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Abstract: Cardiovascular diseases (CVDs) are leading global health problems. Accumulating
epidemiological studies have indicated that consuming fruits was inversely related to the risk of CVDs.
Moreover, substantial experimental studies have supported the protective role of fruits against CVDs,
and several fruits (grape, blueberry, pomegranate, apple, hawthorn, and avocado) have been widely
studied and have shown potent cardiovascular protective action. Fruits can prevent CVDs or facilitate
the restoration of morphology and functions of heart and vessels after injury. The involved mechanisms
included protecting vascular endothelial function, regulating lipids metabolism, modulating blood
pressure, inhibiting platelets function, alleviating ischemia/reperfusion injury, suppressing thrombosis,
reducing oxidative stress, and attenuating inflammation. The present review summarizes recent
discoveries about the effects of fruits on CVDs and discusses potential mechanisms of actions based
on evidence from epidemiological, experimental, and clinical studies.

Keywords: fruit; cardiovascular disease; coronary heart disease; stroke; hypertension; mechanisms
of action

1. Introduction

Cardiovascular diseases (CVDs) are defined as disorders of the heart and vessels, and include
coronary heart disease (CHD) and stroke. According to the WHO report, CVDs are responsible for
17.5 million deaths in 2012 (7.4 and 6.7 million due to CHD and stroke, respectively), accounting for
31% of all global deaths a year, constituting the leading causes of death worldwide [1]. Thus, studies
on CVDs have drawn great attention around the world.

Diet represents the most important modifiable factor to prevent CVDs. There is evidence that
plant-based dietary patterns are associated with lower risk of CVDs [2]. Among the most important
key components, fruit has been suggested to play a major role in preventing CVDs [3]. Several
epidemiological studies demonstrated that fruit intake was inversely associated with the risk of
cardiovascular events [4–7]. It is estimated that a diet low in fruits is the third most important
risk factor of CVDs following high blood pressure (BP) and cigarette smoking, accounting for more
than 5 million deaths worldwide in 2010 [8]. In addition, much experimental evidence supports
the protective role of fruit against CVDs. Furthermore, several fruits, such as grape, blueberry,
pomegranate, apple, hawthorn, and avocado, have been widely studied and have shown strong
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cardiovascular protective effects. Additionally, the effectiveness of fruit intake in the primary
prevention of CVDs has been revealed by growing clinical data in patients with high metabolic
risk factors (hypertension, dyslipidemia, diabetes, and overweight/obesity). Currently, the common
method of controlling CVDs is the use of long-term pharmacotherapy. Nevertheless, drugs are
not effective on all patients and have side effects that may aggravate the patients’ symptoms and
signs. Some fruits (extract) possess similar or even more potent anti-hypertensive, lipid-lowering, and
hypoglycemic activities, which has inspired many researchers to explore new therapies for CVDs [9–12].
The cardioprotective mechanisms of fruits are not entirely clear, but their outstanding antioxidant
and free radical scavenging properties are considered principal [13]. In this context, people have paid
more attention to natural products rich in polyphenols, a group of compounds characterized by the
presence of an aromatic ring and phenolic hydroxyl groups [14–25]. Polyphenols are obtained through
daily diets because they cannot be synthesized or stored in the human body, and fruit is one of the
main dietary sources of polyphenols [26]. The richest sources of fruit polyphenols are dark berries,
such as grapes and blueberries [27]. Further, pomegranate, apple, hawthorn, and avocado are also
frequently consumed polyphenols-rich fruits. There is evidence that fruit rich in polyphenols helps to
control CVDs.

This review aims to summarize the effects of fruit on CVDs based on evidence from epidemiological,
experimental, and clinical studies, and special attention is paid to the mechanisms of action.

2. Epidemiological Studies

Epidemiological evidence supports that diets rich in fruit delay the onset, and attenuate the
severity, of CVDs (Table 1).

Evidence from the China Kadoorie Biobank Study showed that consuming fresh fruits daily
decreased systolic blood pressure (SBP) by 4.0 mmHg and blood glucose level by 0.5 mmol/L, which
was inversely associated with the risks of cardiovascular death (hazard ratios (HRs): 0.60, 95%
confidence intervals (CIs): 0.54–0.67) and major CVDs, i.e., CHD (HR: 0.66, 95% CI: 0.58–0.75), ischemic
stroke (HR: 0.75, 95% CI: 0.72–0.79), and hemorrhagic stroke (HR: 0.64, 95% CI: 0.56–0.74), as compared
with participants who never or rarely consumed fresh fruit [4]. In addition, two cohort studies of
women aged 35–69 [5] and over 70 years [6], respectively, showed that consuming fruits reduced the
risk of total CVD mortality. Additionally, a Japanese study suggested that frequent intake of citrus
fruit protected against CVDs; the HR for near-daily intake versus infrequent intake of citrus fruit was
0.57 (95% CI: 0.33–1.01) in men and 0.51 (95% CI: 0.29–0.88) in women [7].

A cohort study of women in Shanghai showed a protective role of higher dietary total fruit
and vegetable intake in CHD. Moreover, the study suggested that this association was primarily
driven by fruit. The corresponding HRs for fruit and vegetable intake were 0.62 (95% CI: 0.37–1.03)
and 0.94 (95% CI: 0.59–1.50), respectively [28]. In addition, a meta-analysis of 23 prospective cohort
studies of 937,665 participants and 18,047 CHD patients showed that fruit consumption was inversely
associated with a risk of CHD. Compared with those who consumed the lowest total fruits, the relative
risk (RR) of CHD was 0.86 (95% CI: 0.82–0.91) for those consuming the highest, and the dose-response
analysis indicated that the RR of CHD was 0.84 (95% CI: 0.75–0.93) per 300 g/day of total fruit
intake [29]. For individual fruit, apple intake reduced the risk of acute coronary syndrome (ACS) by
3%, and the dose-response analysis indicated that the HR of ACS was 0.97 (95% CI: 0.93–1.01) per
25 g/day of apple intake [30].

In terms of stroke, cohorts of Swedish women and men suggested that consuming
3.1 servings/day of total fruits alleviated total stroke risk by 13% compared with 0.4 servings/day
(95% CI: 0.78–0.97) [31]. Furthermore, the study also indicated that, among individual fruits,
consumption of apple/pear particularly decreased the risk of total stroke (HR: 0.89, 95% CI:
0.80–0.98) [31], which was consistent with the result of a study in Netherlands of 20,069 adults [32].
The study in Netherlands also reported that consuming >120 g/day raw fruit decreased the risk of
hemorrhagic stroke by 47% (95% CI: 0.28–1.01) compared with consuming ≤120 g/day raw fruits [33].
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In addition, the Nurses’ Health Study showed that high citrus fruit/juice intake was related to
a reduced risk of ischemic stroke (RR: 0.90, 95% CI: 0.77–1.05) [34]. Additionally, a cohort study with
20,024 participants recruited also proved that citrus fruits/juice intake was inversely associated with
risk of ischemic stroke (HR: 0.69, 95% CI: 0.53–0.91) [35].

Epidemiological studies have suggested that fruit consumption was related to a reduction in
cardiovascular risk factors. Hypertension is an independent risk factor of CHD and total stroke [36].
Three cohort studies all reported that higher fruit intake was correlated with the decreased risk of
hypertension [37–39]. A study of US women showed that total fruit and vegetables consumption
attenuated the risk of hypertension. In addition, after adjusting for lifestyle factors and other food
intake, total fruit (p = 0.0004) but not total vegetables (p = 0.56) remained significantly and inversely
correlated with risk of hypertension [37]. In addition, a study on residents from Ohasama, Japan,
revealed an association between fruit and vegetable intake and the risk of hypertension. In the
sex- and BMI-adjusted analysis, the highest quartile of fruit intake was associated with a significantly
lower risk of hypertension (HR: 0.40, 95% CI: 0.21–0.74), whereas no association was observed for
vegetable intake [38]. Moreover, a study consisting of three large longitudinal cohorts, Nurses’ Health
Study, Nurses’ Health Study II, and Health Professionals Follow-up Study, suggested that long-term
and increased consumption of whole fruits reduced the risk of hypertension [39]. Additionally,
a case–control study in Korea was also in line with this view [40]. Furthermore, cross-sectional
studies of patients with type 2 diabetes demonstrated that higher fruit intake was correlated with
a lower burden of CVDs by decreasing carotid intima-media thickness (IMT), the prevalence of carotid
plaque [41] and high-sensitive C-reactive protein (hs-CRP) levels [42], which have been well-established
predictors for cardiovascular incidents.

Epidemiological studies indicated that dietary intake of polyphenols was associated with a low
incidence of CVDs. The Nurses’ Health Study with 69,622 women involved showed that the RR for
the fifth quintile of flavanone intake versus the lowest quintile was 0.81 (95% CI: 0.66–0.99) [34]. In
addition, the relationship between flavonoids intake and CVDs in men was studied in the Health
Professionals Follow-Up Study. The results revealed that higher anthocyanin intake was related with
lower non-fatal myocardial infarction (MI) risk (HR: 0.87, 95% CI: 0.75–1.00), and higher flavanone
intake was associated with decreased ischemic stroke risk (HR: 0.78, 95% CI: 0.62–0.97). The study
also reported that over 90% dietary anthocyanins and flavanones came from fruits [43]. In addition,
the association between flavonoid intake and ischemic stroke was evaluated in a cohort study of
20,024 participants. The study suggested that flavanone intake was inversely associated with a risk
of ischemic stroke (HR: 0.72, 95% Cl: 0.55–0.95) [35]. Furthermore, the cardiovascular benefits of
flavonoid and stilbene were estimated in a cross-sectional study of 1393 Chinese adults. The study
showed that fruits including apple, plum, pear, and peach were the richest sources of flavonoids
and stilbenes. Higher anthocyanin intake was related with elevated serum HDL-C (p = 0.001), and
total flavonoid and flavonol intake was inversely associated with serum TG (p = 0.020, p = 0.035) and
TG/HDL-C ratios (p = 0.040, p = 0.045) in female subjects. However, significant relationships were not
found in male subjects [44].

However, a cohort of Italian women indicated no significant association between fruit intake and
the risk of CHD after adjusting for the consumption of vegetables [45]. In addition, a cohort of men
aged 50–59 years in France and Northern Ireland reported that there was no significant association
between fruit intake and ACS [46]. A large scale cohort of five ethnic groups, i.e., African American,
Native Hawaiian, Japanese American, Latino, and Caucasian showed that the consumption of fruits
did not protect against ischemic heart disease, and the results did not vary among ethnic groups [47,48].
Additionally, a cohort of Swedish women (aged 49–83 years) suggested that the highest quintile of fruit
intake did not significantly decrease the risk of heart failure compared with the lowest [49]. Results are
inconsistent maybe because data regarding fruit intake in these cohort studies were obtained on the
basis of dietary recall. The actual consumption of fruits can only be rudely assessed, partly because the
number of items and the information about portion size were limited.
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Table 1. Fruit intake and CVD risk.

Subject Study Type Dose Disease Risk Estimates (95%CI) References

512,891 Chinese adults (age: 30–79 years) cohort study daily vs. never/rarely fresh fruits

cardiovascular death 0.60 (0.54–0.67)

[4]
incident major coronary events 0.66 (0.58–0.75)

ischemic stroke 0.75 (0.72–0.79)
hemorrhagic stroke 0.64 (0.56–0.74)

30,458 UK Women (age: 35–69 years) cohort study
per 80 g/day total fruits CVD 0.94 (0.89–1.00)

[5]
CHD 0.93 (0.85–1.01)

per 80 g/day fresh fruits CVD 0.92 (0.85–1.00)
CHD 0.89 (0.79–1.00)

1456 women (age: >70 years) cohort study per 129 g/day total fruits CVD NA (p < 0.05) [6]

10,623 Japanese (4147 men, 6476 women) cohort study near-daily vs. infrequent citrus fruits CVD Men: 0.57 (0.33–1.01)
Women: 0.51 (0.29–0.88) [7]

67,211 women in Shanghai, China
(age: 40–70 years) cohort study 449 vs. 83 g/day fruits CHD 0.62 (0.37, 1.03) [28]

23 cohort studies of 937,665 participants and
18,047 patients with CHD

meta-analysis the highest vs. the lowest of total fruits
CHD

0.86 (0.82–0.91)
[29]

per 300 g/day fruits 0.84 (0.75–0.93)

25,065 men in Denmark (age: 50–64 years) cohort study per 25 g/day apples ACS 0.97 (0.94, 0.99) [30]

74,961 Swedish adults
(34,670 women, 40,291 men; age: 45–83 years)

cohort study 3.1 vs. 0.4 servings/day total fruits
total stroke

0.87 (0.78–0.97)
[31]

1.0 vs. 0.1 servings/day apples/pears 0.89 (0.80–0.98)

20,069 adults in the Netherlands
(age: 20–65 years)

cohort study >120 vs. ≤120 g/day raw fruits hemorrhagic stroke 0.53 (0.28–1.01) [33]

per 25 g/day white fruits (usual apples
and pears) stroke 0.91 (0.85–0.97) [32]

69,622 women from the Nurses’ Health Study cohort study

the fifth vs. the lowest quintile of citrus
fruits/juices

ischemic stroke

0.90 (0.77–1.05)
[34]

the fifth vs. the lowest quintile
of flavanone 0.81 (0.66–0.99)
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Table 1. Cont.

Subject Study Type Dose Disease Risk Estimates (95%CI) References

20,024 participants without
stroke history

cohort study
the highest vs. the lowest quintile of citrus

fruits/juices ischemic stroke
0.69 (0.53–0.91)

[35]

the highest vs. the lowest quintile of flavonoid 0.72 (0.55–0.95)

28,082 US women (age: ≥39 years) cohort study ≥3 vs. <0.5 servings/day total fruits hypertension 0.89 (0.81–0.96) [37]

745 residents from Ohasama, Japan
without hypertension at baseline

(age: ≥35 years)
cohort study the highest vs. the lowest quartile of fruits hypertension 0.40 (0.21–0.74) [38]

3 large longitudinal cohort studies
of 187,453 subjects cohort study ≥4 vs. ≤4 servings/week of total whole fruits hypertension 0.92 (0.87–0.97) [39]

9791 subjects in Korea
(3819 men, 5972 women ) case-control study the fifth vs. the lowest quintile of fruits hypertension 0.73 (0.61–0.88) [40]

255 Chinese patients with type 2
diabetes (137 men, 118 women) cross-sectional study 92.6 ± 39.7 vs. 14.5 ± 8.6 g/day fruits

carotid IMT
(0.97 ± 0.02 vs. 1.08 ± 0.03 mm)

prevalence of carotid plaque
(1.18 vs. 11.76%)

NA (p = 0.046)
NA (p = 0.022) [41]

407 patients with type 2 diabetes
(172 men, 235 women)

cross-sectional study 101.3 ± 28.5 vs. 79.6 ± 24.2g/day fruits carotid IMT 0.92 (0.67–0.95)
[42]hs-CRP 0.69 (0.53–0.89)

43,880 healthy men who had no
prior diagnosed CVDs or cancer

cohort study higher anthocyanin intake MI 0.87 (0.75–1.00)
[43]

higher flavanone intake ischemic stroke 0.78 (0.62–0.97)

1393 Chinese adults cross-sectional study

higher anthocyanins intake HDL-C NA (p = 0.001) (women)

[44]higher total flavonoid intake TG NA (p = 0.020) (women)

TG/HDL-C ratios NA (p = 0.040) (women)

higher flavonol intake TG NA (p = 0.035) (women)

TG/HDL-C ratios NA (p = 0.045) (women)

29,689 Italian women cohort study the highest vs. the lowest quartile of fruits CHD no significant association [45]

8060 men aged 50–59 years in
France and Northern Ireland cohort study ≥1.29 vs. ≤0.57 times/day fruits ACS no significant association [46]

164,617 men and women from five
ethnic groups cohort study >4.9 vs. <1.5 servings/day fruits ischemic heart disease no significant association [47,48]

34,319 Swedish women aged
49–83 years cohort study ≥2.6 vs. ≤0.8 servings/day total fruits heart failure no significant association [49]

NA, stands for not available.
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3. Experimental Studies

There has been accumulating evidence in vivo and in vitro supporting the cardiovascular
protective properties of fruits and investigating the underlying mechanisms (Table 2). Six fruits are
discussed in detail below because they have been widely studied and have shown potent cardiovascular
protective effects, while the fruits that were less investigated are discussed in the section entitled
“Other Fruits.”

3.1. Grape

Grapes are one of the most common and important fruits worldwide, and they are often consumed
raw or after being converted to juice, wine, or jam.

3.1.1. Protecting Endothelial Function

In CVDs, endothelial dysfunction is a systemic pathology of the endothelium, is caused by
an imbalance between vasodilator and vasoconstrictor substances produced by (or acting on) the
endothelium, and presents as impaired vascular endothelium-dependent relaxation and compliance,
which is the primary change in early hypertension [50]. Growing experimental and clinical data
highlight the importance of oxidative stress on endothelial dysfunction. Grape plays an essential role
in repairing endothelial impairment for its potent antioxidant and free radical scavenging capacities.
In a study, vascular benefits of whole grape powder were studied using the spontaneously hypertensive
rat (SHR). The results showed that grape treatment elicited a reduction in BP, improved arterial
relaxation, and increased vascular compliance [51]. Moreover, the relationship between endothelial
protective function of grape seed proanthocyanidin extracts (GSPEs) and oxidative stress was studied
in SHR and deoxycorticosterone acetate (DOCA)-salt hypertensive mice. The study indicated that
GSPEs reduced endothelin (ET)-1 production but increased nitric oxide (NO) production, which
exhibited improved endothelial function. Moreover, GSPEs ameliorated oxidative stress by improving
superoxide dismutase (SOD) and catalase (CAT) activities and reducing malondialdehyde (MDA)
formation [52,53]. Similarly, enzymatic extract of grape pomace (GP-EE) also induced endothelium-
and NO−-dependent vasodilatation of both rat aorta and small mesenteric artery (SMA) segments,
prevented contraction elicited by ET-1, and reduced superoxide anion radical (O2

−) production [54].
Furthermore, another study showed that polyphenols in red grape skin and seeds increased endothelial
progenitor cells viability, adhesion and migration, and prevented endothelial dysfunction by reducing
reactive oxygen species (ROS) production [55]. In addition, red grape components increased the
expression of endothelial nitric oxide synthase (eNOS) [56]. In vitro, human umbilical vein endothelial
cells (HUVECs) were incubated with GSPEs to explore the signaling pathways of eNOS expression.
The result suggested that the increased eNOS expression was attributed to the activation of 5′-AMP
activated protein kinase (AMPK) and the increase in sirtuin-1 (SIRT-1) protein level, which was
critical for transcription factor Krüpple like factor-2 (KLF-2) induction [57]. In addition, another study
indicated that grape pomace extract (GPE) exerted antioxidant activity in endothelium (EA. hy926)
through the increase of glutathione (GSH) levels due to increased gamma-glutamylcysteine synthetase
(γ-GCS) levels and glutathione S-transferase (GST) activity [58]. Moreover, it was found that a low
dose (1 µg/mL) of grape seed extract (GSE) potentiated the inhibitory action of HUVECs on platelet
reactivity by about 10%, which accounted, at least partially, for the protective effects of grape products
against CVDs. However, a high concentration (up to 10 µg gallic acid equivalent/mL) of GSE impaired
endothelial cell proliferation in vitro [59].

3.1.2. Decreasing Blood Lipids

Hyperlipidemia can lead to lipoprotein deposition inside the vessel wall, and induce oxidative
stress and the formation of oxidized low-density lipoprotein (Ox-LDL), which plays a key role
in the pathogenesis of atherosclerosis. The GSE possesses potent lipid-lowering and antioxidant
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properties, which are beneficial to the prevention of atherosclerosis [60]. A study showed that plasma
triglycerides (TG) were attenuated by red grape consumption [61]. The hypolipidemic effect of
grape seed procyanidin extract at low doses was studied in hamsters, and results suggested that
25 mg/kg of the extract decreased body weight, protected against fat accumulation, lowered plasma
free fatty acid (FFA), and reduced lipid and TG accumulation in the mesenteric white adipose tissue
(MWAT). In addition, the extract exerted these effects in part through the activation of both β-oxidation
and the glycerolipid (GL)/FFA cycle, mainly in the retroperitoneal white adipose tissue (RWAT) [62].
High-density lipoproteins (HDL) are responsible for transporting 20–30% of the total plasma cholesterol
from tissues to the liver, as vehicles for reversing cholesterol transport, which help prevent or even
regress atherosclerosis [63]. A study indicated that grape polyphenols modulated the activity of
plasma HDL enzymes in old and obese rats. The result showed that grape polyphenols increased HDL
paraoxonase (PON) and lecithin-cholesterol acyltransferase (LCAT) activity, reduced cholesteryl ester
transfer protein (CETP) activity, and restored the function of HDL [64].

3.1.3. Decreasing Blood Pressure

The hypotensive effect of grape polyphenols has been detected in several studies [52,61].
Administration of GSPE markedly alleviated hypertension-induced arterial remodeling [51]. SHR
were used to assess the anti-hypertensive effect of grape seed procyanidin extract. The results showed
that the extract significantly decreased systolic and diastolic BP of SHR in a dose-dependent manner,
and at the dose of 375 mg/kg, the decrease of both BP reached the maximum value. Moreover, the
anti-hypertensive effect of the extract (375 mg/kg) in SHR was quite similar to that of Captopril
(50 mg/kg), which has been considered as a very effective anti-hypertensive drug in clinical practice [9].
Another study suggested chronic administration of GSPE significantly blocked the BP increase in ouabain
induced hypertensive rats model, and the improvement of the aortic NO production impaired by ouabain
was the possible mechanisms involved [57]. Furthermore, a study investigated the anti-hypertensive
effect and mechanism of red grape berry powder on rats with metabolic syndrome (MS). The study
indicated that grape berry powder lowered BP via its ability of inhibiting ET-1 secretion and increasing
eNOS levels of endothelium in a concentration-dependent manner [61].

3.1.4. Suppressing Platelets Function

Platelets play a pivotal role in physiological hemostasis. However, enhanced platelets
activation, adhesion, and aggregation aggravate the formation of arteriosclerotic plaques. A study
in vitro revealed the potential protective effects of GSE on hemostasis under the condition of
hyperhomocysteinemia by reducing the toxicity action of homocysteine (Hcy) and its most reactive
form homocysteine thiolactone (HTL) in blood. In human platelets incubated with Hcy (100 µM) or
HTL (1 µM), GSE decreased platelet adhesion to collagen and fibrinogen, the platelet aggregation, and
O2
− production in platelets [65]. Additionally, a study in vitro indicated that 1 µg/mL GSE reduced

platelet reactivity by about 10% due to the direct effect of its polyphenol contents on HUVECs [59].

3.1.5. Alleviating Ischemia/Reperfusion Injury

A study investigated the cardio-protective effect of grape extracts rich in malvidin, an anthocyanin
isolated from red grape skins, on isolated and Langendorff perfused rat heart. The result showed that
malvidin elicited cardio-protective effect against ischemia/reperfusion (I/R) damages by activating
the phosphatidylinositol 3-kinase (PI3K)/NO/cyclic guanosine monophosphate (cGMP)/protein
kinase-G (PKG) pathway, increasing intracellular cGMP and the phosphorylation of eNOS, PI3K-AKT,
extracellular regulated kinase1/2 (ERK1/2), and glycogen synthase kinase-3 β (GSK-3 β) [56].
In addition, grape extracts moderated cardiac and cerebral ischemia damages against I/R, which
induced a drastic oxidative stress [56,66]. Moreover, a study investigated the relationship between
grape seed and skin extract (GSSE) and ischemic stroke, and results showed that the extract not
only reduced brain damage size and histology caused by I/R, but also inhibited oxidative stress,
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and improved transition metals associated enzyme activities [66]. Reperfusion arrhythmias (RA) are
the most important causes of sudden death following reperfusion [67]. Another study analyzed the
molecular mechanisms of protective effects of GSPE on RA. The study indicated that GSPE played an
essential role in decreasing free radical generation for it increased the activity of Na+/K+-ATPase due
to the upregulation of Na+/K+-ATPase α1 subunit [67].

3.1.6. Inhibiting Thrombosis

The dysfunction of vessel endothelial cells and platelets are major risk factors in the formation
of atherosclerotic plaque. For the antithrombotic effect of proanthocyanidins, a study revealed that
GSPE decreased the length and weight of thrombus, protected the integrity of endothelium, reduced
thrombogenesis-promoting factors P-selectin, von Willebrand factor (vWF), and cellular adhesion
molecules (CAMs), increased thrombogenesis-demoting factors CD34, vascular endothelial growth factor
receptor-2 (VEGFR-2), and ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin
type one motif, member 13), and downregulated inflammatory cytokines interleukine (IL)-6, IL-8, and
tumor necrosis factor-alpha (TNF-α). Thus, GSPE facilitated endothelial protection and inhibited platelet
aggregation, inflammatory responses, and thrombus formation [68].

Collectively, the consumption of grapes or products derived from grapes might reduce the incidence
of CVDs through correcting endothelial dysfunction, reducing blood lipids, anti-hypertension, inhibiting
oxidative stress, improving platelet function, alleviating I/R damages, protecting myocardial function,
anti-thrombosis, and resisting inflammation. These effects might be due to several phytochemicals, such
as resveratrol, anthocyanin, and proanthocyanidin.

3.2. Blueberry

Blueberry is a flavonoid-containing fruit and exerts cardiovascular benefits. The cardioprotective
effects of blueberry (Vaccinium ashei Reade) extract were investigated in hypercholesterolemic rats
for 14 days. The result showed that blueberry extract decreased aortic lesions, reduced serum
lipid profiles (total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and TG), and
increased activities of antioxidant enzymes (CAT, SOD, and glutathione peroxidase (GSH-Px)) [69].
The effects of supplementation with blueberry for 10 weeks on endothelial function and BP were
studied in rats fed a high-fat diet. The study showed that blueberry supplementation lowered SBP
by 14% and improved endothelial dysfunction and aorta relaxation in response to acetylcholine [70].
Furthermore, a study evaluated the potential protective effects of seven phenolic acids, identified
as metabolites of blueberry, on murine macrophage cell line RAW 264.7. The result indicated that
phenolic acids decreased foam cell formation induced by Ox-LDL, Ox-LDL binding to macrophages,
lipopolysaccharide (LPS)-induced mRNA expression, and protein levels of TNF-α and IL-6 via
inhibiting the phosphorylation of mitogen-activated protein kinase (MAPK), Jun N-terminal kinase
(JNK), p38, and ERK1/2, downregulated the mRNA expression and protein levels of scavenger
receptor CD36, and upregulated the mRNA expression and protein levels of ATP-binding cassette
transporter A1 (ABCA1), which facilitated cholesterol efflux and inhibited cholesterol accumulation in
macrophages [71].

In conclusion, blueberry possesses commendably cardioprotective ability including anti-atherogenic
properties, anti-inflammation, lowering BP, improving oxidative parameters, and vascular reactivity.

3.3. Pomegranate

The peel, seed, and juice of pomegranate are rich in antioxidants and have potent atheroprotective
effect and antihypertensive properties. The major bioactive constituent of pomegranate is punicalagin,
which is known to have cardiovascular protective ability for its antioxidant role as a scavenger and
ferrous chelator of hydrogen peroxide [72]. A study found that pomegranate extract (PE) reducing
aortic sinus and coronary artery atherosclerosis was associated with the reduced oxidative stress and
inflammation in the vessel wall of SR-BI/apoE double KO mice [73]. The high level of oxidative stress
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in the paraventricular nucleus of the hypothalamus is essential in the pathogenesis of hypertension.
A study investigated the antihypertensive properties of PE in a SHR model. The findings demonstrated
that PE alleviated hypertension by reducing oxidative stress, increasing the antioxidant defense system,
decreasing inflammation, and improving mitochondrial function in the paraventricular nucleus,
thereby activating AMPK-nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) pathway [74]. Similarly,
the activation of the AMPK pathway by PE was studied in the heart of a rodent obesity model.
The result showed that PE activated AMPK by quickly decreasing the cellular ATP/ADP ratio
specifically in cardiomyocytes, and the activation of the AMPK pathway accounted for the prevention
of mitochondrial loss by enhancing mitochondrial biogenesis and amelioration of oxidative stress via
increasing the activity of phase II enzymes in high-fat diet-induced cardiac metabolic disorders [72].
In addition, pomegranate seed extract improved motor and cognitive deficits due to permanent
cerebral hypoperfusion ischemia (CHI), which was most likely related at least in some part to its
antioxidant and free radical scavenging actions [75].

3.4. Apple

Apple is the second most consumed fruit in the world following banana. In recent years,
epidemiological studies have shown that eating apples is associated with the reduction of the
occurrence of CVDs [30,31]. Apple is a major source of fiber and contains antioxidants such as
vitamin C and good dietary polyphenols. Particularly, the reduced incidence of CVDs is related to
apple consumption, probably as a result of the cholesterol-lowering effect of polyphenols, the main
bioactive compounds of apple, which are concentrated in the fruit peel. The cholesterol-lowering effect
of apple was detected in male Wistar rats fed with a cholesterol-enriched diet (2%). The study showed
that Bravo de Esmolfe apple was able to decrease serum levels of TG, TC, LDL-C, and Ox-LDL by
27.2%, 21.0%, 20.4%, and 20.0%, respectively. It also indicated that the cholesterol-lowering ability
of apple was mainly due to phytocompounds, such as catechin, epicatechin, procyanidin B1, and
β-carotene [76]. The development of CVDs is related with the previous existence of MS. Another
study suggested that apple peel reduced the biochemical parameters (glycaemia, TC, high-density
lipoprotein cholesterol (HDL-C), LDL-C, TG, ureic nitrogen, insulin, and asymmetric dimethylarginine
(ADMA)) in CF-1 mice with MS, diminished the cholesterol accumulation area, and reverted the
progression of the atherogenesis in apoE−/− mice [77].

3.5. Hawthorn

Hawthorn (Crataegus pinnatifida Bge.) is a berry-like fruit from the species of Crataegus. It has been
used as food or a traditional medicine to improve digestion for thousands of years. Moreover, during
the last decades, hawthorn has received more attention because of its potential to treat CVDs, especially
hyperlipidemia and atherosclerosis [78]. A study investigated the hypolipidemic effect of hawthorn
fruit compounds (HFC, including hawthorn and kiwi fruit extract) in apoE−/− atherosclerotic mice
with high blood lipid levels. The study indicated that HFC reduced TG and LDL-C/TC ratio. Moreover,
the reduction of LDL-C was more evident in HFC than in Simvastatin (6 mg/kg/day), indicating HFC
could be considered for the treatment of hyperlipidemia and the prevention of atherosclerosis [10].
Similarly, hawthorn pectin pentaoligosaccharide (HPPS) suppressed weight gain, decreased serum TG
levels, increased lipid excretion in feces, upregulated the gene and protein expressions of peroxisome
proliferator-activated receptor α (PPAR-a), and enhanced the hepatic fatty acid oxidation-related
enzyme activities of acyl-CoA oxidase, carnitine palmitoyltransferase I, 3-ketoacyl-CoA thiolase,
and 2,4-dienoyl-CoA reductase by 53.8%, 74.2%, 47.1%, and 24.2%, respectively, in the liver of
hyperlipidemic mice [79]. The anti-atherosclerosis effect of hawthorn and the potential mechanisms
were investigated in apoE−/− mice. The result showed that hawthorn decreased atherosclerotic lesions,
serum TC and TG level, reduced the hepatic fatty acid synthase (FAS) and sterol regulatory element
binding protein-1c (SREBP-1c) mRNA levels by 42% and 23%, and increased total antioxidant capacity
(T-AOC), SOD and GSH-Px activities, and the mRNA expression levels of the antioxidant enzymes
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SOD1, SOD2, glutathione peroxidase-3 (Gpx3) in the livers of mice fed with hawthorn fruit diet [80].
Another study indicated that aqueous extract of hawthorn (Crataegus pinnatifida var. Major) inhibited
atherosclerosis progression in high-fat-diet-fed rats by improving lipid metabolism, decreasing
inflammatory cytokine responses, and protecting endothelium. The result showed that aqueous
extract of hawthorn inhibited artery lesion, decreased IMT, reduced TC, TG, LDL-C, and the levels
of CRP, IL-1β, IL-8, and IL-18, increased HDL-C, ET, 6-keto-prostaglandin F1α (6-keto-PGF1α), and
thromboxane B2 (TXB2). It also revealed that chlorogenic acid, procyanidin B2, (−)-epicatechin, rutin,
and isoquercitrin were the main components of the extract [81].

3.6. Avocado

Avocado is an essential tropical fruit containing lipophilic compounds, i.e., monounsaturated
fatty acids (MUFAs), polyphenols, carotenoids, vitamin E, phytosterols, and squalene, which have
been recognized for cholesterol-lowering ability [82]. However, the antioxidant capacities of these
lipophilic compounds have attracted far less attention compared with hydrophilic compounds in the
fruit. In fact, the lipophilic extract of the fruit had higher antioxidant capacity than its hydrophilic
extract [83]. A study indicated that avocado pulp, containing acetogenin compounds, inhibited
platelet aggregation with a potential preventive effect on thrombus formation [84]. Moreover, avocado
pulp contains variable oil contents and is widely used in many fields such as the pharmaceutical
industry [82]. Another study evaluated the effects of avocado oil administration on inflammatory and
lipid parameters in rats with metabolic changes induced by sucrose ingestion. The study demonstrated
that avocado oil reduced hs-CRP and TG, very low-density lipoprotein (VLDL), and LDL levels [85].
In addition, the protective effects of dietary consuming avocado oil on biochemical markers of liver
function in rats fed with sucrose were quite similar to olive oil [86]. Furthermore, a study has shown
that avocado seeds improved hypercholesterolemia, and facilitated the prevention and treatment of
hypertension, inflammatory conditions, and diabetes [87].

3.7. Other Fruits

Mango is rich in several bioactive components with antioxidant and anti-inflammatory properties,
such as carotenoids, vitamin C, and phenolic compounds. A study demonstrated that two doses (1%
and 10%) of freeze-dried mango pulp were effective in improving glucose tolerance and lipid profiles
and reducing adiposity in mice fed with a high-fat diet. Additionally, the study also reported that
the lower dose (1%) was more effective in modulating glucose than the higher dose (10%), and was
more powerful in lowering blood glucose concentration than the hypoglycemic drug, rosiglitazone
(50 mg/kg diet), in mice fed with a high-fat diet [11]. Moreover, the anti-hypertensive effects of
the standardized methanolic extract of papaya (Carica papaya) were evaluated in SHR. The result
showed that the angiotensin converting enzyme inhibitory effects of papaya (100 mg/kg) were similar
to those of enalapril (10 mg/kg). The flavonoids, especially quercetin, rutin, nicotiflorin, clitorin,
and manghaslin, were identified as bioactive components of the extract, which could be applied
to the treatment of hypertension [12]. In addition, several studies revealed that cherry, Guangzao
(Choerospondias axillaris), and acai (Euterpe oleracea Mart.) have significant cardioprotective effects and
have been shown to play a beneficial role in improving myocardial infarction induced by I/R via
anti-oxidative and anti-apoptotic activities [88–90]. In addition, bilberry, black raspberry, and sea
buckthorn berries improved serum lipid profiles and promoted a hypocholesterolemic effect, which
protected against hypercholesterolemia and prevented atherosclerosis [91–93]. Additionally, jujube
(Zizyphus jujuba) and blackberry (Rubus allegheniensis Port.) inhibited foam cell formation in human
monocyte-derived macrophages induced by acetylated LDL, which therefore were useful for the
prevention of atherosclerosis [94,95]. In addition, yellow passion fruit and boysenberry decreased BP
in SHR [96,97]. However, data on these individual fruits is still limited. Furthermore, the underlying
mechanisms of protecting cardiovascular system remain to be investigated.
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Table 2. The cardioprotective abilities of fruits.

Fruit Subject Study Type Dose Main Effects References

Grape

freeze-dried grape powder SHR and Wistar-Kyoto (WKY) rats in vivo 600 mg/day BP↓, arterial relaxation↑, vascular compliance↑, cardiac hypertrophy↓ [51]

GSPE SHR in vivo 250 mg/kg/day arterial remodeling↓, ET-1↓, NO↑, SOD↑, CAT↑, MDA↓ [52]

oligomeric grape seed
proanthocyanidins (GSPs)

mice treated with DOCA-salt to
induce cardiovascular remodeling in vivo

NA

heart weight/body weight ratio↓, kidney weight/body weight atio↓,
cross-sectional area of cardiomyocytes↓, collagen deposition in heart↓,

histopathology injury↓, NO↑, SOD↑, MDA↓ [53]

isolated thoracic aorta ring in vitro endothelial-dependent aorta ring relaxation↑

GP-EE rat aorta and small mesenteric
artery (SMA) segments in vitro 0.3 and 10 µM

endothelium- and NO-dependent vasodilatation↑,
phenylephrine(Phe)-induced response in aortic rings↓, O2

−↓, contraction
elicited by ET-1↓

[54]

red grape skin and seeds
polyphenols

human endothelial progenitor cells
(EPC) in vitro 5, 50 and 150 µg/mL EPC viability and function↑, endothelial dysfunction↓, hyperglycemia

effect↓, ROS production↓ [55]

GSPE
ouabain induced hypertensive rats

model in vivo 250 mg/kg/day BP↓, aortic NO production↑
[57]

HUVECs in vitro 10 µg/mL eNOS expression↑
GPE endothelial (EA. hy926) cells in vitro 0.068 and 0.250 µg/mL GCS levels↑, GST activity↑, antioxidant activity↑ [58]

GSE HUVECs in vitro 1 µg/mL platelet reactivity↓ [59]

red grape berry powder
rats with metabolic syndrome in vivo 200, 400 and 800 mg/kg/day BP↓, plasma TG↓, insulin↓

[61]
HUVECs in vitro

20–1400 µg/mL ET-1↓
0.011, 0.058, 0.29, 1.46 and 3.66 mg/mL eNOS level↑

grape seed procyanidin extract hamster in vivo 25 mg/kg/day
body weight gain↓, adiposity index↓, weight of white adipose tissue
depots↓, plasma phospholipids↓, plasma FFA↓, mesenteric lipid and

triglyceride accumulation↓
[62]

grape polyphenols from
Vitis vinifera grapes 24-month-old obese rats in vivo 90 mg/kg/day plasma HDL PON activity↑, LCAT activity↑, CETP activity↓ [64]

grape seed procyanidin extract SHR in vivo 375 mg/kg SBP↓, DBP↓, GSH activity↑ [9]

GSE or black chokeberry
(Aronia melanocarpa) extract

human platelets incubated with
Hcy (100 µM) or HTL (1 µM) in vitro 2.5, 5, 10 µg/mL platelet adhesion to collagen and fibrinogen↓, platelet aggregation↓, O2

•−

production in platelet↓ [65]

malvidin-rich red grape skin
extract

isolated and Langendorff perfused
rat heart in vitro 1–1000 ng/mL

I/R damages↓, coronary dilation↑, active PI3K/NO/cGMP/PKG pathway,
intracellular cGMP↑, eNOS, PI3K-AKT, ERK1/2, and GSK-3 β

phosphorylation↑
[56]

GSSE a rat model of global ischemia in vivo 2.5 g/kg brain damage size and histology↓, oxidative stress↓, transition metals
associated enzyme activities↑ [66]

GSPE isolated rat hearts in vitro NA RA↓, Na+/K+-ATPase activity↑, Na+/K+-ATPase α1 subunit↑, free
radical↓ [67]

GSPE a rat model of deep vein
thrombosis (DVT) in vivo 400 mg/kg/day thrombus length and weight↓, protecte endothelium integrity, IL-6, IL-8

and TNF-α↓ [68]
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Table 2. Cont.

Fruit Subject Study Type Dose Main Effects References

Blueberry

blueberry extract
(Vaccinium ashei Reade) hypercholesterolemic rat in vivo 25, 50 mg/kg aortic lesions↓, oxidative damage to lipids and proteins↓, TC↓, LDL-C↓,

TG↓, activity of CAT, SOD and GSH-Px↑ [69]

freeze-dried blueberry powder rats fed a high-fat/cholesterol diet in vivo 2% (w/w) SBP↓, aorta relaxation↑, endothelial dysfunction↓ [70]

7 phenolic acids of
freeze-dried blueberry murine macrophage cell line RAW 264.7 in vitro NA

TNF-α and IL-6 mRNA expression and protein levels↓, MAPK, JNK,
p38, and Erk1/2 phosphorylation↓, mRNA expression and protein levels

of scavenger receptor CD36↓, foam cell formation↓, expression and
protein levels of ABCA1↑

[71]

Pomegranate

PE SR-BI/apoE double KO mice in vivo 307.5 µL/L in water aortic sinus and coronary artery atherosclerosis↓, oxidative stress and
inflammation in the vessel wall↓ [73]

PE containing 40% punicalagin SHR in vivo 150 mg/kg/day
BP↓, cardiac hypertrophy↓, oxidative stress↓, antioxidant defense
system↑, paraventricular nucleus inflammation↓, mitochondrial

superoxide anion levels↓, mitochondrial function↑
[74]

PE containing 40% punicalagin heart of a high-fat diet-induced obesity
rat model in vivo 150 mg/kg/day mitochondrial biogenesis↑, oxidative stress↓, phase II enzymes↑, cardiac

metabolic disorders↓ [72]

pomegranate seed extract CHI rat model in vivo 100, 200, 400, 800 mg/kg/day motor and cognitive coordination↑ [75]

Apple

Bravo de Esmolfe apple
male Wistar rats fed a

cholesterol-enriched diet (+2%
cholesterol)

in vivo 20% (w/w) = 5g/rat/day (~2–3
apples/person/day) for 30 days serum TG↓, TC↓, LDL-C↓, oxLDL↓ [76]

Fuji apple peel
Granny Smith apple peel

CF-1 mice with MS
apoE−/− mice in vivo 20% (w/w) for 43 days

20% (w/w) for 10 weeks

glycaemia↓, TC↓, HDL-C↓, LDL-C↓, ureic nitrogen↓, TG↓, insulin↓,
ADMA↓

atherogenic progression↓, cholesterol accumulation area↓
[77]

Hawthorn

HFC
apoE−/− atherosclerotic mice with high

blood lipid levels fed with a high
cholesterol diet

in vivo 0.5 mL/day TG↓, LDL-C/TC ratio↓ [10]

HPPS the liver of high fat diet induced
hyperlipidemic mice in vivo 150 mg/kg

weight gain↓, TG↓, lipid excretion in feces↑, mRNAs and activities of
acyl-CoA oxidase, carnitine palmitoyltransferase I, 3-ketoacyl-CoA

thiolase, and 2,4-dienoyl-CoA reductase↑, gene and protein expressions
of PPAR-α↑

[79]

freeze dried hawthorn fruit
(Crataegus pinnatifida) apoE−/− mice in vivo 1% (w/w)

atherosclerotic lesions↓, TC↓, TG↓, T-AOC values↑, SOD and GSH-Px
activities↑, hepatic FAS and SREBP-1c mRNA levels↓, hepatic SOD1,

SOD2, Gpx3 mRNA levels↑
[80]

sugar-free aqueous extract of
hawthorn fruit (Crataegus

pinnatifida var. Major)
high fat diet fed rats in vivo 72 and 288 mg/kg/day TC, TG and LDL-C↓, HDL-C↑, CRP, IL-1β, IL-8 and IL-18↓, ET,

6-keto-PGF1α and TXB2↑, pathological changes in the arteries↓, IMT↓ [81]
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Table 2. Cont.

Fruit Subject Study Type Dose Main Effects References

Avocado

avocado pulp
(Persea americana) extract

male adult CD 1 mice in vivo 25 mg/kg thrombus formation↓
[84]

platelet in vitro 10 µL platelet aggregation↓
avocado oil rats ingested with sucrose in vivo 7.5% (w/w) TG↓, VLDL↓, LDL↓, hs-CRP↓ [85]

Others

freeze-dried mango pulp male C57BL/6J mice fed a high-fat
diet in vivo 1% or 10% (w/w) epididymal fat mass↓, percentage of body fat↓, improve glucose tolerance,

insulin resistance↓ [11]

methanolic extract of papaya
(Carica papaya) SHR in vivo 100 mg/kg (twice a day) BP↓, angiotensin converting enzyme(ACE) activity↓, cardiac

hypertrophy↓, improve baroreflex sensitivity [12]

sour cherry seed kernel extract hearts from Sprague-Dawley rats in vitro 30 mg/kg/day post ischemic cardiac functions↑, infarct size↓, heme oxygenase-1 (HO-1)↑,
Bcl-2↑ [88]

total flavonoids of Guangzao
(Choerospondias axillaris) I/R male Sprague-Dawley rats in vivo 75, 150 and 300 mg/kg/day

cardiac function↑, heart pathologic lesion↓, CAT↑, GSH-Px↑, SOD↑,
MDA↓, TUNEL-positive nuclear staining↓, Bcl-2-associated X protein

(Bax)↓, caspase-3↓, Bcl-2↑, p38 MAPK activity↓, JNK activity↓
[89]

hydroalcoholic extract of acai
(Euterpe oleracea Mart.) seeds

male Wistar rats subjected to
myocardial infarction in vivo 100 mg/kg/day prevent the development of exercise intolerance, cardiac hypertrophy,

fibrosis, and dysfunction [90]

acai pulp
female Fischer rat of

dietary-induced
hypercholesterolemia

in vivo 2% (w/w) TC↓, LDL-C↓, atherogenic index↓, HDL-C↑, cholesterol excretion in feces↑,
expression of the LDL-R, ABCG5, and ABCG8 genes↑ [98]

bilberry (Vaccinium myrtillus L.)
anthocyanin-rich extract apoE−/− mice in vivo 0.02% (w/w) improve hypercholesterolemia

against atherosclerosis [91]

unrefined black raspberry seed oils
male Syrian hamsters fed

high-cholesterol (0.12%), high-fat
(9%) diets

in vivo NA plasma and liver TG↓, hypertriglyceridemia↓ [92]

polyphenols from sea
buckthorn berry rats with hyperlipidemia in vivo 7–28 mg/kg serum lipids↓, TNF-α↓, IL-6↓, antioxidant enzymes activity↑, eNOS,

ICAM-1, and LOX-1 mRNA expression and proteins in aortas↓ [93]

Jujube (Zizyphus jujuba) fructus and
semen extract human macrophages in vitro NA the foam cell formation induced by acetylated LDL↓,

prevent atherosclerosis [94]

methanol extract of blackberry
(Rubus allegheniensis Port.)

human monocyte-derived
macrophages induced by

acetylated LDL
in vitro 50 µM foam cell formation↓ [95]

yellow passion fruit pulp SHR in vivo 5, 6 or 8 g/kg/day SBP↓, GSH↑, thiobarbituric acid-reactive substances (TBARS)↓ [96]

proanthocyanidins in boysenberry
seed extract

SHR in vivo 100 and 200 mg/kg SBP↓
[97]

rat aorta rings in vitro vasorelaxant activity↑
methanolic extract of date palm

(Phoenix dactylifera L.) cerebral ischemia rats in vivo 100, 300 mg/kg SOD↑, CAT↑, GSH↑, glutathione reductase↑, lipid peroxidation↓,
oxidative stress↓, neuronal damage↓ [99]

black chokeberry (Aronia
melanocarpa) extract

bovine coronary artery
endothelial cells in vitro 0.1 g/mL NO↑, eNOS phosphorylation↑ [100]
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Table 2. Cont.

Fruit Subject Study Type Dose Main Effects References

saskatoon berry powder leptin receptor-deficient diabetic mice in vivo 5% (w/w) monocyte adhesion to aorta↓, inflammatory, fibrinolytic or stress
regulators in aorta or heart apex↓ [101]

saskatoon berry powder
leptin receptor-deficient diabetic mice in vivo

5% (w/w) endoplasmic reticulum stress (ERS)↓, unfolded protein response (UPR)↓ [102]
glycated LDL-treated HUVECs in vitro

19 fruits widely consumed in
central Chile NA in vitro 1 mg/mL anticoagulant activities: grape, raspberry

fibrinolytic activity: raspberry [103]

peach (Prunus persica) pulp
ethylacetate extract

cultured vascular smooth muscle cells
(VSMCs) in vitro 50, 100, or 200 µg/mL Angiotensin II (Ang II) induced intracellular Ca2+ elevation↓, generation

of ROS↓ [104]

methanolic extract of Lingonberry
(Vaccinium vitis-idaea L.) H9c2 rat myoblasts simulated IR in vitro 5 and 10 µM apoptosis↓, markers of nuclei condensation , caspase-3 activation, and

MAPK signaling↓ [105]

blueberry anthocyanin fraction
(BBA), blackberry anthocyanin

fraction (BKA), and blackcurrant
anthocyanin fraction (BCA)

RAW 264.7 macrophages treated by
LPS

bone marrow-derived macrophages
from Nrf2+/+ mice treated by LPS

in vitro 0–20 µg/mL IL-1 β mRNA levels↓, NF-κB p65 translocation to the nucleus↓
cellular ROS levels↓, IL-1β mRNA levels↓ [106]

pomegranate juice, together with
date fruit and date seeds extract apoE−/− mice in vivo 0.5 µM gallic acid equivalents

(GAE)/day

TC↓, TG↓, PON1 activity↑, mouse peritoneal macrophage (MPM)
oxidative stress↓, MPM cholesterol content↓, and MPM LDL uptake↓,

aortas lipid peroxide content↓, aortas PON lactonase activity↑
[107]

NA, stands for not available.
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In conclusion, fruits such as grape, blueberry, pomegranate, apple, hawthorn, and avocado
showed protective effects on cardiovascular function. Grape products markedly alleviated
hypertension-induced cardiovascular remodeling and impaired endothelial function. Most fruits were
effective in reducing oxidative stress, regulating lipids metabolism, and modulating BP. Additionally,
some fruits attenuated platelet function, alleviated I/R injury, suppressed thrombosis, and inhibited
inflammation (Figure 1).
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4. Clinical Trials

The anti-hypertensive effect of grape polyphenols in several randomized controlled trials (RCTs)
was evaluated by a meta-analysis, and results showed that daily grape polyphenols intake significantly
reduced SBP by 1.48 mmHg when compared with control subjects (p = 0.03). Contrarily, DBP was not
significantly decreased [108]. Grapes have potent hypolipidemic and anti-oxidative effects. Several
studies showed that grape reduced TC, LDL-C, and Ox-LDL and increased HDL-C in subjects
with various risk factors of CVDs [60,109,110]. Additionally, a study conducted on 60 healthy
volunteers indicated that supplying them with 700 mg polyphenol-rich grape extracts for 56 days
modulated the lipid profiles in terms of cardiovascular risk indicators, lowered TC and LDL-C, and
increased antioxidant capacity and vitamin E [111]. Moreover, a meta-analysis of 9 RCTs explored the
endothelium protective effect of grape polyphenols supplementation in adults. The study suggested
that consuming grape polyphenols improved endothelial function in healthy subjects, and the effect
was more obvious in subjects with high cardiovascular risk factors [112]. Besides grapes, other berries
such as strawberry, acai (Euterpe oleracea Mart.), Caucasian whortleberry (Vaccinium arctostaphylos L.),
sea buckthorn, and bilberry also have a potent lipid-lowering effect [113–121]. The benefits of berries on
the serum lipid metabolism might contribute to anthocyanin. The effects of berry-derived anthocyanin
supplements on the serum lipid profiles were studied in 120 dyslipidemic patients. The results
suggested that anthocyanin intake increased HDL-C and cellular cholesterol efflux to serum, and
decreased LDL-C, possibly due to the inhibition of CETP [122].

A clinical trial evaluated the cardiovascular protective effects of consumption of 75 g (about two
medium-sized apples) of dried apple for 1 year in 146 postmenopausal women. The study showed
that dried apple significantly lowered serum levels of TC and LDL-Cl by 9% and 16%, respectively,
at 3 months and further decreased by 13% and 24%, respectively, at 6 months, but stayed constant
thereafter. Furthermore, consumption of dried apple also reduced lipid hydroperoxide and CRP [123].
In addition, a study compared the cholesterol-lowering effect of 5 different apple species, Red Delicious,
Granny Smith, Fuji, Golden Delicious and Annurca apple, in mildly hypercholesterolaemic healthy
subjects. The study detected that Annurca apples led to the most significant outcome, reduced
TC and LDL-C levels by 8.3% and 14.5%, respectively, and an increased HDL-C level by 15.2%
(all p < 0.001) [124]. Moreover, another study compared the effects of whole fresh apple and processed
apple products (apple pomace, cloudy apple juice, or clear apple juice) on lipid profiles in healthy
volunteers. The result showed that whole apple, pomace, and cloudy juice lowered serum TC and
LDL-C; however, clear apple juice increased TC and LDL-C slightly, from which it could be concluded
that the fiber component was necessary for the lipid-lowering effect of apple in healthy humans [125].
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Additionally, the acute effects of apple on improving endothelial function were studied in some trials,
showing that apple improved endothelial function by affecting NO metabolites [126,127].

Kiwifruit is a good source of antioxidants due to its wealth in vitamins C and E, folate, carotenoids,
and phytochemicals and protects the body from endogenous oxidative damage [128]. A clinical trial
conducted on 85 hypercholesterolemic men showed that consuming two green kiwifruits daily in
conjunction with a healthy diet reduced inflammatory markers and lipid profiles in subjects with
modestly elevated CRP [129], but there were no significant differences in BP [130]. In addition, a study
of 43 subjects who had hyperlipidemia indicated that regular consumption of kiwifruit not only
modulated lipids profiles but also exerted beneficial effects on the antioxidant status via decreasing
LDL oxidation and oxidative stress [131]. Moreover, another study conducted on 118 subjects with
moderately elevated BP or stage 1 hypertension (SBP: 130–159 mmHg, DBP: 85–99 mmHg) showed
that mean 24 h ambulatory systolic/diastolic BP was lower in the group consuming three kiwifruits
versus the group consuming one apple daily [132]. The hypotensive effect of kiwifruit, to some extent,
was more notable in individuals with moderately elevated BP. Furthermore, the beneficial effects of
consuming three kiwifruits per day on BP and platelet aggregation were studied in male smokers.
The resulted showed that kiwifruits reduced the SBP and DBP by 10 mmHg (p = 0.019) and 9 mmHg
(p = 0.016), respectively, decreased platelet aggregation by 15% (p = 0.009), and lowered ACE activity
by 11% (p = 0.034) [133].

Avocados are a nutrient-dense source of MUFAs that can be used to replace saturated fatty acids
(SFA) in a diet to lower LDL-C. A meta-analysis of 10 RCTs assessing the impacts of avocados on TC,
LDL-C, HDL-C, and TG revealed that avocado decreased TC, LDL-C, and TG levels by 18.80 mg/dL,
16.50 mg/dL, and 27.20 mg/dL, respectively [134].

Finally, results from clinical trials are summarized in Table 3. Numerous clinical trials have
demonstrated that grape, apple, kiwifruit, and avocado were potential candidates for cardiovascular
protection due to their potent lipid-lowering efficiency. However, clinical studies on other fruits are
relatively few, and more research is needed to investigate the potential in combating CVDs.
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Table 3. Clinical trials of fruits against CVDs.

Subject Component Treatment Duration Outcome References

152 patients with type 2 diabetes low glycaemic index fruit −3.1 to 2.7 servings/day 6 months HbA1c1↓, SBP↓, CHD risk↓ [135]

52 patients with mild hyperlipidemia red grape seed extract (RGSE) 200 mg/day 8 weeks TC↓, LDL-C↓, Ox-LDL↓ [60]

24 pre-hypertensive, overweight, and/or
pre-diabetic subjects whole grape extract (WGE) 350 mg/day 6 weeks SOD↓, 8-isoprostane↓, Ox-LDL↓,

TC/HDL-C ratios↓, HDL-C ↑ [109]

69 patients with hyperlipidemia Condori red grapes or Shahroodi
white grapes 500 g/day 8 weeks

thiobarbituric acid reactive substances
(TBARS)↓, total antioxidant capacity (TAC)↑,

TC↓, LDL-C↓
[110]

60 healthy volunteers polyphenol-rich grape extract
supplementation 700 mg/day 56 days TC↓, LDL-C↑, TAC↑, vitamin E↑ [111]

96 women aged 40–60 years who had at least
one menopausal symptom grape seed extract tablets =100 or 200 mg

proanthocyanidin/day 4 weeks SBP↓, DBP↓ [136]

70 untreated subjects with pre- and stage I
hypertension (SBP: 120–159 mmHg)

grape seed extract (GSE) rich in
low-molecular-weight polyphenolic

compounds
300 mg/day 8 weeks BP values were modestly, but not

significantly, affected [137]

75 patients at high risk of CVD (with
diabetes or hypercholesterolemia plus ≥1

other CV risk factor) and undergoing
primary prevention of CVDs

resveratrol-rich grape
supplementation

350 mg/day = 8 mg resveratrol for
the first 6 months and a double dose

for the next 6 months
12 months

hs-CRP↓, TNF-á↓, plasminogen activator
inhibitor type 1 (PAI-1)↓,
IL-6/IL-10 ratio↓, IL-10↑

[138]

75 stable patients with CHD treated
according to currently accepted guidelines

for secondary prevention of CVDs

resveratrol-rich grape
supplementation

350 mg/day = 8 mg resveratrol for
the first 6 months and a double dose

for the next 6 months
12 months

serum adiponectin↑, PAI-1↓, inflammatory
genes in peripheral blood mononuclear cells

(PBMCs)
[139]

48 participants with MS (4 men, 44 women;
BMI: 37.8 ± 2.3 kg/m2; age: 50.0 ± 3.0 years) freeze-dried blueberry 50 g(~350 g fresh)/day 8 weeks SBP↓, DBP↓, Ox-LDL↓, MDA↓, serum

hydroxynonenal↓ [140]

58 postmenopausal women with
pre-andstage 1-hypertension freeze-dried blueberry powder 22 g/day 8 weeks SBP↓, DBP↓, brachial-ankle pulse wave

velocity↓, NO↑ [141]

25 sedentary men and postmenopausal
women (age: 18–50 years) whole blueberry powder ~250 g berries/day 6 weeks

natural killer(NK) cells↑, augmentation
index (AIx)↓, aortic systolic pressures

(ASPs)↓, diastolic pressures↓
[142]

18 male volunteers (age: 47.8 ± 9.7 years;
BMI: 24.8 ± 2.6 kg/m2)

freeze-dried wild blueberries
(Vaccinium angustifolium) powder 25 g = 375 mg anthocyanins 6 weeks endogenously oxidized DNA bases↓,

H2O2-induced DNA damage↓ [143]

23 healthy subjects (11 men, 12 women; age:
27 ± 3.2 years; weight: 63.5 ± 12.7 kg;

BMI: 21.74 ± 2.5 kg/m2)
strawberries 500 g/day 1 month

TC↓, LDL-C↓, TG↓, MDA↓, urinary
8-OHdG↓, isoprostanes↓, TAC↑,

spontaneous and oxidative hemolysis↓,
activated platelets↓

[113]

60 volunteers (5 men, 55 women; age:
49 ± 10 years; BMI: 36 ± 5 kg/m2) freeze-dried strawberries (FDS) 25 or 50 g/day 12 weeks TC↓, LDL-C↓, MDA↓ [114]

27 subjects with MS (2 men, 25 women; age:
47.0 ± 3.0 years; BMI: 37.5 ± 2.15 kg/m2) FDS 50g (~3 cups fresh)/day 8 weeks TC↓, LDL-C↓, small LDL particles↓, vascular

cell adhesion molecule-1(VCAM-1)↓ [115]
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Table 3. Cont.

Subject Component Treatment Duration Outcome References

36 subjects with type 2 diabetes (13 men, 23 women;
age: 51.57 ± 10 years; BMI: 27.90 ± 3.7 kg/m2 ) FDS 50 g (~500 g fresh)/day 6 weeks CRP↓, MDA↓, HbA1c↓, TAC↑ [144]

24 overweight and obese subjects (10 men, 14 women;
age: 50.9 ± 15 years; ,BMI: 29.2 ± 2.3 kg/m2)

consumed high carbohydrate/fat meal
strawberry (Fragaria) beverage =10 g FDS (~100 g fresh)/day 6 weeks TG↓, Ox-LDL↓, PAI-1↓, IL-1 β↓ [116,117]

10 overweight adults (BMI: 25–30 kg/m2) acai pulp (Euterpe oleracea Mart.) 100 g twice/day 1 month
fasting glucose↓, postprandial plasma

glucose↓, insulin↓, TC↓, LDL-C↓,
TC/HDL-C ratio↓

[118]

23 healthy male volunteers
(age: 30–65 years; BMI: 25–30 kg/m2) acai-based smoothie =694 mg total phenolics 1 d flow-mediated dilatation (FMD)↑ [145]

72 dyslipidemic patients blackberry (Morus nigra L.) juice
with pulp 300 mL/day 8 weeks apo A-I↑, HDL↑, apo B↓, hs-CRP↓, SBP↓ [146]

40 hyperlipidemic patients (age: 20–60 years)
Caucasian whortleberry

(Vaccinium arctostaphylos L.) fruit
hydroalcoholic extract

350 mg/8 h 2 months TC↓, TG↓, LDL-C↓, HDL-C↑ [119]

80 overweight and obese female volunteers
(BMI: 29.6 ± 2.1 kg/m2)

sea buckthorn berries (SB)
sea buckthorn oil (SBo)

SB phenolic extract (SBe)
bilberries (BB)

~100 g/day fresh berries 33–35 days

SB: TG and VLDL↓, waist circumference↓;
SBo: total lipoprotein, intermediate-density

lipoprotein (IDL), LDL and LDL-C↓,
vascular cell adhesion molecule (VCAM)↓;

SBe: VLDL fractions and serum TG↑,
intercellular adhesion molecule (ICAM)↓;

BB: improve serum lipids and lipoproteins,
waist circumference↓,body

weight↓, VCAM↓

[120,121]

120 dyslipidemic subjects (age: 40–65 years) berry-derived anthocyanin 160 mg twice/day 12 weeks
LDL-C↓, HDL-C↑, cellular cholesterol
efflux to serum↑, mass and activity of

plasma CETP ↓
[122]

160 postmenopausal women dried apple 75 g/day 1 year TC↓, LDL-C↓, lipid hydroperoxide↓, CRP↓ [123]

50 mildly hypercholesterolaemic healthy subjects
(28 men, 22 women)

Annurca apple
(Malus pumila Miller cv. Annurca) 2/day 4 months TC↓, LDL-C↓, HDL-C↑ [124]

23 healthy volunteers

whole apples 550 g/day

4 weeks whole apple, pomace and cloudy juice
lowered serum TC and LDL-C

[125]
apple pomace 22 g/day

clear apple juices 500 mL/day
cloudy apple juices 500 mL/day
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Table 3. Cont.

Subject Component Treatment Duration Outcome References

51 healthy adults (age: 40–60 years) apple 1/day 4 weeks Ox-LDL/β2-glycoprotein I complex
(Ox-LDL-β2 GPI) [147]

20 subjects (age: 21–29 years) apple juice two glasses (2 × 250 mL/day) 4 weeks plasma antioxidant activity (FRAP)↑,
insulin↑, HOMA↑, total GSH↓ [148]

30 healthy subjects (6 men, 24 women;
age: 47.3 ± 13.6 years) flavonoid-rich apple 120 g flesh + 80 g skin twice/day 1 d NO status↑, endothelial function↑,

FMD↑, pulse pressure↓, SBP↓ [126]

14 subjects (age: 45–70 years) drink containing epicatechin from an
apple extract =140 mg epicatechin/day 1 d NO metabolites [127]

30 hypercholesterolemic volunteers polyphenol-rich apple 40 g = 1.43 polyphenols/day 4 weeks did not improve vascular function [149]

85 hypercholesterolemic men consumed
a healthy diet

green kiwifruit 2/day 8 weeks
plasma HDL-C↑, TC/HDL-C ratio↓,

hs-CRP↓, IL-6↓ [129]

did not improve BP and markers of
cardiovascular function [130]

43 subjects who had hyperlipidemia in
Taiwan (13 men, 30 women) kiwifruit 2/day 8 weeks

HDL-C↑, LDL-C/HDL-C ratio↓,
TC/HDL-C ratio↓, vitamin C↑, vitamin

E↑, LDL oxidation↓, MDA↓,
4-hydroxy-2-nonenal↓

[131]

118 subjects with moderately elevated BP or
stage 1 hypertension (SBP: 130–159 mmHg,

DBP: 85–99 mmHg)
kiwifruit 3/day 8 weeks 24-h ambulatory BP↓ [132]

102 male smokers (age: 44–74 years) kiwifruit 3/day 8 weeks SBP↓, DBP↓, platelet aggregation↓, ACE
activity↓ [133]

45 overweight or obese participants with
baseline LDL-C in the 25–90% fresh Hass avocado 1(~36 g)/day 5 weeks LDL-C↓, LDL-particle number↓, small

dense LDL-C↓, LDL-C/HDL-C ratio↓ [150]

74 overweight adults fresh Rio-Red grapefruit 0.5 with each meal (3x)/day 6 weeks waist circumference↓, SBP↓, TC↓, LDL↓ [151]

12 obese postmenopausal women
(age: 57 ± 1 years; BMI: 38.1 ± 2.1 kg/m2;

SBP: 153 ± 4 mmHg)

L-citrulline-rich watermelon
supplementation =6 g L-citrulline/day 6 weeks arterial stiffness↓, aortic SBP↓, pressure

wave reflection amplitude↓ [152]
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5. Conclusions

The CVDs are greatly related to unbalanced diets. Several fruits can modulate metabolic
risk factors such as hypertension, dyslipidemia, diabetes, and overweight/obesity, and inhibit
atherosclerosis, which is the key pathological process of CHD and stroke. Many epidemiological
studies investigating the relationship between fruit consumption and CVD risks yielded similar results
regarding the protective effects of fruits on CVDs. Moreover, the majority of experimental studies also
supported cardiovascular protecting properties of several fruits, such as grape, blueberry, pomegranate,
apple, hawthorn, and avocado. The mechanisms of action mainly included the modulation of
molecular events and signaling pathways associated with correcting endothelial dysfunction, reducing
disorders in lipids metabolism, anti-hypertension, suppressing platelets function, alleviating I/R injury,
inhibiting thrombosis, reducing oxidative stress, and inhibiting inflammation responses. In the future,
the protective effects of a greater number of fruits on CVDs should be evaluated, and the bioactive
components should be isolated and identified. Furthermore, the mechanisms of action should be
further studied.
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