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Abstract
As a treatment for solid tumors, dendritic cell (DC)-based immunotherapy has not been as effective as expected.
Here, we review the reasons underlying the limitations of DC-based immunotherapy for solid tumors and ask what
can be done to improve immune cell-based cancer therapies. Several reports show that, rather than a lack of
immune induction, the limited efficacy of DC-based immunotherapy in cases of renal cell carcinoma (RCC) likely
results from inhibition of immune responses by tumor-secreted TGF-β and an increase in the number of regulatory
T (Treg) cells in and around the solid tumor. Indeed, unlike DC therapy for solid tumors, cytotoxic T lymphocyte
(CTL) responses induced by DC therapy inhibit tumor recurrence after surgery; CTL responses also limit tumor
metastasis induced by additional tumor-challenge in RCC tumor-bearing mice. Here, we discuss the mechanisms
underlying the poor efficacy of DC-based therapy for solid tumors and stress the need for new and improved DC
immunotherapies and/or combination therapies with killer cells to treat resistant solid tumors.
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C Immunotherapy Effectively Inhibits Tumor
etastasis and/or Recurrence, But Does Not
radicate Established Solid Tumors
endritic cells (DCs) are professional antigen-presenting cells (APCs)
at drive T cell-mediated immune responses. Vaccination with DCs
lsed with tumor lysates increases therapeutic antitumor immune
sponses both in vitro and in vivo [1–3]. DCs capture and process
tigens, migrate into lymphoid organs, express lymphocyte
stimulatory molecules, and secrete cytokines that initiate immune
sponses. They also stimulate immunological effector cells (T cells)
at express receptors specific for tumor-associated antigens and
duce the number of immune repressors such as CD4+CD25-
oxp3+ regulatory T (Treg) cells [4–6].
Several reports show that a number of obstacles must be overcome
fore DC-based immunotherapy can be used as an effective therapy
r solid tumors [1,7]. One of the major difficulties with respect to
eatment of advanced tumors seems to be that tumor cells suppress
e patient's antitumor immune response. Recent reports show that
reg cells, which produce TGF-β, IL-10, and IL-4, play a crucial role
regulating the immune response to self- and/or non-self-antigens
–11]. Several Treg subsets, such as CD4+CD25+Foxp3+TGF-β+
lls differentiated by tolerogenic (t)DCs, inhibit autoimmune (e.g.,
eumatoid arthritis and myocarditis) and inflammatory (e.g.,
yocardial infarction) [12–15] responses, thereby maintaining
mune tolerance in tumor-bearing hosts. In humans with solid
ncers, high tumor infiltration by Treg cells and, more importantly,
low effector T (Teff) cell/Treg cell ratio, are associated with a poor
tcome [16,17]. Conversely, a high Teff/Treg cell ratio is associated
ith favorable responses to immunotherapy in both humans and mice
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8,19]. To date, most studies support the notion that targeting Treg
lls, either by depletion or functional modulation, may offer
gnificant therapeutic benefit, particularly in combination with other
mune modulatory interventions such as vaccination and check-
int blockade [20–22].
This review focuses on the mechanisms by which solid tumors escape
mune responses and discusses immune cell-based therapy (particu-
rly DC-based immunotherapy) for the treatment of solid tumors.
Recently, a DC vaccination strategy for renal cell carcinoma
CC), which is based on a tumor cell lysate-DC hybrid, showed
erapeutic potential in preclinical and clinical trials [1,23]. Although
ch trials are promising, several hurdles must be overcome if we are
generate a more effective antitumor response. In a previous study,
e developed a murine model of RCC by inoculating mice with
ouse renal adenocarcinoma Renca cells. We then examined the
ficacy of DC vaccination as a treatment for RCC by testing whether
enca cells induce any of the immunosuppressive effects generally
ported in humans with RCC and other solid tumors; such effects
ight attenuate T cell-mediated antitumor immunity [1]. A DC
ccine would be the best method of inhibiting tumor growth in
mor-bearing mice and would be applicable to humans (cytokine
erapies based on IL-12 and IL-2 are not applicable to humans due
toxicity and poor efficacy). Several studies show that, although
ccination with DCs induces a systemic response and can prevent
mor metastasis and recurrence, the response does not affect the
lid tumor itself due to its secretion of protective TGF-β. Tumor
lls secrete various immunosuppressive factors, including TGF-β
,24], VEGF [25], and IL-10 [25]. Among these, overexpression of
GF-β is closely associated with a poor prognosis in patients with
alignant tumors [26,27]. TGF-β suppresses differentiation of bone
arrow (BM) DCs, as well as their capacity to secrete IL-12 [28],
esent antigens, stimulate tumor-sensitized T lymphocytes, and
igrate into tumor-draining lymph nodes [29]. Indeed, we showed
eviously that high doses of TGF-β inhibit DC migration in vitro
]. However, tumor lysate-pulsed DCs effectively migrated into
gional lymph nodes and induced sufficient numbers of functional
totoxic T lymphocytes (CTLs) in both sc tumor-bearing mice and
etastatic tumor-bearing mice. Consequently, we believe that
munity induced by tumor lysate-pulsed DCs may not be restricted
peri-tumor tissue in vivo. By contrast, immunohistochemical
alyses of sc-implanted tumor masses indicate that the number of
eff cells within the tumor-infiltrating lymphocyte (TIL) population
very low, possibly due to inhibition by tumor-derived TGF-β.
hese data can be explained by the fact that naïve T cells in sc-
planted tumor masses may be primed to differentiate into Treg
D4+CD25+Foxp3+) cells by tumor-derived TGF-β [30], leading
subsequent inactivation of TILs. Therefore, sc-implanted tumors
mice are resistant to DC vaccination-induced antitumor immune
sponses. During tumor progression in humans, Treg cells
cumulate in tumors and secondary lymphoid organs. Also,
emokines produced by tumor cells or tumor-infiltrating macro-
ages recruit Treg cells to the tumor bed [30,31].
Although DC vaccination lacks efficacy against sc tumors in mice,
does inhibit further spread of metastatic tumors or tumor
currence in mice after surgery, indicating that DC vaccination is
fective at inducing long-lasting systemic antitumor immunity after
rgery [1]. We expect that these results will form an important basis
r clinical trials of DC-based immunotherapy under these
nditions.
proved DC Immunotherapy Is Highly Effective at
hibiting Established Solid Tumors
n immune response is triggered by danger signals, which include
icrobial products (termed pathogen-associated molecular patterns)
d fragments of dying cells; these signals are recognized by the cells
at provide innate immunity [32,33]. Of these, DCs are the major
k between the innate and adaptive immune responses. Recent
ports show that DCs pulsed with tumor lysates in vitro and in vivo
ive increased therapeutic antitumor immune responses after
ccination [1,3,34]. However, several reports show that a number
obstacles must be overcome before DC-based immunotherapy can
used widely to treat tumors [7,35].
In an attempt to overcome such problems, several studies focused
antigen cross-priming using heat shock proteins (HSPs), which are
ghly conserved and abundantly expressed proteins that have diverse
nctions [36,37]. Recent studies show that these molecular
aperones interact with APCs; thus their ability to induce antigen-
ecific CTL and Th1 responses has attracted much attention [38]. In
e context of the immune system, HSPs transfer antigenic peptides
CD8+ T cells [38]. During this process, HSP70- or gp96-peptide
mplexes are internalized by APCs, including DCs, through
ceptor-mediated endocytosis via CD40, TLR2/4, or scavenger
ceptor A [39].
Photodynamic therapy (PDT) is an established cancer treatment
at uses a combination of light and photosensitizing drugs to damage
mor tissues [40,41]. One of the most important factors induced by
T is extracellular HSP70 [42,43]; thus we think that in vitro
posure of DCs to tumor cell lysates treated with PDT may improve
C immunotherapy against tumors by enhancing their function.
veral studies indicate that some HSPs might be suitable [44,45].
ducible HSPs (i.e., HSP60, HSP70, and HSP90) stimulate DC
fferentiation and induce expression of several cytokines, including
-12 [45], thereby increasing their antigen-presenting capacity [46].
arious immune cells, including DCs, macrophages, natural killer
K) cells, and B lymphocytes, express receptors specific for HSPs
7], including HSP70. Therefore, induction of HSP expression may
nstitute a ‘danger’ signal that triggers DC maturation.
It seems likely that PDT-generated tumor lysates contain all of the
ctors necessary to activate DCs; this may include loading them with
tigen and inducing effective antitumor immune responses. In
cordance with these findings, HSPs induced by PDT might
prove the efficacy of DC vaccines by increasing cross-priming.
owever, more work needs to be done to fully examine and
derstand the interaction between tumor antigens and HSPs that is
sponsible for increasing antitumor responses following PDT-DC
ccination.
Taken together, the data suggest that DCs loaded with PDT tumor
sates are strongly immunogenic and can be used as effective
titumor vaccines [47]. Thus, we expect that PDT-DC vaccination
ay be developed as an effective immunotherapy for treatment of
mors.

C Immunotherapy Combined with Cytokine-
duced Killer (CIK) Cells Effectively Suppresses
stablished Hepatocellular Carcinomas in Mice
ytokine-induced killer (CIK) cells are a heterogeneous population of
vivo-expanded T lymphocytes with different cellular phenotypes.
IK cells are generated from peripheral blood, BM, or cord blood
ononuclear cells upon treatment with a cytokine cocktail (e.g.,
N-γ and IL-2) and an anti-CD3 monoclonal antibody. CIK cells
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press markers associated with both T cells and NK cells, including
D3+CD56+ (NK T), CD3+CD56− (typical T), and CD3−CD56+

K). The antitumor activity of CIK cells is mediated mainly by
D3+CD56+ (NK T) cells, which show NK-like, major histocom-
tibility complex (MHC)-unrestricted, tumor killing ability [48,49].
herefore, CIK-based adoptive immunotherapy represents a potential
rategy for curing cancer. Indeed, CIK cells exhibit active
oliferation and potent antitumor cytotoxicity in the presence of
rious tumor cells, both in vitro and in vivo [50].
Although the majority of clinical trials focusing on DC-based
munotherapy have succeeded in generating tumor-specific CTLs
cancer patients, the effects against most solid tumors have been
ther disappointing [1,35]. Several mechanisms may account for the
ited effectiveness of DC vaccine-induced immune responses to
lid tumors. One is that insufficient numbers of CD8+ CTLs are
duced in response to DC vaccination alone [51–53]. Alternatively,
TLs generated in this manner may possess suboptimal antitumor
ficacy in vivo, possibly due to weak activation or inadequate
igration to tumor sites [53]. The susceptibility of such cells to host-
rived regulatory mechanisms also appears to be a problem.
Preclinical and clinical models in which ex vivo-expanded CIK cells
ve been tested also demonstrate antitumor activity, but only
odest therapeutic efficacy; this is due largely to the strategies used by
mors to evade the host immune system [52]. To overcome these
oblems, we wondered whether a combination of DC vaccination
us CIK cells would induce a stronger therapeutic antitumor effect
an administration of DCs or CIK cells alone [54].
CIK cells inhibit proliferation of tumor cells and show tumor cell-
ecific cytotoxicity. CIK cell-based immunotherapy is associated
ith a significant increase in the survival rate of cancer patients.
Tumor TGF
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gure 1. Overview of immune cell-mediated anticancer immunity.
ncers, and killer cells such as CIK cells directly kill tumor cells; a c
fective against many difficult-to-treat solid tumors. Treg, T regulatory
ller cell.
ecently, several clinical trials examined combining strategies based
CIK cells with immunization approaches; for example, the

mbined application of CIK cells and tumor lysate-pulsed DCs
proved antitumor toxicity [55]. However, despite several decades
research on CIK cancer vaccines, the clinical effectiveness of
munotherapy remains disappointing.
The goal of cancer immunotherapy is to induce an effective
mune response that specifically targets tumor cells. It is well
tablished that activated CD4+ T and CD8+ CTLs are necessary to
stain an antitumor response. Ideally, vaccine-elicited CD8+ T cells
ould have high avidity and be able to recognize peptide–MHC class
complexes on tumor cells; they should express high levels of
anzyme and perforin (molecules essential for cytotoxic activity
ainst cancer cells); they should be able to enter the tumor
icroenvironment; and they should be able to circumvent
munomodulatory mechanisms in the tumor. At least four
mponents of the immune response are required for this ideal
sponse: the presence of fully-activated DCs; activation of induced
N-γ-producing CD4+ T helper cells; elimination and/or non-
tivation of Treg cells; and breakdown of the immunosuppressive
mor microenvironment. DCs generated by ex vivo culture of
matopoietic progenitor cells or monocytes with combinations of
tokines have been tested as therapeutic vaccines in cancer patients
r more than a decade [56–60].
Our previous report demonstrated that DC vaccination combined
ith adoptive transfer of CIK cells leads to significant suppression of
patoma tumor cell growth and improved antitumor responses [54].
hese results suggest that a combination of DCs plus CIK cells can
crease antitumor activity, indicating a potential for clinical
plication to cancer patients in the future.
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DC immunotherapy inhibits the metastasis/recurrence of solid
ombination of these cell-mediated therapeutics may prove very
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onclusions
o overcome the above-mentioned limitations inherent in DC-
ediated anticancer immune responses, we suggest the following: 1)
pletion and/or inactivation (or non-activation) of Treg cells; 2)
velopment of improved DC-based immunotherapies; and 3)
mbination therapy based on DCs plus other killer cells (CIK
lls, T cells, or NK cells). In particular, we anticipate that DC
munotherapy will inhibit the metastasis/recurrence of solid
ncers, and that killer cells such as CIK cells will kill tumor cells;
ch a combination may prove very effective against many difficult-
-treat solid tumors (Figure 1).
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