
and labeling of main phenotypes from the phenotypic land-
scape (Fig. 2A, right), using well-level (Fig. 3A) and cell-
level (Fig. 3B) visualizations in the form of interactive 
maps allowing exploration of the phenotypic space. In these 
representations, selection of individual objects in the map 
also allows interactive viewing of the associated image in 
the same software interface. This two-level visualization 
(well-level and cell-level) allows a user to use knowledge 
from treatment-specific effects to guide broad phenotype 
assignment, followed by a more detailed dissection of 
within-well, cell-level phenotypic heterogeneity and refine-
ment of phenotype assignments. Though this step is man-
ual, the map allows hundreds to thousands of cells per target 
class to be selected and annotated extremely efficiently, 
with only a few clicks. (3) Finalization of class assignment: 
labels from the previous step are used to generate panels of 
cell images for each target class (Figs. 2B and 3C), guiding 
rapid visual curation of the training data by the scientist, 
who can weed out any images judged to be inaccurately 
preassigned. This final step, while requiring expertise and 
intervention, is meant to involve only a rapid “spot” check, 
since steps 1–2 have already been designed to deliver a bio-
logically informed phenotype assignment. Nevertheless, 
this final curation step helps to ensure robustly differenti-
ated cellular phenotypes—a key for obtaining reliable 
quantitative information.

The class assignment finalized in this last curation step is 
used to train a classification or production network (Fig. 
2B). This classification network is the final output of train-
ing and can later be reapplied in a production setting. With 
the completion of classification network training, Imagence 
also presents the results from a 10-fold cross-validation 
testing of all training data, for quality review (see next sec-
tion, “Quality Control”).

As an illustration of this workflow, we used a subset of 
the BBBC022 cell painting data set (Fig. 3). This subset 
included both neutral control (DMSO) wells and wells 
treated with digoxin, fenbendazole, and metoclopramide, 
respectively, the three reference compounds with known 
mode of action in the assay. Image data were loaded into 
Imagence, which automatically extracted features to gener-
ate the well- and cell-level phenotype maps. In the well-
level map (Fig. 3A), these wells—represented on a map by 

individual points—clustered into distinct groups that distin-
guished the mechanistic reference compounds and could be 
interactively selected to view corresponding raw images. 
These groups were then gated and annotated with class 
names, one class for each of the main clusters. In the cell-
level map (Fig. 3B), each point represents a single cell. This 
much higher density of data is displayed as a color-coded 
density or contour map in Imagence to ease its interpreta-
tion. In this map, again cells clustered into distinct groups 
corresponding to their treatment, and again were interac-
tively selected, gated, and annotated by class. Finally, cell-
level images from each annotated class were reviewed side 
by side (Fig. 3C) before submitting them to network train-
ing. In a final step, the trained network was applied to a 
wider set of test compounds, and the clustering of new com-
pounds with these reference compounds or classes was used 
in order to infer their mode of action.

Quality Control: From Classification to Pharmacology. The 
desired quality of experimental results from a drug screen-
ing campaign mandates rigorous quality checks along the 
entire experimental and data analysis process. This begins 
with quality control of raw material (e.g., cell cultures) 
prior to experimentation and continues with postexperimen-
tal quality control of quantified responses (e.g., stability of 
a standard curve tested on each plate). For a machine learn-
ing application, a common form of statistical quality control 
is the holdout method, in which the data are split into differ-
ent parts: a training set, a validation set, and a test set. The 
training and validation sets are used to train the network and 
quality is then assessed by the network’s classification 
accuracy on the test set. Best practice is to perform a varia-
tion of this procedure, where the data are split into multiple 
sets and the network is trained on each set while tested on 
the others, for a k-fold cross-validation.17 The common 
visualization of such supervised learning quality is the con-
fusion matrix where labeled holdout data are displayed in 
addition to the classifier outcomes (Fig. 4A).

While these results serve as important controls for net-
work quality, the abovementioned methods cannot be used 
to judge the adequacy of network training on accepted mea-
sures of pharmacology. Quite small differences in classifi-
cation accuracy can have a huge impact on plate statistics 
and on many downstream parameters, such as the IC50 val-
ues, Hill slopes, or asymptotic plateaus in a concentration–
response analysis.3 This is even more important for drug 
screening, where the decision to move an assay from devel-
opment to the production stage depends on clearing specific 
criteria, such as obtaining reliable and reproducible potency 
measurements for standard compounds or exceeding a 
given signal-to-background ratio or Z′-factor thresholds. In 
the workflow presented here, we fulfill this additional need 
by not only providing metrics on network quality (Fig. 4A), 
but also immediately applying the trained network to plates 
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produced during assay development, allowing the user to 
assess pharmacologically relevant metrics (Fig. 4B). In 
Imagence, the primary results of applying the trained net-
work are class assignments, expressed for each well as the 
fraction of cells assigned to each phenotype (Fig. 4C), 

subject to plate-based data normalization and plotted as 
concentration–response curves where applicable; these out-
puts are accompanied by image data to assist the scientist in 
reviewing results. As such, the user has the opportunity to 
detect quality problems and ability to react on several 

Figure 2. (A) Feature extraction and manual preliminary class assignment during assay development. Feature vectors are rapidly 
extracted from images by a tailored extraction CNN and a map of phenotypic space is generated, to enable de novo detection of 
subtle phenotypes and appropriate tuning of the assay. Information known a priori about the wells (e.g., identity of control wells and/
or compounds with known mode of action) can be used to color-code data points, to guide the manual selection and preliminary 
labeling of cell images for subsequent analysis. (B) Optimizing class assignments and production network training. The assay biologist 
further reviews the phenotypes that have been preliminarily assigned in the previous step, curating and finalizing those assignments. 
These finalized labels are used to train a network that will be applied to subsequent, large-scale production runs of the assay.
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levels: (1) at the level of training data (e.g., if two visually 
similar phenotype classes do not separate well, by adding 
more cells to problematic classes), (2) at the level of the 
microtiter plate (e.g., by invalidating bad data points, 
including compound wells, controls, or whole plates), or (3) 

at the level of individual analytes (by invalidating replicate 
measurements or assessing control pharmacology by stan-
dard curve). Figure 4 illustrates these three quality control 
levels with key visualizations and result parameters, includ-
ing final review at the compound level (Fig. 4C).

Figure 3. (A) Visual representation of phenotypic space. Training data displayed in the well similarity map. Each point represents 
a single well; wells containing similar phenotypes cluster closely together. Classes are assigned by manually drawing a gate (colored 
polygons) around closely clustered points, followed by labeling with the class name. Visual guidance is provided by color-coding of 
wells by their metadata for appropriate labeling and subset selection for training. In this figure, coloring represents neutral control 
versus compound wells. Sample images of wells from each class, which have visually distinct phenotypes, are shown. (B) Cell-level 
plots of selected wells (red highlighting in A). Contour and color-coded density plots enable a clearer interpretation of the maps and 
definition of population gates based on densities. Each region contains between ~100 and 24,000 data points; as a visual aid, outlier 
cells are displayed as dots only when a density below 5% is reached. (C) A visual, side-by-side review of example images belonging to 
each class. Upon visual inspection, any image judged as not belonging to the assigned phenotype can be removed by the user.
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Knowledge Transfer: Preservation and 
Reapplication of Analytical Knowledge

Generating training data with Genedata Imagence is an 
interactive, often explorative process. New assays may 
require more careful exploration, whereas for an established 
assay, curation may be much quicker if the human curator is 

very familiar with the expected results and visual appear-
ance of phenotypes. However, even for an established assay, 
there are situations where conditions may be inconsistent 
and therefore difficult for a human curator to assess out-
comes in a uniform, non-biased way, for example, in a screen 
performed on multiple cell lines, such as during panel 
screening, or a screen involving clinical materials such as 

Figure 4. (A) Confusion matrix showing the result of a 10-fold cross-validation of a deep learning network trained to recognize 
three classes in a receptor internalization assay. The result shows reasonable classification result quality (overall accuracy: 0.94), with 
slightly lower discrimination between the cytoplasm and plasma membrane phenotypes. (B) Plate statistics for 12 tested plates. The 
high-level overview allows prompt understanding of any problems in a screening context, including stability of signal over time, stability 
of standard curves, and signal-to-background ratio. (C) Tabular overview of compound results and statistics for several compounds 
with known pharmacology, tested in concentration–response. Results include a review of Hill parameters and dispersion of signals 
across replicate measurements.
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patient-derived stem cells, where conditions are subject to 
greater variability. In order to reduce the time investment 
and introduction of potential bias by the human curator, we 
developed a workflow (“transfer learning workflow”) that 
preserves the knowledge of the human curator and reapplies 
this knowledge to new yet similar assays or conditions. The 
key element of this workflow is an incremental training data 
enrichment, which is used to retrain the network to adapt to 
a different domain (Fig. 5). This approach augments a new 
image data set using known findings from a previous set of 
training data. This allows robust identification of relevant 
phenotypes under varying experimental conditions, removes 
the concern of human bias, and frees resources for additional 
tasks, as scientists need no longer spend as much time on 
rounds of experimental optimization and analysis, and pre-
cious reagents no longer need be consumed for assay rede-
velopment. The quality of results obtained using this 
approach is remarkable and shows the robustness required 
for a reliable quantification of pharmacology.18

Enterprise Integration

Due to the continued success of image-based screening 
technologies, enormous volumes of image data are often 
produced during image-based screens—a volume that is 
likely to grow exponentially, and with a growing interest in 

more physiologically relevant cellular models such as 3D 
organoids19 and organs-on-a-chip,20 image storage demands 
are only likely to further skyrocket. Compounded with this 
growth in image data volume, if more efficient CNN-based 
feature extraction and network training workflows such as 
those we have described above are used, there is the added 
complexity of managing and streamlining project data 
obtained across several labs or research groups.

The images generated in individual labs across an orga-
nization can be either stored and processed locally or trans-
ferred to centralized data centers with corresponding 
systems for image storage and analytics. An important con-
sideration when deciding between these options is the 
potential expense versus speed of data transfer, as a typical 
requirement for image analysis systems is that they process 
the image data faster than they are acquired, in order to 
enable prompt reactions to experimental problems detect-
able only post-image analysis. To gain enough speed in a 
cost-efficient manner, we have implemented a high level of 
parallelization of both image transfer and computing, allow-
ing the scaling of computational resources. Our architecture 
allows for a central server and one or more GPU nodes, 
with each GPU node in turn containing one or more GPUs 
(Fig. 6). This architecture reduces the time and costs 
required to transfer images between geographies by local-
izing the compute function with the images.

Figure 5. Transfer learning. Left: An initial reference network is trained on an established assay and clusters images into three 
classes: neutral, stimulator, and compounds. Right: Later, images from a second, related but distinct assay (gray points, images boxed 
in gray) are added to the initial training data set and the network is retrained. In this step, a new phenotype is discovered (blue dots), 
which was not present in the first data set and is used to form a fourth class. In addition, added data broaden the phenotypic space 
occupied by a previously identified neutral class (gray dots at the top left of the map). After this enrichment, data from the new assay 
can be related to the original assay, while the additional class serves for an additional endpoint for this assay.
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Also important is to optimize the image upload process 
itself, including image annotation with standard metadata 
(e.g., file name, path, instrument, measurement date, and 
channel) and definition of further information like plate 
mapping and definition of wells containing experimental 
controls or a standard. In our solution, we have automated 
this process by constantly monitoring an image source such 
that immediately upon availability of a complete image set, 
it is uploaded and analyzed using the appropriate trained 
neural network. Results are then continually appended to an 
ongoing analysis session, allowing instantaneous real-time 
monitoring of the screening campaign. Business rules 
regarding plate and/or compound statistics can be applied 
automatically, which when violated trigger an email notifi-
cation to the assay operator, alerting him of the assay issue 
and allowing him to react immediately.

A final key consideration when integrating an analysis 
workflow into daily operation is the sharing of validated 
results within and across organizations, such that they are 
available as quickly as possible to project teams, in an eas-
ily accessible and understandable form. Toward this end, 
our solution facilitates reporting to global data warehouses. 
We have also developed a framework of application pro-
gramming interfaces supporting live access to any stage of 
the analysis session. Finally, our solution also allows the 
creation of Microsoft (Redmond, CA) Excel or Microsoft 
PowerPoint reports, for midterm sharing or presentational 
purposes.

To date, the approach we have described has been vali-
dated in more than 20 industry assays, including those involv-
ing full-production screening data sets (with hundreds of 
imaged microtiter plates).21,22 In these proof-of-principle proj-
ects, Imagence has generated excellent result quality, detect-
ing biologically relevant effects with comparable or greater 
performance than classical methods, delivering at times supe-
rior plate and compound-level statistics. Our new approach 
has been shown to also be compatible with some of the most 
complex and analytically challenging assays now available in 
high-content analysis, including the cell painting assay. We 
view these initial successes as evidence that Imagence repre-
sents a step forward from the much discussed but abstract 
potential power of artificial intelligence to transform drug dis-
covery, as a concrete realization of a real-world ready artificial 
intelligence-based analysis workflow—a view also recently 
articulated by Bio-IT World.23–26 Such a workflow is posi-
tioned to broaden the use of high-yield phenotypic assays in 
discovery screening and other life science applications; help 
discovery teams better exploit serendipitous findings; and 
lead to more rapid, relevant, production-level characterization 
of new molecules in drug discovery and development. Given 
these promising outcomes, we believe that the underlying 
principles of our solution might be adopted to also apply deep 
learning beyond image analysis across many domains of drug 
discovery, transitioning deep learning from a potentially pow-
erful but still exotic approach to a mature, accessible, and inte-
grated software enabler to the R&D of novel medicines.

Figure 6. Infrastructure reflecting the individual and regional needs for an adaptive scaling of image transfer and computing. The 
main goal for this architecture is to enable two different scenarios. In the first, images are cheaply and efficiently transferred to central 
compute nodes that are mostly GPU driven (top). In this scenario, images are acquired by instruments and stored locally on the 
premises. They are transferred into a S3 bucket either by existing standard integrations (Cellomics, Thermo Fisher Scientific, Waltham, MA; 
HCS Connect, Molecular Devices, Danaher Corp., Washington, DC; MDC Store, PerkinElmer, Waltham, MT; Columbus, Yokogawa, 
Tokyo, Japan, CV7/8000 file-based image storage) or by custom uploaders. This S3 storage is close to the Genedata Imagence server. 
If, however, multiple geographic locations need to be served, it is less advantageous to transfer images over long distances; additional 
compute and image loading nodes can instead be configured for each geographic AWS, Amazon Inc., Seattle, WA, region, such that 
images are processed locally and network traffic is minimized (bottom). In both scenarios, the master Genedata server manages the 
deployment of the software on compute nodes, hosts the user interfaces, schedules jobs, and stores results.
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